
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

1Copyright © 2004 David Frankel

MDA
Journal

Introduction

www.bptrends.com

David S. Frankel
David Frankel Consulting

df@DavidFrankelConsulting.com

MDA, UML, and CORBA are
Registered Trademarks of the

Object Management Group. The
logo at the top of the second page is

a Trademark of the OMG.

This month’s MDA Journal departs from previous practice by offering two articles
instead of one. I would like to take this opportunity to thank Business Process
Trends for continuing to host MDA Journal, and for allowing it to expand in this
manner.

The article by Jorn Bettin of SoftMetaWare describes an approach called Model-
Driven Software Development (MDSD), which brings together ideas from MDA,
Domain-Specific Languages, Product Line Practices, Agile Development, and
Open Source software. Although systematically integrating these ideas is an
ongoing process, the approach has the advantage of being something that Jorn
and other practitioners actively use in their consulting practice. Jorn points out
that you cannot look to the OMG to provide a full-featured methodology for using
model-driven techniques, because that is not the typical role of a standards
body. He thus offers an introduction to MDSD.

The article by Steve Cook of Microsoft is a reply to Mike Guttman. In the February
2004 issue of MDA Journal, Mike wrote a response to Steve’s first article, which
had appeared in the January 2004 issue.1 Expect some more articles in the
coming months as part of this healthy and ongoing discussion about the present
and future status of MDA and model-driven approaches in general. In the April
issue, IBM will weigh in.

Until then…

David Frankel

1 All MDA Journal and Business Process Trends articles from past issues are
available on the Business Process Trends Web site.

April 2004

123456789012345678901234567890121234567890123
123456789012345678901234567890121234567890123
123456789012345678901234567890121234567890123
123456789012345678901234567890121234567890123
123456789012345678901234567890121234567890123
123456789012345678901234567890121234567890123

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

2

MDA Journal

April 2004

Copyright © 2004 Jorn Bettin

www.bptrends.com

MDA Journal

Jorn Bettin
Managing Director

SoftMetaWare

jorn.bettin@softmetaware.com

Model-Driven Software Development

Executive Overview

In recent years we have seen the Object Management Group (OMG) endorse
the value of model-driven approaches to software development. The evidence
can be found in the marketing effort invested by the OMG in its Model-Driven
Architecture® (MDA®) initiative, and the success of standards such as the
Unified Modeling Language (UML®), which provides the foundation for MDA.

However, the focus of MDA is on standardization of notations and on tool
interoperability. In keeping with its traditional reluctance to standardize
methodologies, the OMG offers little in terms of methodological support for model-
driven software development. Thus, tool vendors define their own approaches,
which typically address the idiosyncrasies of specific tools, rather than providing
comprehensive support for an end-to-end software development process.

Model-Driven Software Development (MDSD) is a new software development
paradigm for distributed project teams involving 20+ people, with roots in software
product line engineering, which is the discipline of designing and building families
of applications for a specific purpose or market segment. In MDSD the following
classification scheme is used as a tool for planning investments in software:

 • Strategic software assets – the heart of your business—assets that grow
into an active human- and machine-usable knowledge base about your
business and processes,

 • Non-strategic software assets – necessary infrastructure that is prone to
technology churn and should be depreciated over two to three years, and

 • Software liabilities – legacy that is a cost burden.

The relationship between MDSD and software product line engineering can be
compared to the relationship between Component Based Development and Object
Technology: One builds on the other, and the terminology of MDSD can be seen
as an extension of the terminology for software product line engineering. The
concept of core assets from software product lines carries through into MDSD
and is directly reflected in Industrialized Software Asset Development, the
subtitle of MDSD.

What sets MDSD apart from classical software product line engineering is the
emphasis on a highly agile software development process. One of the highest
priorities in MDSD is to produce working software that can be validated by end
users and stakeholders as early as possible. This is consistent with the major
shift towards agile software development methodologies in the industry. MDSD
provides the scalability that is not inherent in popular agile methodologies such
as Extreme Programming.

Contents

Executive Overview
The Elements of Model-Driven
 Software Development
Software Product Line
 Engineering
The Significance of Open
 Source Infrastructure
Agile Software Development
The Software Lifecycle: From
 Inception to Obsolescence
Achieving Organizational Agility
Conclusions
Further Reading

12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

3

Model-Driven Software Development

Copyright © 2004 Jorn Bettin

The Elements of Model-Driven Software Development

Model-Driven Software Development [1] provides a set of techniques [2] that
enable the principles of agile software development (www.agilealliance.org) to
be applied to large-scale, industrialized software development. MDSD relies on
less well-known techniques from software product line engineering [3] [4] to
automate the repetitive aspects of software development and to prevent
architectural degradation in large systems.

A fundamental concept in software product line engineering is domain, which is
defined as a bounded area of knowledge. Domains can relate to knowledge
about vertical industries (business domains) and also to knowledge about specific
software implementation technologies (technical domains). Productivity gains
in building software product lines are achieved by raising the level of abstraction
through the use of formalized domain-specific modeling languages that are not
only understandable by domain experts, but are also machine readable. This
represents a significant departure from the traditional approach of building software
using general-purpose programming and modeling languages or using Computer
Aided Software Engineering (CASE) tools based on proprietary languages.
Domain-specific modeling languages are usually defined through a meta model,
i.e., an abstract description of the language elements and the rules for composing
expressions using the elements of the language. In MDSD we recognize that in
some cases domain-specific notations add significant value if their development
goes beyond the lowest common denominator that is harmless to share with
competitors in an industry.

The translation between domain-specific modeling languages and software
implementation concepts is achieved through model transformations, which either
transform a domain-specific model directly into programming language constructs
of a target platform [5], or use a staged approach via intermediate, less-abstract
models to finally reach the level of abstraction of the target platform. Direct
transformations between a domain-specific language and programming languages
are often expressed in template languages, which have proved to be a critical
element in model-driven approaches to developing software. In fact, template
languages have a long track record in code generation technology, and are not
an invention of the MDA era as claimed by some MDA tool vendors. Template
languages enable code generation from domain-specific modeling languages.
In MDSD, model transformations and code templates are first-class artifacts,
as important as the models that are transformed.

Domain-specific frameworks are another important part of MDSD. A domain-
specific framework is basically a template application that is only partially
complete, with the remaining bits left to be specified by a software developer or
by a code generator. Thus a domain-specific framework is a framework for
applications or parts of applications that relate to a specific domain. Typically,
domain-specific frameworks are implemented in traditional object-oriented
languages, and in MDSD they are used to raise the level of abstraction of the
target platform, which, in turn, keeps the complexity of model transformations
within manageable bounds.

12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

4

Model-Driven Software Development

Copyright © 2004 Jorn Bettin

Domain-driven design of frameworks [6]—that is, explicitly representing domain-
specific concepts in a set of classes and interfaces—requires deep domain
knowledge. Traditionally, the success of frameworks has not been spectacular,
simply because they are not necessarily easy to use by humans. Unless the
code to fill the placeholders of a framework fulfills all the assumptions made by
the framework developer, the resulting application will not behave as expected
or may not work at all. A domain-specific framework implements commonalities
that are shared across a family of applications, and that have been uncovered in
a process of domain analysis. Insufficiently documented frameworks, or
frameworks requiring application developers to adhere to too many complex
rules, are common issues encountered in practice. In this context, using model-
driven generation represents a huge leap forward by automating the use of
frameworks. Framework developers can extract the rules for using the framework
from a sample application and can then specify these rules in unambiguous
terms in code templates. This allows framework users to model applications in
domain-specific modeling languages, rather than hand crafting implementation
code to complete the missing bits in the framework. The link between domain-
specific modeling languages and domain-specific frameworks is provided by
code generators that navigate the application models and apply appropriate
code templates to generate framework completion code.

Lastly, MDSD recognizes the importance of the agile principle of “maximizing
the amount of work not done,” and advocates the development and use of Open
Source infrastructure.

In summary, MDSD can be defined as a multi-paradigm approach that embraces:

 • Domain analysis and software product line engineering
 • Meta modeling and domain-specific modeling languages
 • Model driven generation
 • Template languages
 • Domain-driven framework design
 • The principles of agile software development
 • The development and use of Open Source infrastructure

Software Product Line Engineering

The concept of a software component factory and tool-assisted assembly of
template parts can be traced back to the earlier days in computing [7], and has
since then evolved and been put into practice in the form of software product line
engineering [8]. Many key features of MDSD come from this field— in particular,
the differentiation between building software applications and building a product
platform including relevant application development tools. In MDSD, the product
platform for a software product family or software product line is developed using
domain-driven design principles, and the application engineering process is
automated as far as possible using model-driven generative techniques.

12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

5

Model-Driven Software Development

Copyright © 2004 Jorn Bettin

One way of looking at MDSD is as a set of techniques that complements software
product line engineering methodologies such as FAST [3] or KobrA [9], providing
concrete guidance for:

 • Managing iterations
 • Coordinating parallel domain engineering and application engineering
 • Designing model-driven generators
 • Designing domain-specific application engineering processes

MDSD is intended to be compatible with software product line engineering
methodologies. Therefore, the main focus of MDSD is on the description of
techniques, and not on the specification of work products which can be adopted
as required from methodologies such as FAST.

The Significance of Open Source Infrastructure

In today’s world of highly distributed systems, a significant proportion of a typical
software system simply provides basic infrastructure services for distributed
computing, security, persistence (the ability to permanently store data in
databases), and so on. It no longer makes sense to develop proprietary
infrastructure for the following reasons:

 • Infrastructure development is expensive.
 • Software infrastructure is typically far removed from what defines the

competitive edge of an organization, unless the entire business is devoted
to infrastructure development.

 • Customers increasingly demand software that is based on open standards,
and want to be able to integrate applications purchased from a range of
suppliers.

Critics perceive the economics of Open Source software (www.opensource.org)
to be limited to the scope of operating systems. However, other types of software
are increasingly being commoditized. Open Source desktop office tools and
additional examples of Open Source business software are starting to emerge
[10]. The Eclipse platform [11] provides a good example of the Open Source
concept being successfully applied to software development tools.

In MDSD we see model-driven generators as being a major part of the basic
infrastructure for industrialized software development. In this space the number
of Open Source offerings is growing, as is evident when searching the web for
the terms “model driven” and “open source.” A process of Darwinian selection
will lead to a robust set of tools that leaves little room for expensive MDA products.
In our assessment, the future belongs to Open Source model-driven generator
tool kits, where not only the basic generator is Open Source, but, also, commonly
required model transformations are Open Source. From the economic perspective
of a commercial business, all software that does not encapsulate a unique
business model or competitive advantage is best either purchased off-the-shelf
or taken from a stock of public Open Source resources. Once an Open Source

12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

6

Model-Driven Software Development

Copyright © 2004 Jorn Bettin

resource has reached a certain level of maturity and is used successfully by a
non-negligible number of organizations, proprietary alternatives quickly lose their
appeal.

Today, putting off the Open Source movement as a fringe phenomenon is
irresponsible from a commercial perspective, and software organizations who
are governed by a culture of looking down on everything that’s “not invented
here” are risking the future viability of their business model. Too often a decision
to build is the default option and does not have to be justified according to the
same criteria that are applied to decisions to buy external software or to use
Open Source software.

Of course, using Open Source software is not cost-free, but sharing the burden
of infrastructure maintenance and evolution across a large base of user
organizations is, possibly, as far as we can go in terms of “maximizing the work
not done.” Vendors of commercial software development tools can survive if they
change their focus, by providing value-added components with a minimized risk
of vendor lock-in on top of Open Source infrastructure.

Agile Software Development

MDSD embraces the principles of agile software development. It does not
prescribe detailed team structures, and does not prescribe the micro-activities
in the software development process. Instead, MDSD molds roles and teams
around individuals. Although tools to automate repetitive tasks play a key role in
MDSD, the tools are custom-built to the domain-specific requirements of those
who need to use the tools–application development teams. One of the highest
priorities in MDSD is to produce working software that can be validated by end
users and stakeholders.

A number of MDSD practices are designed specifically to create a collaborative
environment that de-emphasizes the importance of formal legal contracts in
favor of a pragmatic approach, allowing a project’s scope and priorities to change
dynamically in line with changing business needs. The traditional nature of legal
contracts is mostly adversarial. In practice, the approach most conducive to
collaboration is a legal construct that explicitly supports collaboration, and that
reduces the opportunities for litigation for both parties.

The differences from other agile approaches lie mainly in the degree of formality
MDSD requires for validating software-under-construction and the concept of
scope trading between iterations. The best practices outlined below are described
in more detail in [2], including specific scalability guidelines for distributed, multi-
team projects.

 1. Iterative Dual-Track Development
Develop the infrastructure as well as at least one application at the same
time. Make sure infrastructure developers get feedback from the
application developers immediately. Develop both parts incrementally and
iteratively. In any particular iteration, infrastructure development is one
step ahead. Introduce new releases of infrastructure only at the start of

12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

7

Model-Driven Software Development

Copyright © 2004 Jorn Bettin

application development iterations. In practice, to achieve sufficient agility,
iterations should never be longer than four to six weeks, and it is a good
idea to use a fixed duration for all iterations (timeboxing).

 2. Fixed-Budget Shopping Basket
Work with a fixed budget, defined by the available resource capacity for
each iteration, and use timeboxed iterations of constant length to provide
shippable code at least every three months. “Validate iterations” by
providing a checkout procedure to confirm the items that meet
expectations, and to put unsatisfactory items back on the shelf of open
requirements.

 3. Scope Trading
Scope trading is about trading scope among future iterations. It consists
of buying features for the next iteration (filling the fixed-budget shopping
basket) and of deferring features to later iterations or completely removing
features from the scope of the project to keep within the fixed iteration
budgets. At the beginning of each iteration, use a formal scope trading
workshop to agree the scope of each iteration. Ensure that not only end
users but also other relevant stakeholders are present at the workshop so
that all may agree on priorities. Formally define document results of the
workshop, and then proceed within the timeboxed iteration in accordance
with the priorities defined in the scope trading workshop to ensure that
estimation errors don’t affect the most important requirements and items
of critical architectural significance.

 4. Validate Iterations
A timeboxed iteration is concluded with a formal iteration validation
workshop to confirm progress and to document the parts of the software
that are acceptable to users and stakeholders. Let an end user that acted
as the on-site customer drive the demonstration of implemented features.
Explicitly communicate to the end user and stakeholder community that
new requirements can be brought up at any point. Encourage exploration
of “what-if” scenarios: Stakeholders may develop a new idea while
watching the demonstration, and ,similarly, the software architect may
want to use the opportunity to raise issues that may have escaped the
requirements elicitation process and that have been uncovered by the
development team.

The Software Lifecycle: From Inception to Obsolescence

Normally the term software lifecycle is used in discussions about the approach
and software development method used in a specific project or organization. To
better understand the economics of software development, it is interesting to
take a somewhat different perspective and track the life of a specific software
system from its inception to its decommissioning.

Significant amounts of the software in use today are not based on scalable
architectures that rigorously enforce subsystem boundaries as a tool for active
dependency management. A quote from a senior software architect in a 1000+

12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

8

Model-Driven Software Development

Copyright © 2004 Jorn Bettin

person software organization (2003): “Lack of dependency management is the
biggest problem in our organization - this is not purely technical, it’s a mindset
thing.” Hence, if we track the life of a typical software system that started out
from a nice, small, and innocent looking code base over several years, we find
that the natural process of growth and aging has taken its toll in the form of
spurious complexity. (See Figure 1.)

Figure 1. Spurious complexity accumulating over time.

From a certain point onwards, a sufficiently large set of new software
requirements, therefore, justifies a complete or partial rewrite of the software. If
software maintenance and enhancements are performed purely in the context of
working towards short-term results, then the quality of the original software design
degrades significantly over time. Unfortunately, treating software as a depreciating
asset, where maintenance only delays obsolescence of the asset value
encourages this trend [12]. This traditional accounting perspective is incompatible
with the idea of incrementally building and nurturing a domain-specific application
platform and reusing software assets across a number of applications within a
product family. By leveraging domain-specific knowledge to refactor parts of the
existing software into strategic software assets (models, components,
frameworks, generators, languages, techniques), the value of the software actually
increases, rather than decreases. Thus, maximizing return on investment in
strategic software assets requires a long-term investment strategy, in addition
to the requirement for agility in the software development process.

Of course, not all software used in an organization is worth developing into a
strategic asset. The following classification scheme is useful for planning
investments in software:

 • Strategic software assets – the heart of your business,
 • Non-strategic software assets – necessary infrastructure that is prone to

technology, and
 • Software liabilities – legacy that is a cost burden.

The identification of strategic software assets is closely associated with having
a clear business strategy, knowing which money-making business processes
are at the core of an organization, and being able to articulate the software
requirements relating to these core processes. Strategic software assets are

complexity

Software Source Code

Business Requirements

time 5 years

spurious
complexity

unavoidable
complexity

12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

9

Model-Driven Software Development

Copyright © 2004 Jorn Bettin

those that define your competitive edge. Off-the-shelf business software—even
very expensive enterprise systems—should only be considered strategic in terms
of information about your business stored in the databases of such products,
because the functionality provided is not unique and could be supplied from a
number of vendors. In contrast, a unique system that reflects your specific
business model may be an example of a strategic asset that is worthwhile to
refine and evolve, so that it remains a strategic asset, and does not degenerate
into a liability over time.

We emphasize asset development in the subtitle of MDSD, Industrialized
Software Asset Development (ISAD), because the model driven approach is
geared towards making tacit domain knowledge explicit and capturing this
strategic knowledge in a human and machine-readable format. In a nutshell,
MDSD provides the tools to manage strategic software assets, with off-the-shelf
products as the main source for economical provisioning of non-strategic software
assets, and established Open Source infrastructure as a public asset than can
be leveraged to reduce the cost of building and maintaining strategic software
assets.

Achieving Organizational Agility

Recently, a lot is being written about Business Process Management, the
importance of organizational agility, and the need for software systems that can
evolve at the same speed at which business processes are being refined and
reconfigured. The MDSD paradigm assists in the alignment of business and IT
by:

 • Being domain-driven, and leveraging business domain knowledge to build a
software architecture that is aligned with the business process architecture.

 • Assigning a very high value to domain knowledge that constitutes the
competitive edge, and, at the same time, recognizing the potential to reduce
software development costs by explicitly including a buy/build/Open Source
decision in the development process for all software assets.

 • Defining a software development process that builds on the principles for
agile software development, and that scales to distributed software
development in-the-large. MDSD relies on a fast iterative development cycle,
and institutes a self-correcting process for balancing rights and
responsibilities between business stakeholders and the software development
team.

So how does Business Process Management fit into this picture? There are
significant differences in opinions between people in the MDA camp and the
people in the BPM camp. The goals of BPM are laudable. Achieving them,
however, requires hard work, and, in our view, the fruits of model-driven approaches
to software development. BPM talks about executable business process models
and is based on domain-specific languages for the domain of process modeling.
Regardless of whether business process models are directly executable or need
to be automatically translated (compiled) into working software, the fundamentals
rest on domain-specific languages. Software product line engineering gives us

12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

10

Model-Driven Software Development

Copyright © 2004 Jorn Bettin

the techniques and tools required to design and implement domain-specific
languages; therefore, the technical implementation of BPM tools primarily
consists of the creation of an appropriate domain-specific modeling language,
and either the use of model-driven generation or the use of a run-time process
execution engine.

It is important to point out that the languages used for BPM will not make other
domain-specific languages redundant. A process-driven approach makes sense
at a certain level of granularity, and it is only possible if robust software is available
to provide the underlying services that need to be executed as part of a business
process. Designing and building the “right” underlying services requires domain
analysis, domain-driven framework design, and model-driven techniques – if it is
to be done economically. Even after the service infrastructure is in place, business
process changes will require software changes if the changes are of a fundamental
nature that affect the characteristics of the infrastructure services.

Conclusions

Software needs to be an enabler and not an inhibitor of organizational agility.
MDSD achieves this goal by classifying software into strategic assets, non-
strategic assets, and liabilities, and by providing a framework for channeling
investments in software development into those areas that define an
organization’s competitive edge. Any model-driven, asset-based approach to
software needs to be accompanied by a strategy for incremental elimination of
liabilities, and by appropriate investments to evolve established strategic software
assets, so that they don’t deteriorate into liabilities over time. In this context, it
is important to value quality over quantity of strategic software assets. Unclear
priorities and an emotional bias of “build” over “buy” and “Open Source” can
easily lead to software project failure, and can even endanger the existence of
an entire software development organization.

Further Reading

[1] Model-Driven Software Development, http://www.mdsd.info
[2] Jorn Bettin, 2004, Model-Driven Software Development: An emerging

paradigm for industrialized software asset development, http://
www.softmetaware.com/mdsd-and-isad.pdf.

[3] D. M. Weiss, C.T.R. Lai, 1999, Software Product Line Engineering, A
Family-Based Software Development Process, Addison-Wesley

[4] Carnegie Mellon Software Engineering Institute, Software Product Line
Practice, http://www.sei.cmu.edu/plp/plp_init.html

[5] Platform in the MDA sense. See MDA Guide, OMG document ab/2003-
01-03, page 6-6

[6] Eric Evans, 2003, Domain-Driven Design, Addison-Wesley
[7] M.D. McIlroy, 1968, Mass-Produced Software Components, http://

www.ericleach.com/massprod.htm
[8] Carnegie Mellon Software Engineering Institute, Product Line Hall of

Fame, http://www.sei.cmu.edu/plp/plp_hof.html

12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

11

Model-Driven Software Development

Copyright © 2004 Jorn Bettin

[9] Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O.,
Laqua, R., Muthig, D., Paech, B., Wuest, J., Zettel, J., 2002, Component-
based Product Line Engineering with UML, Addison-Wesley

[10] Compiere ERP & CRM, http://www.compiere.org/
[11] Eclipse project, http://www.eclipse.org/
[12] Brian Henderson-Sellers, 1996, Object-Oriented Metrics, Measures

of Complexity, Prentice Hall

Author

Jorn Bettin is a software consultant with a special interest in techniques to
optimize the productivity of software development teams and in designing large-
scale component systems. He is Managing Director of SoftMetaWare
(www.softmetaware.com), a consultancy that provides strategic technology
management advice, with resources based in the US, New Zealand/Australia,
and Europe. Prior to co-founding SoftMetaWare in 2002, he worked for over 13
years as a consultant and mentor in the IT industry in Germany, New Zealand,
and Australia. He has implemented automated, model-driven development in
several software organizations, has worked in methodology leadership roles in
an IBM product development lab, and enjoys leading international teams
dispersed across several locations.

12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

12

MDA Journal

April 2004

Copyright © 2004 Steve Cook

www.bptrends.com

MDA Journal

Model Driven Architecture
and Domain Specific Modeling

In February, Michael Guttman wrote a robust response to my article “Domain-
Specific Modeling and Model Driven Architecture,” which appeared in the January
issue of this journal. Here, I answer the major points he made.

Let’s first take “Microsoft itself offers no tools to move from UML to code or
anything else” and “Microsoft has chosen to ignore the rest of the industry’s
steady march towards model-driven development.” Actually, the version of Visio
that comes with Visual Studio Enterprise Architect provides an excellent
implementation of UML, and supports both code generation and reverse
engineering [1]. Visio has been part of Microsoft’s offering for several years, and
has long been one of the most popular and widely used modeling tools on the
market. More than ten years ago, I used Visio myself for model-driven
development when I had my own consultancy company that developed the
Syntropy approach [2]. Prior to the Visio acquisition, Microsoft shipped Visual
Modeler (a UML based tool derived from Rose) and worked with Rational on
XDE.

Microsoft does not wish to compete with the OMG’s modeling initiative. Instead
of being “against interoperability,” we will make it our business to interoperate
with modeling products – including those that implement versions of OMG
specifications–in areas where it makes sense for our customers. In particular,
as well as our existing implementation of UML, we anticipate that partners will
implement versions of UML on our modeling infrastructure; we expect to be able
to interchange XML descriptions of models (including, but not restricted to, XMI)
in future versions of our tools; and we will publish our own schemas and
metamodels to encourage interoperability. We are not in any way opposed to
UML, although we would like to put into perspective its value and its capabilities.

It would be wonderful if MDA gave “the ability for users to choose any set of ‘best
in breed’ solutions, while knowing in advance that they will interoperate.”
Unfortunately, claims that the MDA specifications deliver “industry-wide tool and
platform interoperability” are, in practice, exaggerated. The level of actual
conformance to OMG modeling specifications in the market is low – mostly
because it is actually very difficult to check conformance claims. There is no
effective process for doing so. The UML 2 specification (and, as a primary author
of it, I know this only too well) lacks the clarity to be implemented repeatedly.

There are many products in the marketplace that use UML-like models to front-
end a code generation process. This is a valuable thing to do, as it saves a lot of
time. (Microsoft tools do it too.) Some of them are very good, implementing
diagrammatic programming languages based on UML notations. Are they MDA-
compliant or not? Actually, interoperability between these tools is negligible.
There are no published standards that actually specify the details of this code-
generation process.

These vendors have found that the main benefit of UML is actually in its notational
conventions – the fact that users can recognize and have a basic understanding

Steve Cook
Software Architect

Enterprise Frameworks
& Tools Group

Microsoft Corporation

12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678

A BPT COLUMN

13

Model Driven Architecture and Domain Specific Modeling

Copyright © 2004 Steve Cook

of the syntax. But anyone who has used such tools can tell you that the boxes
and lines mean something different in each tool. Any benefit of UML is, therefore,
not in any formalization. It seems that if you generate any kind of code from
some part of UML, then you are doing MDA. (See also [3].)

At Microsoft – as at most other tool vendors – we focus on tuning up our
process to be seamless and reversible, rather than MDA-compliant. We feel
that a claim of MDA compliance would add no more than rhetorical value.

Early feedback from our customers to our Whitehorse offerings [4] has been
extremely positive. We rarely get the complaint “but it is not UML.” The
overwhelming majority of users of UML recognize it as a set of notations, and
neither know nor care about the UML metamodel.

Finally, on a personal note it may be worth saying that I joined Microsoft neither
to go over to the dark side, nor to sell my soul, but because I perceived the
company’s approach to model-driven development to be realistic, focused on
customer value, and based on a rich and compelling vision.

References

1. http://msdn.microsoft.com/vstudio/productinfo/overview/
eaoverview.aspx

2. S. Cook & J. Daniels, “Designing Object Systems”, Prentice-Hall
1994.

3. http://martinfowler.com/bliki/ModelDrivenArchitecture.html
4. http://msdn.microsoft.com/vstudio/productinfo/enterprise/default.aspx

