Writing ODP Enterprise Specifications in Maude

Francisco Durdn and Antonio Vallecillo

E.T.S.I. Informatica. Universidad de Malaga. Spain.
{duran,av}@lcc.uma.es

Abstract. Maude is an executable rewriting logic language specially
well suited for the specification of object-oriented open and distributed
systems. In this paper we explore the possibility of using Maude as a
formal notation for writing and reasoning about RM-ODP enterprise
specifications. An example is used to illustrate our proposal and to com-
pare it with other approaches that also try to formalize this viewpoint.

1 Introduction

Distributed systems are inherently complex, and their complete specifications
are so extensive that fully comprehending all their aspects is a difficult task. To
deal with this complexity, system specifications are usually decomposed through
a process of separation of concerns to produce a set of complementary speci-
fications, each one dealing with a specific aspect of the system. Specification
decomposition is a well-known concept that can be found in many architectures
for distributed systems. For instance, the Reference Model of Open Distributed
Processing (RM-ODP) framework [12] provides five generic and complementary
viewpoints on the system and its environment: enterprise, information, computa-
tional, engineering and technology viewpoints. They enable different participants
to observe a system from a suitable perspective, and at a suitable level of ab-
straction [6]. One of them—the enterprise viewpoint—focuses on the purpose,
scope and policies for the system and its environment. It describes the business
requirements and how to meet them, but without having to worry about other
system considerations, such as particular details of its implementation.
Although the ODP reference model provides abstract languages for the re-
levant concepts, it does not prescribe particular techniques to be used in the
individual viewpoints. The viewpoint languages defined in the reference model
are abstract languages in the sense that they define what concepts should be
supported, not how they should be represented. Several concrete languages or
notations have been proposed for the different viewpoints by different authors,
which seem to agree on the need of some formal methodology for such lan-
guages/notations in order to be able to deal with the complexity of distributed
systems. For example, formal description techniques (FDTs) such as LOTOS or
SDL have been proposed for the computational viewpoint [12], and Object-Z
for the information and enterprise viewpoints [14]. It is perhaps the enterprise
viewpoint the one for which it is more unclear the FDT to be used, although a
certain need to develop appropriate notations for ODP enterprise specifications

has been identified by different authors [1,3,6,11,12] in order to increase the
applicability of the ODP framework.

In this paper we would like to explore another alternative for specifying the
enterprise viewpoint. We propose Maude, an executable rewriting logic language
specially well suited for the specification of object-oriented open and distributed
systems [4,8]. This choice not only introduces new benefits over the Object-
Z approach (and other approaches), but also allows to overcome some of its
limitations, as we shall discuss later.

The structure of this document is as follows. First, Sections 2 and 3 serve
as brief introduction to the ODP enterprise viewpoint and Maude, respectively.
Then, Section 4 presents our proposal, describing how to write enterprise speci-
fications in Maude. Section 5 is dedicated to a small case study that illustrates
our approach, which is compared to other similar proposals in Section 6. Finally,
Section 7 draws some conclusions and describes some future research activities.

2 The Enterprise Viewpoint

An enterprise specification of an ODP system is an abstraction of the system and
a larger environment in which the ODP system exists, describing those aspects
that are relevant to specifying what the system is expected to do in the context of
its purpose, scope and policies [13]. An enterprise specification describes the be-
haviour assumed by those who interact with the ODP system, explicitly includ-
ing those aspects of the environment that influence its behaviour—environmental
constraints are captured as well as usage and management rules.

A fundamental structuring concept for enterprise specifications is that of a
community. A community is a configuration of enterprise objects modeling a col-
lection of entities (e.g., human beings, information processing systems, resources
of various kinds, and collections of these) that are subject to some implicit or
explicit contract governing their collective behaviour, and that has been formed
for a particular objective.

The scope of the system is defined in terms of its intended behaviour, and
this is expressed in terms of roles, processes, policies, and their relationships.
Roles identify abstractions of the community behavior, and are fulfilled by en-
terprise objects in the community. Processes describe the community behaviour
by means of (partially ordered) sets of actions, which are related to achieving
some particular sub-objective within the community. Finally, policies are the
rules that constraint the behavior and membership of communities in order to
make them achieve their objective. A policy can be expressed as an obligation,
an authorization, a permission, or a prohibition. Actions contrary to rules are
known as violations.

Of the five RM-ODP viewpoints, the enterprise viewpoint is perhaps the
least well defined. Initial efforts of the standardization community concentrated
on the computational and engineering aspects of open distributed processing.
Nevertheless, there is a growing awareness that enterprise specification has an

important role in the development of open distributed systems and in their
integration into the enterprise they serve.

3 Rewriting Logic and Maude

Rewriting logic [7] is a logic in which the state space of a distributed system
is specified as an algebraic data type in terms of an equational specification
(X, F), where X is a signature of types (sorts) and operations, and F is a set of
(conditional) equational axioms. The dynamics of such a system is then specified
by rewrite rules of the form ¢t — t’, where ¢t and ' are X-terms that describe
the local, concurrent transitions possible in the system, i.e., when a part of the
system state fits the pattern ¢ then it can change to a new local state fitting
pattern t’. The guards of conditional rules act as blocking pre-conditions, in the
sense that a conditional rule can only be fired if the condition is satisfied.

Maude [4] is a high-level language and a high-performance interpreter and
compiler that supports equational and rewriting logic specification and program-
ming of systems. Thus, Maude integrates an equational style of functional pro-
gramming with rewriting logic computation. This logic can naturally deal with
state and with highly nondeterministic concurrent computations; in particular,
it supports very well concurrent object-oriented computation [8].

In Maude, object-oriented systems are specified by object-oriented modules
in which classes and subclasses are declared. Each class is declared with the
syntax “class C | a : S1,..., a, : Sy,”, where C' is the name of the class, a; are
attribute identifiers, and §; are the corresponding sorts of the attributes. Objects
of a class C are then record-like structures < O : C | a1 : vy, ..., ay, : v, >, where
O is the name of the object, and the v; are the current values of its attributes.
Objects can interact in a different number of ways, including message passing.

In a concurrent object-oriented system the concurrent state, which is called
the configuration, has the structure of a multiset made up of objects and messages
that evolves by concurrent rewriting using rules that describe the effects of the
communication events between some objects and messages. The general form of
such rewrite rules is

erl [r] « My... My,
< Op:C | attsy > ... < Oy = Gy | atts, >
— < 0y : Cf | atts], > ... < O, : C] | atts] >
< Qi O |atts) > ... < Qp: C) | atts)) >
Mi...M;
if Cond .

where 7 is the rule label, M, are messages, O; and (@); are object identifiers, Cj,
C] and C} are classes, i,...,i is a subset of 1...n, and Cond is a boolean
condition (the rule ‘guard’). The result of applying such a rule is that: (a) mes-
sages M ... M, disappear, i.e., they are consumed; (b) the state, and possibly
the classes of objects O;,, ..., O;, may change; (¢) all the other objects O; van-
ish; (d) new objects Q1,..., @, are created; and (e) new messages Mj ... M, are
created, i.e., they are sent.

When several objects or messages appear in the left-hand side of a rule, they
need to synchronize in order for such a rule to be fired. Thus, such rules are
called synchronous, while rules involving just one object and one message in
their left-hand side are called asynchronous rules.

Class inheritance is directly supported by Maude’s order-sorted type struc-
ture. A subclass declaration C < C’ is a particular case of a subsort declaration
C < C’, by which all attributes, messages, and rules of the superclasses, as well
as the newly defined attributes, messages and rules of the subclass characterize
its structure and behavior. Multiple inheritance is supported [4].

4 Enterprise Specifications in Maude

In general, ODP systems are modeled in terms of objects. An object is a rep-
resentation of an entity in the real world; it contains information and offers
services. A system is therefore composed of interacting objects. In the case of
the enterprise viewpoint we talk about enterprise objects, which model the enti-
ties defined in an enterprise specification. The use of the object paradigm is key
in ODP, since it allows abstraction and encapsulation, two important properties
for the specification and design of complex systems.

An enterprise specification is composed of specifications of the elements previ-
ously defined in Section 2. That is, it consists of the specification of the system’s
communities (set of enterprise objects), roles (identifiers of behavior), processes
(sets of actions), policies (rules that govern the behavior and membership of
communities to achieve an objective), and their relationships [13].

The first step towards building the enterprise specifications of a system is to
identify all those elements. This can be done according to the following process:

1. Identify the communities, the roles in the communities, and the relationships
among those roles.

2. Identify the enterprise objects in each community, and how they fill the roles.

3. Identify the possible actions, and the participant objects in them. Objects
may participate as actors, artifacts (if they are just referenced in the action),
and resources (artifacts essential to the action that may become unavailable
or used up) [13].

4. Finally, identify the policies that rule the actions (permissions, obligations,
authorizations, prohibitions), and the effects of the possible violations of
those policies.

Points 1 and 2 deal with the (static) structure of the system in terms of
communities, roles and their relationships. Point 3 defines the behavior of the
system in terms of the possible actions allowed, and point 4 defines the rules
that govern such a behavior.

Once we have identified all those entities, we are ready to model the system.
For that, we propose Maude, using the following modeling approach:

ot

. Each role is modeled by a Maude class, whose members are the objects

exhibiting a behavior compatible with the one identified by the role. The
name of class modeling a role is the same as the role name, and the class
attributes describe the properties that characterize the objects fulfilling that
role. If role A specializes other role B, this is modeled by class A inheriting
from class B.

Each relationship among roles is modeled by a class with the name of
the relationship as its name, and whose attributes are the identifiers of the
participants and the relationship’s attributes.

Enterprise objects are modeled by Maude objects. In Maude, each object
belongs to a class. The class of an object is obtained by composing all the
Maude classes that model the different roles that the object fulfills. This is
realized in Maude by multiple class inheritance.

Communities are compositions of enterprise objects, and therefore are na-
turally modeled by Maude’s configurations (i.e., multisets of objects).
Actions are modeled by rewrite rules. The left-hand side and guard of a
rewrite rule represent the conditions that must satisfy a particular subsystem
for a rule to be triggered on it, that is, what has to happen for an action to
take place; its right-hand side represents the effect of such an action on such
a subsystem.

Finally, policies (both membership and behavioral) determine the form of
the rewrite rules. The way to model them will depend on the kind of policy:

— Permissions allow state transitions. Therefore, they will be modeled by
a rule whose left-hand side determines the scenario of the permitted ac-
tion and its participants, and whose right-hand side describes the effects
of such an action.

— To model obligations we need to differentiate whether they are inter-
nal or external ones. By internal obligations we mean those actions that
the system is forced to undertake as part of its intended behavior (i.e.,
its scope [13]). They will be modeled as normal rules that determine the
behavior of the system, perhaps restricting any other behavior by appro-
priate guards. However, it is difficult to impose obligations on actions
that are due to external agents of the system (e.g., a borrower of a book
in a library that does not return the item). In this case we shall implic-
itly permit the obliged actions, but introducing as well the appropriate
rules for allowing the observation of the possible violations of such obli-
gations. Those ‘watchdog’ rules will determine the appropriate corrective
(penalty or incentive) actions.

— Authorizations will be modeled as permissions, explicitly permitting
the corresponding actions. But, as for obligations, watchdog rules need
to be defined for determining the system’s behavior in case a violation
of the authorization occurs.

— Prohibitions can be treated in two different ways, depending on its
nature. The first way is to express them as conditional statements, using
the rules’ guards for explicitly banning such actions. In this way, the
system will automatically prevent the prohibited action to happen. For

actions whose occurrence escapes from the control of the system, the
second way to deal with prohibitions is by using watchdog rules again,
which detect the occurrence of the prohibited action and determine the
appropriate behavior of the system in that case.

Once the system specifications are written using this modeling approach,
what we get is a rewrite logic specification of the system, which can be executed
in Maude, thus simulating its behavior. This means that, in addition to being
able to formally reason about such a system, we will have a running prototype of
it. Maude implements a default top-down rule-fair strategy for the execution of
rewrite systems [4], but also provides the possibility of defining our own strategies
for controlling the execution, which will allow us to carry out simulations, model
checking, and other dynamic analysis of the system [8].

5 A Case Study

In order to illustrate our proposal we will specify in Maude a simple example,
which was first used by Steen and Derrick in [14] to illustrate the use of Object-Z
for the specification of the enterprise viewpoint as well. We decided to use the
same example in this work with the purpose of comparing both approaches. The
example is based on the regulations of the Templeman Library, at the University
of Kent at Canterbury, especially those that rule the borrowing process of the
Library items:

1. Borrowing rights are given to all academic staff, and postgraduate and un-
dergraduate students of the University.
2. There are prescribed periods of loan and limits on the number of items allowed
on loan to a borrower at any one time. These limits are detailed below.
Undergraduates may borrow 8 books. They may not borrow periodicals.
Books may be borrowed for four weeks.
Postgraduates may borrow 16 books or periodicals. Periodicals may be
borrowed for one week. Books may be borrowed for one month.
— Teaching staff may borrow 24 books or periodicals. Periodicals may be
borrowed for one week. Books may be borrowed for up to one year.
Items borrowed must be returned by the due date and time.
Borrowers who fail to return an item when it is due, will become liable to a
charge at the rates prescribed until the book or periodical is returned to the
library.
5. Failure to pay charges may result in suspension by the Librarian of borrowing
facilities.

Bt

Although not explicitly mentioned as such, these rules define the permissions,
obligations and prohibitions for the people, systems and artifacts playing a role in
the library community. Note the high level at which this description is given, and
the many details left unspecified. Restricting ourselves to a faithful specification
of such a description will be one of the main challenges of this exercise.

5.1 The Structure of the System

Let us begin with the static aspects of this community, i.e., its structure. Fol-
lowing our proposed approach, we can identify here three main roles, namely
borrowers, library items, and librarians. There are three special kinds of
borrowers (academic staff, undergrats, and postgrats), and two kinds of items
(books and periodicals). There is also a relationship between borrowers and
items, defined by a Loan class. In this case, each enterprise object fulfills only
one role.

The borrower role is modeled by the Borrower class, which has two attributes
(borrowedItems and fines) for keeping record, respectively, of the number of
items borrowed by a borrower and of his/her fines. Its subclasses do not need
any additional attributes:

class Borrower | borrowedItems : Nat, fines : Money .
classes Academic Undergrat Postgrat .
subclasses Academic Undergrat Postgrat < Borrower .

An item can be either a book or a periodical, and its only attribute will
indicate whether it is available or on loan. We model this by declaring classes
Book and Periodical as subclasses of class Item, which has a single attribute
status of a sort ItemStatus with values free and onloan.

class Item | status : ItemStatus .
classes Periodical Book .
subclasses Periodical Book < Item .

A library role is modeled by a class containing the information concerning
deadlines and number of items that a borrower is allowed to borrow simultane-
ously. Thus, class Library has an attribute maxLoans, of sort PFun[Cid, Nat],
a partial function that returns the maximum number of items allowed to bor-
row for a given class name (e.g., 24 for an academic, etc.). This function is not
defined for a class name other than Academic, Undergrat, and Postgrat. Sim-
ilarly, there is a loanPeriod attribute such that, given the names of a borrower
class and an item class, it gives back the number of days that a borrower is
allowed to hold an item (e.g., 7 days for an academic to have a periodical, etc.).
Library objects also have an attribute suspendedUsers, which is a set with the
identifiers of the borrower objects who are suspended.

class Library | maxLoans : PFun[Cid, Nat],
loanPeriod : PFun[Tuple[Cid, Cid], Nat],
suspendedUsers : Set[0id]

Please note that such a specification will allow us, for instance, to easily
‘compose’ communities with different particular details (e.g., the borrowing lim-
its may change from a library to another), allowing them to easily co-exist. Also
notice the use of the predefined sorts 0id and Cid for object identifiers and class
identifiers, respectively.

Finally, we have classes Librarian and Loan. Each object of class Loan will
establish a loan relationship between a borrower and an item, whose identifiers
are kept in attributes borrower and item, respectively. Sort Date represents
dates, and its specification has been omitted for space reasons.

class Librarian .
class Loan | dueDate : Date, borrower : 0id, item : 0id .

As suggested in [14], the structure of communities could also be specified
using UML, as a first step towards formalizing it. The strong correspondence
between the UML model classes and the Maude classes allows an easy trans-
lation between both models. This fact is very important, since it allows the
stakeholders of the system to use a more user-friendly graphical notation like
UML’s class diagrams to express the system’s structure, and then translate it
into Maude classes. Special care should be taken here, since the semantics of
UML is often weak and imprecise, as opposed to the semantics of Maude. An au-
tomatic translation of UML class diagrams into Maude, inside a more ambitious
project trying to give semantics to UML, has been proposed by Toval-Alvarez
and Fernandez-Alemén in [15].

5.2 Actions and Policies Governing the System’s Behavior

Five actions can be identified in the example: a borrower borrows an item, a
borrower returns a borrowed item, a librarian fines a borrower, a fined borrower
pays his/her debts, and a librarian suspends a borrower for being late in paying
his/her fines. We have tried to give the specification of the system at the same
level of abstraction of the textual description of the system given above, thus
leaving many details unspecified. Of course, this specification may be further
refined as many times as we wish, until we get to the right level of abstraction.
The modeling of these actions will be conditioned by the policies given. The
enterprise policies that can be extracted from the text are the following:

1. Any borrower is permitted to borrow an item if the number of his/her bor-
rowed items is less than his/her allowance (allowances as per the text: 8
items for undergrats, etc.).

2. An Undergrat is forbidden to borrow a Periodical item.

3. Any borrower is permitted to borrow an item for a given period of time. The
loan period depends on the kind of borrower and the kind of the item being
borrowed (times as per the text).

4. Any borrower is obliged to return his/her borrowed items before their due
date.

5. A wiolation of the previous rule may result in fines of certain amount by the

librarian until the items are returned.

Any fined borrower is obliged to pay his/her fines to the librarian.

7. A wiolation of the previous rule may result in a suspension action to the
borrower by the librarian.

>

Note how in these policies there are some details left unspecified, for example,
when the actions after a policy violation are executed (expressed by ‘may result
in’ in policies 5 and 7), or the precise amount of the fines in policy 7. In the
same sense, most policies say what needs to happen under the occurrence of an
action, but not the reasons or circumstances that triggered that action in the
first place. For instance, policy 7 permits a librarian to suspend a late-payer, but
it does not specify when, or why.

5.3 The Maude Rules Specifying the System’s Actions and Policies

In this section we discuss the rules specifying the actions and policies described
in Section 5.2. For space reasons the complete Maude specification of the system
have not been included here, we focus here on the part illustrating the main
concepts. The interested reader can consult them in [5].

In the first place, borrowing a book needs the borrower object not to be
suspended, and that the number of its borrowed items is smaller than its al-
lowance. We specify such an action with the synchronous rule below, in which
there are several objects involved, namely, a borrower borrowing a book, the
book, a librarian, the library, and a calendar object supplying the current date.

crl [a-borrower-borrows—-a-book]

< B : Borrower | borrowedItems : N >

< I : Book | status : free >

< L : Library | maxLoans : ML, loanPeriod : LP, suspendedUsers : 0S >
< 0 : Librarian | >

< C : Calendar | date : Today >

: Borrower | borrowedItems : N + 1 >

: Book | status : onloan >

: Library | >

: Librarian | >

: Calendar | >

: Loan | dueDate : Today + LP[(class(B), Book)],
borrower : B, item : I >

if not B in 0S and N < ML[class(B)]

AN AN AN ANAN
QO HWW

In Maude, as described in [4], those attributes of an object that are not
relevant for an axiom do not need to be mentioned. Attributes not appearing
in the right-hand side of a rule will maintain their previous values unmodified.
Note as well the use of attributes borrower and item in loan objects, which
make explicit that the loan relationship is between the borrower and the item
specified by these attributes. Finally, the due date is obtained by adding to the
current date the value assigned to the pair borrower-item in the partial function
LP in the attribute loanPeriod.

In addition to the conditions required for the borrowing of a book, the bor-
rowing of a periodical is only allowed if the borrower is not an undergrat. This
can be specified as shown in the following rule.

crl [a-non-undergrat-borrows-a-periodicall
B : Borrower | borrowedItems : N >
: Periodical | status : free >
: Library | maxLoans : ML, loanPeriod : LP, suspendedUsers : 0S >
: Librarian | >
: Calendar | date : Today >
: Borrower | borrowedItems : N + 1 >
: Periodical | status : onloan >
: Library | >
: Librarian | >
: Calendar | >
: Loan | dueDate : Today + LP[(class(B), Book)],
borrower : B, item I >
if not B in 0S and class(B) =/= Undergrat and N < ML[class(B)]

I A AN AN AN A
Qo H

AN AN AN AN
QO H+HWW

Some of the policies are implicit in the rules, that is, they do not need to be
explicitly specified in the guards. Note the different ways of specifying them:

— A borrower cannot borrow a book if he/she is not allowed (policy 7) or the
book is not free (common sense / overspecification). This is specified by
given the required values in the left-hand side of the rule.

— No further items can be borrowed if the number of borrowed items is already
greater or equal than his/her allowance (policy 1). This is guaranteed by the
rules’ guards.

— The prohibition for an undergrat to borrow periodicals (policy 2) is speci-
fied by the condition of the rule a-non-undergrat-borrows-a-periodical.
However, if we give separate rules dealing with each of the cases, such policy
would be specified just by not giving a rule for such a case.

The return of an item may be specified by the rule below. We can see how
the loan object disappears in the right-hand side of the rule.

rl [return]

< B : Borrower | borrowedItems : N >
< I : Item | >

< A : Loan | borrower : B, item : I >
< 0 : Librarian | >

< L : Library | >

=> < B : Borrower | borrowedItems : N - 1 >
< I : Item | status : free >
< 0 : Librarian | >

<L : Library | > .

The description of the system says nothing about when or how late borrowers
are fined. We have included a Maude rule for librarians to fine borrowers, but in
it, the amount of the fine is left unspecified, as well as the way of calculating that
amount, the precise moment in which the librarian decides to fine the borrower,
or how often borrowers are fined for late returns (maybe only once when they
return the book, or everyday for a fixed daily rate, ...).

crl [fine]

< B : Borrower | fines : M >

< I : Item | status : onloan >

< A : Loan | dueDate : D, borrower : B, item : I >
< 0 : Librarian | > < L : Library | >

< C : Calendar | date : Today >

=> < B : Borrower | fines : M + Amount >
< I : Item | ><A : Loan | >
< 0 : Librarian | > < L : Library | > < C : Calendar | >
if D < Today .

Late payers may be suspended by the librarian, although nothing is said
about the reasons that may make the librarian take such a decision (apart from
“failure to pay charges”). This can be modeled by the following rewrite rule.

crl [suspend]
< 0 : Librarian | > < L : Library | suspendedUsers : BS >
< B : Borrower | fines : M >
=> < 0 : Librarian | > < L : Library | suspendedUsers : B BS >
< B : Borrower | >
if M>0 .

Finally, the payment of charges may be modeled as follows.

crl [pay-charges]
< B : Borrower | fines : M >
<L : Library | > < 0 : Librarian | >
=> < B : Borrower | fines : M - Amount >
< L : Library | > < 0 : Librarian | >
if M > 0 and O < Amount and Amount <= M .

The amount to pay has been left unspecified, since nothing is said in the
description of the system about the way borrowers pay their debts: either all
due charges need to be paid at once, or fractions are allowed. With the previous
rule we cover all cases where the amount is between zero and the total amount
due. Note that there are many other details left unspecified. For example, nothing
is said about the restoration of the borrowing rights of a borrower, and therefore
no rule is given for that action.

It is important to notice at this level of abstraction that the responsibilities
for each of the actions are not made explicit. If required, such responsibilities will
become explicit in successive steps of refinement, in which the rules specifying the
actions can be decomposed into several (either consecutive or concurrent) sub-
actions. For example, borrowing an item, which is at this level modeled by rules
a-borrower-borrows-a-book and a-non-undergrat-borrows-a-periodical,
could be decomposed as follows: a borrower first request the borrowing of a book
or periodical to a librarian, which then checks for the availability and rights of
the borrower with the library, etc. Note that at this level of abstraction it is
made explicit the fact that it is the borrower who initiates the borrowing action.

Another interesting issue worth pointing out is about the use of messages as
a communication mechanism between objects, which is also provided in Maude.
Of course, there are other alternatives for specifying systems such as the one in
the example using Maude. For instance, we could have modeled ODP actions
by Maude messages and ODP policies by Maude rules. In our current approach
ODP actions are modeled by Maude rules, while ODP policies are modeled by
rule guards that determine when the rules are enabled. This is a more abstract
and general approach than using messages. First, it allows to deal with each kind
of policy in a different way, to define the so-called watchdog rules that determine
the behavior of the system upon the occurrence of a policy violation, and to use
Maude’s strategies for controlling the execution or model-checking the system
behavior based on the different occurrence of the actions. And second, Maude
messages naturally correspond to ODP messages, that model interactions be-
tween objects—but in the computational viewpoint, where they naturally belong
(in ODP, messages are a computational viewpoint concept), more than in the
enterprise viewpoint. We believe that rules are more appropriate for modeling
actions in the enterprise viewpoint than messages between objects.

6 Related Work

Formal description techniques are being extensively employed in ODP and have
proved valuable in supporting the precise definition of reference model concepts
[3]. Among all those works, we will focus here on two kinds of proposals: those
that use rewriting logic for specifying some of the ODP viewpoints, and those
that specifically deal with the enterprise viewpoint.

In the first group, Najm and Stefani use rewriting logic to formalize the
computational model of RM-ODP [10, 11]. In [10], a formal operational semantics
of the ODP computational model is presented, which is extended in [11] to deal
with reflection and Quality of Service (QoS) contracts using failures. In [1],
Bernardeschi et al use the actors model to specify the computational model,
defining a transformation between the information and computational models
that are semantically consistent. This can be embedded into Maude by using
the natural inclusion of the actor model into Maude [9].

With regard to the proposals that try to formalize the enterprise viewpoint,
there is an interesting proposal for using Object-Z as a formal notation for pin-
ning down the precise semantics of entreprise specifications [14]. The work by
Steen and Derrick uses UML for describing the structure of the enterprise speci-
fication, and combines it with a simple language using predicate logic for speci-
fying enterprise policies. A formal translation process (with future tool support)
is then defined to express the (informal) specifications obtained into the formal
object-oriented specification language Object-Z. As discussed in Section 5.1, the
use of UML seems to us a right choice for describing the structure of the commu-
nity despite its ambiguity and lack of formal underpinnings. However, the use of
Object-Z for specifying the enterprise policies may present some shortcomings:

— Actions are assigned to just one actor, and included as operations in the
actor’s definition class. How to deal with actions in which there is more than
a principal actor (e.g., in the case of synchronous actions)? In our approach
actions are rules, and therefore first-class citizens.

— The treatment of policy violations is not homogeneous with the rest of the
policies. Violations are not (and cannot be) specified within the Object-Z
framework, but at the meta-level [14], which is not easily accessible from the
Object-Z specifications.

— Temporal logic is used to express the invariants, but the fragment of temporal
logic included in Object-Z is too limited, as pointed out in [14].

— The use of Object-Z forces most of the unspecified details in the ‘textual’
specifications to be (over)specified, since full specifications are needed. This
forces the specifiers to make too many assumptions, incurring into over-
specifications in many cases.

— Other notations (such as Z, LOTOS, or CSP) are used in other viewpoints,
because Object-Z does not deal with all aspects. A common way of dealing
with consistency between specifications written in different notations is by
translating them into one single notation. For instance, in [2] the authors
propose the translation of LOTOS into Object-Z. However, many important
aspects of the specification are usually lost in these translations, since the
underlying logic of Object-Z is not expressive enough.

7 Concluding Remarks

Maude is an executable rewriting logic language specially well suited for the spe-
cification of object-oriented open and distributed systems. In this paper, we have
explored the possibility of using Maude for specifying the enterprise viewpoint,
and we are now in a position to formally represent the system, reason about the
specifications produced, or do, for example, some model checking analysis.

Once we make sure that the specifications of a particular viewpoint satisfy
certain properties, we need to address two additional issues, namely, the com-
position and the consistency checking of specifications of different viewpoints,
so that we get a specification of the complete system. By establishing the con-
sistency of different viewpoints we simply mean that the specifications of the
different viewpoints do not impose contradictory requirements.

It has been shown that rewriting logic and Maude has very good properties as
a logical framework, in which representing many different languages and logics,
and as a semantic framework, in which giving semantics to them [8]. Formalisms
such as CCS, LOTOS, SDL, and many others can be represented in rewriting
logic, thus allowing the possibility of bringing very different models under a
common semantic framework. Such a framework makes much easier to achieve
the integration and interoperation of different models and languages in a rigorous
way. Thus, Maude seems to be a promising option as a unifying framework for
the specification of RM-ODP viewpoints in which consistency checks can be
rigorously studied.

Acknowledgments

We are very thankful to Ambrosio Toval and to the anonymous referees for their
comments on a previous version of this paper. This work has been partially
supported by CICYT project TIC99-1083-C02-01.

References

1.

10.

11.

12.

13.

14.

15.

C. Bernardeschi, J. Dustzadeh, A. Fantechi, E. Najm, A. Nimour, and F. Olsen.
Transformations and consistent semantics for ODP viewpoints. In H. Bowman and
J. Derrick, editors, Proc. of FMOODS’97, Canterbury, 1997. Chapman & Hall.

. E. A. Boiten, H. Bowman, J. Derrick, P. F. Linington, and M. W. Steen. Viewpoint

consistency in ODP. Computer Networks, 34(3):503-537, August 2000.

. H. Bowman, J. Derrick, P. F. Linington, and M. W. A. Steen. FDTs for ODP.

Computer Standards and Interfaces, 17:457-479, September 1995.

. M. Clavel, F. Durén, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J. Que-

sada. Maude: Specification and programming in rewriting logic. Manuscript, SRI
International, 1999. Available at http://maude.csl.sri.com.

. F. Durdn and A. Vallecillo. Writing ODP Enterprise specifications in Maude. A

case study. Technical Report ITI-2001-8, Departmento de Lenguajes y Ciencias de
la Computacién, University of Mdalaga, Apr. 2001. Available at http://www.lcc.
uma.es/"av/Publicaciones/01/ITI-2001-8.pdf.

. P. F. Linington. RM-ODP: The architecture. In K. Milosevic and L. Armstrong,

editors, Open Distributed Processing II, pages 15-33. Chapman & Hall, Feb. 1995.

. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-

retical Comput. Sci., 96:73—-155, 1992.

. J. Meseguer. Rewriting logic and Maude: A wide-spectrum semantic framework

for object-based distributed systems. In S. F. Smith and C. L. Talcott, editors,
Proc. of FMOODS’2000, pages 89-117, Stanford, CA, Sept. 2000. Kluwer Aca-
demic Publishers.

. J. Meseguer and C. L. Talcott. A partial order event model for concurrent objects.

In Proceedings of CONCUR’99: Concurency Theory, volume 1664 of LNCS, pages
415-430. Springer-Verlag, 1999.

E. Najm and J.-B. Stefani. A formal operational semantics for the ODP compu-
tational model. Computer Networks and ISDN Systems, 27:1305-1329, 1995.

E. Najm and J.-B. Stefani. Computational models for open distributed systems.
In H. Bowman and J. Derrick, editors, Proc. of FMOODS’97, Canterbury, 1997.
Chapman & Hall.

RM-ODP. Reference Model for Open Distributed Processing. Rec. ISO/IEC 10746-
1 to 10746-4, ITU-T X.901 to X.904, ISO/ITU-T, 1997.

RM-ODP. Enterprise Language. FCD Rec. ISO/IEC 15414, ITU-T X.911,
ISO/ITU-T, 2000.

M. W. Steen and J. Derrick. ODP Enterprise Viewpoint Specification. Computer
Standards and Interfaces, 22:165-189, September 2000.

A. Toval-Alvarez and J. L. Ferndndez-Alemén. Formally modeling UML and its
evolution: A holistic approach. In S. Smith and C. Talcott, editors, Formal Methods
for Open Object-Based Distributed Systems I'V. Kluwer Academic Publishers, 2000.

