
©2004 by Pathfinder Solutions

Managing a Transition to
Model Driven Architecture

By Peter Fontana

Version 1.2

May 1, 2004

PathMATE™ Series

Pathfinder Solutions LLC
90 Oak Point

 Wrentham, MA 02093 USA

www.PathfinderMDA.com
508-384-1392

ii

Table Of Contents

1. Introduction.. 1

2. Technology Related Risks.. 2
Why Do Modeling?... 2
Conventional Wisdom .. 3
Make Modeling Practical ... 4
Achieving System Performance ... 8
Vendor Reliance.. 9

3. Change-Related Risks ... 10
Culture Shock..10
Learning Curves...10
Human Factors: Incidence of Error..10

4. Strategies for Success... 11
Find the Right Process ..11
Baby Steps..12
Use Appropriate Technology to Retain Control ..14
Embrace the New Paradigm...15
Pragmatism...16

5. Summary... 18

References ... 19

Platform Independent Action Language

1

1. Introduction

Model based software engineering technology can bring many benefits
to an embedded software engineering organization, but there are
many risks as well. How well will your culture adapt to the new
approach? How can you integrate legacy and third party components
along with new development? Will it even work? Should all engineers
be “converted” at once, or is there a way to stagger adoption? How
can the overlap of learning curves be minimized?

These are some of the issues commonly faced as embedded software
engineering organizations take large steps forward in development
technology, including adopting the UML. This paper identifies common
risks in adopting this technology, and presents practical mitigations for
these risks. The goals of the paper, then, are to:

• Survey the risks faced in adopting UML modeling technology for
embedded software development.

• Illuminate practical mitigations for these risks.

Platform Independent Action Language

2

2. Technology Related Risks

This section focuses on the risks associated with using modeling as the
primary form of expression for high-performance software
development.

Why Do Modeling?
Embedded and high-performance systems are getting more complex.
Execution environments more often encompass networks of
processors, running multiple threads of control. Development teams
are getting larger requiring a medium that communicates architectural
and technical direction. All of these technical challenges come in the
face of increasing market pressure, and shorter time-to-market
windows. Traditional embedded software development techniques –
including the careful hand-crafting of highly optimized assembler and
C code nuggets by experienced artisans - fail in the face today’s
challenges.

Developers of embedded and high-performance software require a
higher level of abstraction, and a software development process that
can be applied repeatedly and reliably by engineers with varying levels
of capability. They require development technology and techniques
that help them decompose their problem space and manage
complexity. Software modeling effectively helps developers deal with
the increasing scope of the problems they must solve.

The Unified Modeling Language (UML) is a standard form of expression
for software models, based on object-oriented concepts. Many
software development processes are based on UML as an underlying
representation. Most currently supported or emerging modeling tooling
is targeted to the UML. There is currently a large and growing base of
industry experience with the UML. All of these are compelling reasons
to consider using the UML for high performance and embedded
software development.

Platform Independent Action Language

3

Conventional Wisdom

We’ve all heard the straight scoop from those who already tried OO
technology – and had a rough go: “Oh – so you’re thinking of
OO/UML/modeling. Well let me tell you about this project from hell
that started out just like yours…”. After you listen to a few horror
stories, you can readily see why many experienced developers of
embedded and high-performance software believe the following:

• “I can’t afford to keep the models in sync with the code.”
In a code-based culture, doing a set of rigorous or detailed models
just creates a large dual-edit situation. Who has time to keep up
with models when there’s barely time to get the code done in
time?

• “I can’t use UML because we’re not implementing in an OO
language.” Many embedded and high-performance systems are
deployed on platforms where there is a C compiler and not much
more. Some development organizations don’t have (or don’t
want) people with experience in C++ or other OO languages.
Doesn’t an OO model require an OO implementation?

• “UML models are nice, but an OO implementation won't
work on my box.” Common practice in object-oriented
programming can readily lead to designs and implementations
that cannot meet performance requirements for high performance
systems. Many OOP techniques strive for flexibility and generality
at the expense of time and space efficiency. I don’t have control
over the code generated from UML models, do I?

• “I can’t use models because I can't start over and model
the whole system.” Virtually all projects involve large elements
of legacy code, components developed by or purchased from third
parties, or code generated from a specialized environment (such
as a GUI builder). Starting from scratch is rarely a sound business
alternative. If I use a modeling approach don’t I have to model
everything?

It is easy to listen to such assertions, and retreat back into a hole,
fearing they are true. In fact, these negative generalizations (any
many more) are based on a large body of experience – bad
experience. “So it is true?! You can keep that OO stuff – give me my
hammer and chisel back and I’ll chip ones and zeros out of stone the
old fashioned way!”

You may not have that luxury. Times have changed, and we’ve already
accepted that we need some of the benefits that modeling can bring
us. So the relevant question isn’t, “Is it possible to fail with the UML?”
We know the answer is yes. The relevant question is, “How can I
succeed with the UML?” The answer comes in a focus on simple
engineering disciplines, recognizing a key aspect of high performance
software development, and in the ability to learn from the failure of
others.

Platform Independent Action Language

4

Make Modeling Practical

This section focuses on general ways of applying the UML, and what
common issues are with each type of approach.

Ad-Hoc Architectural Diagramming

It is possible to use the UML as an ad hoc architectural diagramming
notation, creating a small number of graphic aids to explain high-level
aspects of your software architecture. This type of approach involves
very little effort (relative to the creation of code), and the resulting
“back-of-the-napkin” diagrams are generally insensitive to most code
changes. In the event you do change your architecture, having just a
few, high-level diagrams makes keeping them up to date a small task.
However, most organizations looking to the UML for substantial and
pervasive benefits cannot find meaningful gains with such a
parsimonious investment. High level, ad hoc architectural
diagramming generally only touches on high-level systems
decomposition, leaving behind many possible benefits of UML:

• Serve as a uniform medium of expression for software elements.

• Illuminate detail and alleviate complexity.

• Apply increased communication and visibility to better leverage
the efforts of each individual developer across the entire project.

Elaborative Modeling

A step beyond ad-hoc architectural diagramming is to apply the UML in
a high-level “design” phase, and then continue on using these design
diagrams as input to the coding phase, where developers elaborate on
the design – interpreting the design diagrams as they hand code the
implementation. Diagrams are created that express architectural and
partitioning strategies, and outline problem-space (feature) logic at a
high level. Very often there is a hazy boundary where design concepts
end, and where coding concepts begin. In early phases of a project,
the models can feel quite comforting, outlining solution strategies for a
wide fraction of the overall problem. Relative to ad-hoc architectural
diagramming, there is much greater detail in high-level “design”
models. This means a greater effort is required to create and maintain
them. Due to the gray zone at the code boundary, it is difficult to
define precisely what should be modeled, what should be coded, and
how these worlds interface or overlap.

Due to the extremely high cost of maintaining the design diagrams -
trying to keep them in sync with the ever-changing code - they are
often left behind by the development team. With no upkeep, or with

Elaborative Design
Modeling

Implementation
Coding

Platform Independent Action Language

5

partial, unreliable manual diagram maintenance efforts, the models
become a liability, increasingly inaccurate and misleading. Eventually
the code becomes the only true view into the system.

By investing in a substantial modeling effort, but ending up no models
to help during debugging, maintenance, and follow-on development,
the organization pursuing elaborative modeling can easily end up with
the worst of both worlds. Clearly there is a benefit – sometimes
substantial – to the initial coding effort. But for a small incremental
cost, this modeling investment could have been directed to a more
durable end, applying a Complete Modeling technique in an effort to
make models a practical investment by ensuring the durability and
longevity of their models.

Complete Modeling

This paper is focused on the use of the UML as way to completely
analyze, design, and deploy the capabilities of major system
components. Typical projects starting out may model 30% to 50% of
their software in an initial project, eventually reaching a blend of 80%
modeled.

With such a large population of UML models, the underlying modeling
process needs to ensure:

• Information captured in models is not then re-captured in a
subsequent coding phase.

• Changes to models are rigorously (preferably automatically)
propagated to code.

• Changes to code are either disallowed, or are rigorously
(preferably automatically) propagated to models.

There are many methods for using models, but they can generally be
broken into two major variants: Analysis Modeling, and
Implementation Diagramming,

Platform Independent Action Language

6

Analysis Modeling

An Analysis Model is a solution to a problem in terms of the problem
itself. The level of abstraction for the models matches the level of
abstraction for the domain (component) they’re addressing. Analysis
models are independent of implementation, and a separate, template-
based design maps these models to implementation via a
transformation process. In this approach, the generated
implementation code should not be changed – only models or the
transformation mappings are changed. This type of process is also
known as Forward Engineering, referring to the forward flow from
analysis models to implementation code. Analysis Modeling offers
some key benefits:

• Analysis Modeling maintains an appropriate level of abstraction.

• Complete Analysis Models are verifiable through execution.

• The models are free from specific implementation dependencies.

• Components that are developed via Analysis Modeling are simpler,
easier to reuse, and more flexible in the face of changing
requirements.

For Analysis Modeling to be practical, the models must be complete,
specifying detailed behavior. Support tooling should give the project
full control over the generation of implementation code. The discipline
of an Analysis Modeling approach eliminates the problem of duplicate
edits to models and code, by proscribing manual edits to
implementation code for analyzed components.

Analysis Modeling

Model Translation to Implementation

Platform Independent Action Language

7

Implementation Diagramming

This approach applies the UML to capture every aspect of the
implementation code literally. The level of abstraction can sometimes
approach that of the domain, but the need to capture all
implementation details intrudes on the simplicity of the domain,
compounding its complexity with that of the implementation domains.
However implementation diagramming offers some benefits:

• It can be an easy sell to novice modelers with strong
programming backgrounds due to its implementation code focus.

• Its directness and simplicity are a good match for relatively simple
systems (or components) with a uniform level of abstraction.

• The support tooling is simpler and easier to learn.

For Implementation Diagramming to be practical, there needs to be a
combination of process and tooling that will prevent the need for dual
edits on UML diagrams and actual code. Currently there are tools that
take advantage of the fact that the implementation diagrams and the
implementation code are at the same level of abstraction, and they will
allow edits in either UML models or code to be readily propagated to
the other. This level of tool support is sometimes called Round-Trip
Engineering.

Blending

On systems with high complexity, very often there are domains
(components) that are appropriate for Analysis Modeling, others that
are better suited for Implementation Diagramming, and even some
that are best simply coded. The appropriate application of modeling,
and the flexibility to choose approaches can be key to success.

Implementation
Diagramming
 “Round-Trip” Coding

Platform Independent Action Language

8

Achieving System Performance

The creation of executable elements from UML models is not a difficult
hurdle whether you are using Analysis Modeling or Implementation
Diagramming. Getting the “feature logic” to run properly is important
but generally this is a straightforward exercise. The difficult hurdle for
high performance and embedded systems is to achieve the run-time
space and time performance required.

Specific techniques for engineering high performance systems are
advanced topics of considerable scope unto themselves. However
there are some basic themes that can be carried back to this level, and
offer the new UML adopter some simple guidance. If the previous
version of your system has to face similar performance challenges,
then the architecture and strategies applied here can provide a
foundation to work from, in addition to the general strategies below.

Architectural Control

Very often the basic architecture of your system will dictate how it will
perform. Your modeling approach and tooling must support your
control over the fundamental makeup of your system. A modeling
strategy that is topology independent can allow flexible repartitioning.
Support for synchronous function/method calls and event driven
behavior allows you to achieve the appropriate mix. Look for a
modeling approach and supporting tools that afford the project the
architectural control required.

Mechanical Implementation

Very often, a proprietary optimization can be critical for performance.
Capturing this as a transformation pattern can support its use as an
alternative as needed during code generation. Sometimes a step
towards required performance is as simple as the replacement of a
general-purpose mechanism with a simpler and more direct construct.
In any case, having control over the mechanical details of generated
implementation code can be critical for achieving proper system
performance.

Freedom From Modeling

There are times when the proper form of expression of a component is
simply the implementation code. General purpose UML models may
complicate and obfuscate something that can be simply expressed in
code. The project needs the ability to decide which components are
modeled and which are coded by hand.

Platform Independent Action Language

9

Vendor Reliance

Large UML tool vendors with seductive marketing messages can
quickly snare a project in a proprietary world of interdependent tools
and processes. Be sure to understand the technical merits of processes
and tools before you choose. Seek input from independent references.
If you feel overwhelmed by the sheer volume of data and cannot make
an informed choice, retain guidance from an experienced source
during your selection process.

 As you consider model based processes and tools, there are choices
you can make that decrease your vulnerability to any single vendor:

• Use standard UML – avoid variant notations.

• Select model transformation technology that gives your project
complete control over the generated code, so you can go to new
platforms or incorporate project-specific optimizations without
vendor support or interventions.

• Use independent expertise providers.

• Choose a proven development process, based on a wide base of
relevant industry experience.

Platform Independent Action Language

10

3. Change-Related Risks

This section focuses on the risks related to cultural change within a
development community.

Culture Shock

Change – even for the better - is often painful. Be sure you understand
your culture’s tolerance for change, and manage the rollout scope and
speed with this tolerance in mind. Use a “wedge” approach, starting
with a small effort, and then incrementally increasing the scope of
your modeling efforts as each prior step achieves success.

Be sure to document the objective technical and business reasons for
moving to UML. This will help all affected parties to better understand
the benefits of enduring changes, and will also help keep the efforts
focused.

Learning Curves

The introduction of new processes and technology often presents
learning opportunities. As teams adopt UML based approaches, adjust
productivity performance expectations in anticipation of overlapping
learning curves including:

• The Unified Modeling Language itself

• The underlying model based software engineering process

• Your UML editing tool

• Code/report generation tooling

• Model level debugger

There may be other coincident challenges:

• Changing implementation language: C to C++

• New execution environment/RTOS

• New target hardware

• New product requirements

Human Factors: Incidence of Error

Very often proponents of new technology anticipate a wide range of
benefits without accounting for the inevitable initial stumbling that
accompanies change. As human beings, we are most prone to error in
situations of substantial change or heightened stress. An effective
modeling process incorporates work product reviews, and can improve
the effectiveness of your team in the detection and correction of
modeling errors.

Platform Independent Action Language

11

4. Strategies for Success

We’ve identified key technological and cultural issues with the adoption
of a model based software engineering process. Now we will identify
strategies and techniques to overcome these challenges, and mitigate
these risks.

Find the Right Process

As we start to consider UML and modeling, often the glistening
marketing machines of various vendors lure us to focus on tools. UML
model capture and execution tools are fun to play with and can have
sexy demos, but this is not where the new adopting organization
should start their search.

You must first understand the software development challenges your
organization faces. Do you require large-scale reuse? Do you need the
abstraction and power of analysis models, or will code-centric
implementation diagrams suffice? Does your system need the
flexibility to move to new execution environments? Do your product
strategies require a scalable architecture or other forms of topology
independence? How much control do you need over the architecture
and implementation strategies of your product?

Select a development method that meets your specific needs. Talk to
other projects using it, and see how well it works for them. Also
consider if it is

• Supported by a well defined process:

 based on proven industry experience

 with available training, mentoring and consulting

• Flexible, accommodating non-modeled code as well as modeled
components

• Leverages the capabilities of the top contributors across the entire
development team

• Scalable, supporting a full range of project sizes

Once you have selected the process that meets your needs, then the
tooling choice becomes much easier.

Platform Independent Action Language

12

Baby Steps

An incremental introduction/growth process can help mitigate the risks
of new technology and culture impact. A culture with some prior
experience with similar methods or technology may not need to start
with a pilot effort, or may progress faster than outlined below, but
these steps indicate how a cautious organization can take it one step
at a time.

Initial Investigative Consulting

The most important initial step is to understand your unique needs.
Retaining an expert experienced in the successful introduction of
model based processes and technology can be crucial to the focused
and timely investigation of your organization’s specific challenges.
Spending a few days to gain an objective assessment is a great first
step.

Training

Before setting up any project team with software development
processes and technology that is new to them, be sure all
practitioners, reviewers, and direct managers are trained. A new
adopting team can easily spend months wandering, exploring and
learning independently, and still not gain the skills and effectiveness
that can be conveyed in one focused week of well-delivered training.
Training is a must as a foundation element of all the steps listed
below.

Pilot or Application Fragment

Take an initial step with technology advocates focused on a pioneering
pilot project, or modeling a fragment of a larger deliverable effort. The
scope and duration of this effort are constrained to manage technology
risk. Allocate two or three motivated and trained developers to go
through a 9 – 12 week build cycle. Secure consulting and mentoring
from experienced practitioners to avoid common pitfalls, and ensure
rapid progress. Complete a full integration effort – down through
target hardware (if available) within the first build cycle, to experience
all aspects of the development process.

Include specific review activities to answer:

• Whether the chosen development process and technology are
suitable for your type of application.

• How effective the training, consulting, mentoring and tools are.

• How well the modeled system integrates and performs on the run-
time execution platform

If a pilot effort is selected, it should still be tied to a real deliverable to
ensure proper focus and management support is provided..

Platform Independent Action Language

13

Initial Project

After a successful pilot effort, step up to a full project. Typical scope
for this effort is 6 – 12 developers working on a 9-12 month release.
In any case, plan incremental builds on 3-4 month intervals. Allocate
different sets of feature requirements to each build, and fully integrate
and test each build – all the way down to target hardware (if
available). Be sure the team is properly trained and supported with
consulting and mentoring.

Include specific review activities to answer:

• How well the method and technology scales up

• If there are any flexibility or performance issues not seen on the
pilot, especially in the abstraction of and interface with non-
modeled components

• The effectiveness of the method and tooling integration with
support processes and tools, such as:

 Configuration Management

 Requirements Tracking

 Defect Tracking

 Project Management

Full Adoption

After the first 2 or 3 builds of the initial project, it should be clear if the
chosen method and support technology will do what you need from it.
A go/no-go decision can be made at this point, and the process can be
tuned or customized to better fit the needs and culture of your
organization. If the “go-point” is reached, widespread adoption can
lead to strategic benefits, unattainable from limited efforts, including:

• Large scale, cross product reuse

• Rapid and efficient reallocation of resources from one project
ramping down to a new project ramping up

• Project startup consulting available from your newly cultivated
internal resources

Platform Independent Action Language

14

Use Appropriate Technology to Retain Control

The combination of an appropriate development process and its
support tooling can dramatically affect your chances of success. In
addition to meeting your organization’s unique development
challenges, your modeling approach should ensure your project retains
complete control over the following key factors.

How an Individual Component is Developed

The development process must support the decomposition of the
system into high-level components. The project must retain the ability
to choose how any individual component is developed: analysis
modeling, import from legacy code, third party purchase, generated
from a specialized environment, etc. The technique of Domain
Modeling creates top-level components that are opaque to each other,
supporting this flexibility.

Code Resulting from Models

In order to avoid the dual edit problem of models/code, all
implementation code that is derived from a modeled component must
be automatically translated from that component. This makes the
model the “source” for that component, and the resulting
implementation is treated much like a compiler-generated object file.
If the code is wrong, then a model change is made to fix it.

Of course for this to work, the project must have complete control
over the transformation mappings (see Target System Architecture
below).

Target System Architecture

Very often in embedded and high performance systems, run-time
performance requirements are as important as individual feature
capabilities. Therefore software architects and designers must retain
complete control over the architecture and implementation strategies
of the target system. For system components (domains) that are hand
coded, this of course is not an issue. However in the case of domains
that are modeled – and therefore translated to implementation code –
this is a critical factor.

The path from models to code is often frozen in the form of a vendor
provided code generator program. If project specific architecture or
implementation strategies are necessary, a model transformation
approach is needed that affords complete control over generated code.
A template-based approach can provide complete control to the
project, supporting any architecture and even allowing implementation
language changes.

Platform Independent Action Language

15

Embrace the New Paradigm

Once you have taken the first few steps, and reasonably verified the
suitability and effectiveness of the method and technology, step up
and live in the new paradigm. Maintaining two separate development
processes (model base, and legacy) is highly inefficient. Your
development culture needs to penetrate the model based process and
vice versa.

Very often new adopting organizations have reasonable initial success
with a model based approach. But after a year or two, the actual use
of modeling diminishes, and the benefits disappear. This is commonly
due to a lack of long-term focus and commitment – and not an
objective evaluation of method effectiveness. Treat the way your
organization develops software as a business decision, and don’t let
good initial decisions get undone due to lack of attention and
discipline.

Existing Code – Worship or Eliminate?

The flexibility to integrate modeled and non-modeled components is
key to the method’s effectiveness in most projects. As a modeling
project goes to a second release, do you continue maintaining legacy
code elements? Sometimes these legacy elements offer a stable
foundation to work forward from, but sometimes you end up carrying
forward diseased components, propagating legacy problems.

You chose your model based software engineering process because it
is the best way to understand and deliver most new components.
Likewise, it is very often less expensive to model replacement
components for an existing mass of code requiring substantial
repairs/extensions, than it is to continue code-hacking at the mass
itself. However, it is appropriate to avoid modeling when one of the
following conditions applies:

• Use available legacy code when the required capabilities are
available from existing code that is complete, maintainable,
properly packaged, and validated.

• Use available off-the-shelf components when they provide the
required capabilities in the proper form.

• For subject matters that have dedicated and tailored development
environments (like GUI, parsing).

• For domains that cannot meet their performance or other
requirements through an automated mapping of models to
implementation.

Many organizations deny the true cost of maintaining legacy
components, and tend to sacrifice too much on the altar of existing
code. The best balance here is difficult to achieve technically and
culturally. Step carefully and stick to objective criteria.

Platform Independent Action Language

16

Metrics

As your organization adopts a model based approach, take inventory
of code-based metrics and substitute the appropriate model based
metrics. Instead of SLOC, measure classes, operations, and states.
Incorporate development lifecycle measurements based on your
modeling process.

Estimation and Status Reporting

Estimate project scope in terms of model based elements. Use your
own model based metrics, or for initial efforts apply industry-wide
input from external modeling experts. Take advantage of reusing
previously developed domain components and reduce future efforts
with the benefit of large-scale reuse. As you track project progress,
report in terms of the development lifecycle of your modeling process.

Pragmatism

It is compelling to get caught up in the excitement over a new model
based process and technology. The focus of a development team can
wander, and frantic movement is mistaken for progress. A modeling
approach is just another tool in the development team’s arsenal for
delivering the product that your customer needs.

Requirements Focus

Object-oriented culture encourages the development of highly flexible,
general-purpose classes. Developers can try to anticipate how their
creations may be used in future releases, and build in lots of
capabilities and flexibility. This culture can run counter to the goals of
highly constrained projects, with limits on resources for development,
testing, and execution.

In general, a development team should constrain their solution to the
requirements at hand, and not try to anticipate as-yet-undefined
future requirements. Certainly solution alternatives offering greater
long-term flexibility should be sought, but not at the expense of
development schedule or run-time performance. With experience,
development teams will develop general modeling techniques that
offer greater longevity and flexibility without resource impact. But
initially, teams should remain focused on the requirements at hand.

The Baby and the Bath Water

In a rush to adopt new processes and tools to support model based
development, organizations can “lose” existing development processes
and techniques. Even with full adoption of a model based approach,
there are still many supporting elements of the overall software
engineering process that need to remain, and connect to the new
modeling processes.

The organization should inventory all elements of their current
development and project management processes, and carefully
identify which are displaced by a new model based process, which
need to be modified, and which should be retained. Even basic
technical skills, such as scripting, test automation, configuration

Platform Independent Action Language

17

management, brainstorming, peer and management review still play
key roles in model-based development.

A pragmatic focus should extend to model-based tooling as well. Learn
what the tools do for you, and what their limitations are. Don’t
reinvent what can be purchased, but also don’t develop an over-
reliance on a single tool environment. Know when to go to modeling,
and when not to. Modeling is a powerful tool and can bring many
benefits, but it is only a means to an end: successful delivery of your
software product.

Platform Independent Action Language

18

5. Summary

Moving forward to a model based development paradigm is a complex
and challenging undertaking. But an organization can approach this
like the important business decision it is:

• Develop an understanding of their own key issues and challenges.

• Gain a technical overview of the key process and tool
requirements.

• Select a well-proven model based process that meets your needs,
then secure training for your practitioners in this process.

• Select flexible tooling to support your chosen process.

• Learn from the experience of others through research and
experienced consultants. Listen to those who have failed, and
avoid their mistakes, but only follow those who have succeeded.

• Manage risk through an incremental adoption process.

• Retain control over critical aspects of their architecture and
implementation.

• Keep a pragmatic focus.

Platform Independent Action Language

19

References

"Model Based Software Engineering: Rigorous Software Development
with Domain Modeling," Peter Fontana, (available at
www.pathfindermda.com).

The Unified Modeling Language User Guide, Grady Booch, James
Rumbaugh, Ivar Jacobson, Addison Wesley, 1999; ISBN 0-201-
57168-4

UML Distilled, Martin Fowler, Addison Wesley, 1997; ISBN 0-201-
32563-2

"Introduction to OMG’s Unified Modeling Language,” (available at
www.omg.org).

UML™ is a trademark of Object Management Group, Inc in the U.S. and other countries

