128 I4+D Computacién, Vol. 1, No. 2, Noviembre 2002

Quality Attributes for COTS Components

Manuel F. Bertoa y Antonio Vallecillo
Departamento de Lenguajes y Ciencias de la Computacién
Universidad de Mdlaga. 29071 Mélaga, Espaiia
{bertoa,av} @lcc.uma.es

Abstract.— As Component-based Software Development (CBSD) starts to be effectively used, some
software vendors have commenced to successfully sell and license commercial off-the-shelf (COTS)
components. One of the most critical processes in CBSD is the selection of the COTS components that
meet the user requirements. Current proposals have shown how to deal with the functional aspects of
this evaluation process. However, there is a lack of appropriate quality models that allow an effective
assessment of COTS components. Besides, the international standards that address the software
products’ quality issues (in particular, those from ISO and IEEE) have shown to be too general for
dealing with the specific characteristics of software components. In this position paper we propose a
quality model for CBSD based on ISO 9126, that defines a set of quality attributes and their associated
metrics for the effective evaluation of COTS components.

Key words: software quality, component-based software development, component attributes, quality
model

1. INTRODUCTION

In the last decade, Component-Based Software Development (CBSD) has generated tremendous
interest due to the development of plug-and-play reusable software, which has led to the concept of
Commercial Off-The-Shelf (COTS) software components. This approach moves organizations from
application development to application assembly. Constructing an application now involves the use of
prefabricated pieces, perhaps developed at different times, by different people, and possibly with
different uses in mind. The ultimate goal, once again, is to be able to reduce development times, costs,
and efforts, while improving the flexibility, reliability, and reusability of the final application due to the
(re)use of software components already tested and validated.

In CBSD, the proper search and selection processes of COTS components have become the
cornerstone of any effective COTS development. So far, most of the Software Engineering community
has concentrated on the functional aspects of components, leaving aside the (difficult) treatment of
their quality and extra-functional properties. However, this kind of properties deserves special
attention, since they are essential in any commercial evaluation process. There are several reasons that
difficulty the effective consideration of the extra-functional and quality requirements of software
components. First, there is no general consensus on the quality characteristics that need to be
considered. Thus, different authors propose different (separate) classifications: Mc-Call’s quality
factors proposed in 1977 [12], Barry Boehm’s quality model presented in 1976 [3], the quality
attributes proposed by international standards ISO 9126 [11] and ISO 14598 [10], the list of quality

Articulo recibido el 14 de junio de 2002.
ISSN 1665-238X

Bertoa y Vallecillo: Quality Attributes for COTS Components 129

attributes used in the COCOTS model [1] —which is based on IEEE standards {6] —, and many others
[4, 14].

The next issue is the lack of information about quality attributes provided by software vendors.
The Web portals of the main COTS vendors show this fact. Visit for instance Componentsource
(www.componentsource.com), Flashline (www.flashline.com), or WrldComp (www.wrldcomp.com).

In addition to this, there is an absence of any kind of metrics that could help evaluating quality
attributes objectively. Even worse, the international standards in charge of defining and dealing with
the quality aspects of software products (e.g. ISO 9126 and ISO 14598) are currently under revision.
The SQuaRE project [2] has been created specifically to make them converge, trying to eliminate the
gaps, conflicts, and ambiguities that they currently present.

Another drawback of the existing international standards is that they provide very general
quality models and guidelines, but very difficult to apply to specific domains such as CBSD and COTS
components.

In order to address many of these issues, this position paper tries to propose a quality model
specific for COTS components. Focusing on a very concrete domain, it builds on the existing
approaches and proposes a set of quality attributes and their corresponding metrics.

This position paper is organized in 7 sections. After this introduction, section 2 introduces the
terminology used, as well as an initial classification of the quality characteristics of software products.
Section 3 discusses the ISO 9126 model, and shows how the quality characteristics it defines do not
perfectly match the particular needs of COTS components. Our proposal is described in section 4, in
which a refinement of the ISO 9126 quality model is defined. Then, section 5 proposes the use of XML
for documenting component attributes. Finally, sections 6 and 7 discuss some related waorks, draw
some conclusions, and outline future research activities.

2. COMPONENTS QUALITY CHARACTERISTICS

In general, there is no consensus on how to define and categorize software product quality
characteristics. Here we will try to follow as much as possible a standard terminology, in particular the
one defined by ISO 9126. In it, a quality characteristic is a set of properties of a software product by
which its quality can be described and evaluated. A characteristic may be refined into multiple levels of
sub-characteristics.

An attribute is a quality property to which a metric can be assigned, where a metric is a
procedure for examining a component to produce a single datum, either a symbol (e.g. Excellent, Yes,
No) or a number. Please note that not all properties are measurable (e.g. Demonstrability).

A Quality model is the set of characteristics and sub-characteristics, as well as the relationships
between them, that provide the basis for specifying quality requirements and for evaluating quality. Of
course, the quality model used will depend on the kind of target product to be evaluated. In this sense,
the current standards and proposals define “generic” quality models.

The main contribution of this exercise is the definition of a quality model specific for software
components, which is described in section 3. Our main goal is to define the attributes that can be

130 I+D Computacién, Vol. 1, No. 2, Noviembre 2002

described by COTS vendors (no matter whether they are internal or external providers) as part of the
information provided about them. These attributes will allow the COTS components’ assessment and
selection by software designers and developers.

Before we start, we need to define what a software component is. Here we will adopt
Szyperski’s definition, whereby components are binary units of possibly independent production,
acquisition and deployment that interact to form a functioning system [14]. The adjective COTS will
refer to a special kind of (usually large grained) components, which are specially designed, developed
and marketed to be used in CBSD environments.

Table 1 shows the characteristics and sub-characteristics that define the ISO 9126 general
software quality model. From this quality model, our idea is to refine and customize it in order to
accommodate to the particular characteristics of COTS components.

Table 1. ISO 9126 Quality Characteristics

Characteristics Sub-characteristics
Functionality Suitability
Accuracy
Interoperability
Compliance
Security
Reliability Maturity
Recoverability
Fault Tolerance
Usability Learnability
Understandability
Operability
Efficiency Time behavior
Resource behavior
Maintainability Stability
Analyzability
Changeability
Testability
Portability Installability
Conformance
Replaceability
Adaptability

The first step is to identify several kinds of quality characteristics, classifying them according to
different criteria.

1. First, we need discriminate between those characteristics that make sense for individual
components (that we will call local characteristics) and those that must be evaluated at the software
architecture level (global characteristics). For instance, Fault Tolerance is a typical quality
characteristic that depends on the software architecture of the application. On the contrary,
Serializable is a property applicable to individual components only.

Bertoa y Vallecillo: Quality Attributes for COTS Components 131

2

The moment in which a characteristic can be observed or measured also allows establishing another
classification. Thus, we have those characteristics observable at runtime (e.g. Performance) and
those observable during the product cycle-life (e.g. Maintainability) [13].

3. It is also important to identify the target users of the quality model, as ISO standards explicitly
states. In our case, these users are mainly software architects and designers, which need to evaluate
the COTS components available in software repositories (or that can be bought from software
components vendors) in order to be incorporated into the software product they are building. In this
sense, we are focused more on the “programmatic” interfaces of components than on their “user”
(GUI) interfaces, i.e., we are particularly concerned with the API's defining the services provided
by the components so they can be composed and integrated with other programs.

4. For COTS components, it is essential to distinguish between internal and external metrics. Internal
metrics measure the internal attributes of the product (e.g. specification or source code) during
design and coding phases. They are “white-box” metrics. On the other hand, external metrics
concentrate on the system behavior during testing and component operation, from an “outsider”
view. External metrics are more appropriate for COTS components, due to its “black-box™ nature.
However, internal metrics cannot be completely discarded, since some internal attributes of a
component may provide an indirect measurement of its external characteristics. Similarly, they may
even affect the final architecture’s properties. For example, the size of a component can be
important when taking care of the final application space (e.g. memory) requirements.

Finally, it is important to note that there are other kind of marketing characteristics such as
price, technical support, license conditions, etc. —not directly related to quality— which may be of great
tmportance when selecting components. In this paper we will concentrate on quality characteristics
only, leaving the rest of characteristics for further research.

3. QUALITY CHARACTERISTICS

As previously mentioned, not all the characteristics of a software product as defined by ISO
9126 are applicable to COTS components. Table 2 shows the quality mode! we propose for this kind of
components.

As we can see, it is basically the ISO quality model (see Table 1), where some of the Portability
and Maintainability sub-characteristics disappear, as well as the Fault tolerance sub-characteristics.
Besides, other characteristics {(shown in bold) have changed their meaning in this new context. The
following list discusses the main changes to the ISO 9216 proposal.

Functionality. This characteristic maintains the same meaning for components than for
software products. It tries to express the ability of a component to provide the required services and
functions, when used under the specified conditions. The sub-characteristic Compatibility has been
added in our model, which indicates whether former versions of the component are compatible with its
current version, i.e., whether the component could work when integrated in a context where a prior
version correctly worked.

Reliability. This characteristic is directly applicable to components, and essential for reusing
them. The Maturity sub-characteristic is measured in terms of the number of commercial versions and
the time intervals between them. On the other hand, recoverability tries to measure whether the

132

component is able to recover from unexpected failures, and how it implements these recovery

mechanisms.

I+D Computacién, Vol. 1, No. 2, Noviembre 2002

Table 2. Quality model for COTS components

Characteristics | Sub-characteristics | Sub-characteristics
(Runtime) (Life cycle)
Functionality Accuracy Suitability
Security Interoperability
Compliance
Reliability Recoverability Maturity
Usability Learnability
Understandability
Operability
Efficiency Time behavior
Resource behavior
Maintainability Changeability
Testability
Portability Replaceability

Usability. This characteristic and all its subcharacteristics are perhaps the best example of
characteristics that have a completely different meaning for software components. The reason is that, in
CBSD, the end-users of components are the application developers and designers that have to build
applications with them, more than the people that have to interact with them. Thus, the usability of a
component should be interpreted as its ability to be used by the application developer when
constructing a software product or system with it. Under this characteristic we have included attributes
that measure the component’s usability during the design of applications.

Efficiency. We will respect the definition and classification proposed by ISO 9126 (which
distinguishes between Time behavior and Resource behavior), although many people prefer to talk
about Performance and use other sub-classifications. In any case, the attributes we have identified for
this characteristic are applicable independently of the name or sub-classification used.

Maintainability. This characteristic describes the ability of a software product to be modified.
Modifications include corrections, improvements or adaptations to the software, due to changes in the
environment, in the requirements, or in the functional specifications. The user of a component (i.e. the
developer) does not need to do the internal modifications but (s)he does need to adapt it, re-configure
it, and perform the testing of the component before it can be included in the final product. Thus,
changeability and testability are defined as sub-characteristics that must be measured for components.

Portability. This characteristic is defined as the ability of a software product to be transferred
from one environment to another. In CBSD, portability is an intrinsic property to the nature of
components, which are in principle designed and developed to be re-used in different environments (it

Bertoa y Vallecillo: Quality Attributes for COTS Components 133

is important to note that in CBSD, re-use means not only to use more than once, but also to use in
different environments [14]).

4, COMPONENT ATTRIBUTES

Once we have discussed the general [SO 9126 quality model, in this section we will describe
our proposal, i.e. the quality attributes we propose for measuring the characteristics of COTS
components. Quality attributes will be divided into two main categories, depending on whether the
attributes are discernible at run-time, or observable during the product life cycle.

The metrics that will be used for measuring attributes are the following:

o Presence This metric identifies whether an attribute is present in a component or not. It consists of
a boolean value and a string. The boolean value is used to indicate whether the attribute is present
and, if so, the string describes how the attribute is implemented by the component. Examples of
attributes that are measured by this metric are Data Encryption or Serializable.

o Time. This metric is used to measure time intervals. It uses an integer type variable to indicate the
absolute value, together with a string variable that indicates the units (seconds, months, etc.)

e Level. This metric is used to indicate a degree of effort, ability, etc. It is usually a subjective mea-
sure. It is described by an integer variable that can take any of the following values: 0 (Very Low),
1 (Low), 2 (Medium), 3 (High), 4 (Very High).

® Ratio This metric is used to describe percentages. It is measured by an integer variable with values
between 0 and 100.

Apart from these metrics, indexes will be used too. Indexes are indirect metrics, derived from
the values of two direct metrics, generating what is called an “indicator”. For example, the Complexity
Ratio is an attribute that compares the number of configurable parameters of the component with the
number of its provided interfaces. Although it could be argued that they are disposable, their
expressiveness has moved us to include them in our quality model.

4.1. Attributes Measurable at Runtime

Table 3 shows the quality attributes for COTS components observable during execution
grouped by sub-characteristics and indicating the kind of metric they use.

4.1.1. Attributes Associated to “Accuracy”

e Precision
This attribute evaluates the percentage of results obtained with the precision (i.e. granularity)
specified by the user requirements.
Please note that this attribute not only allows us to measure the computational precision of the
operations performed by the component, but also it can be used for measuring the level of
“freshness” of the information returned by the called operations. For instance, this is the case of a

134 I+D Computacién, Vol. 1, No. 2, Noviembre 2002

component that returns data from a cache in order to improve performance, at cost of re-turning
information not completely up-to-date.

This attribute is measured by a Ratio variable, calculated by dividing the number of adequate results
returned by the total number of results obtained in a given series of calls.

Computational Accuracy

This attribute evaluates the number of accurate results returned by the component operations,
according to the user specifications. It is measured by a Ratio variable, calculated by dividing the
number of accurate results returned by the total number of results obtained in a given series of calls.

4.1.2. Attributes Associated to “Security”

Data Encryption
This attribute expresses the ability of a component to deal with encryption in order to protect the
data it handles. A Presence metric is used, indicating the encryption method(s) used if so.

Controllability

This attribute indicates how the component is able to control the access to its provided services.
Examples are components that provide interfaces with functionality to identify or authenticate users.
A Presence metric will be used, indicating the control mechanisms implemented.

Auditability

This attribute shows whether a component implements any auditing mechanism, with capabilities
for recording users access to the system and to its data. For instance, the component may provide
functionality for recording each operation performed by its users, together with its related data,
access date, etc. A Presence metric will be used to measure this attribute, indicating how operations
are recorded and retrieved.

4.1.3. Attributes Associated to “Recoverability”

Serializabie

This attribute denotes the ability of a component to serialize its code and state, so it can be
transferred to a different machine, or stored for persistency. A Presence metric will be used to
measure this attribute.

Persistent
This attribute indicates whether a component can store its state in a persistent manner for later
recovery. A Presence metric will be used to measure this attribute.

Transactional

This attribute indicates whether the component provides any interface for implementing transactions
with its operations. For instance, a CORBA component implementing the “Resource” interface. A
Presence metric will be used to measure this attribute.

Error Handling
This attribute indicates whether the component can handle error situations, and the mechanism
implemented in that case (e.g. exceptions). A Presence metric is used, in which the string variable
describes the level of error handling implemented. Examples of this are:

Detection Errors are detected but no corrective actions are taken.

Bertoa y Vallecillo: Quality Attributes for COTS Components 135

Detection and warning Errors are detected and a warning is generated.
Handling Errors are detected and an exception mechanism is implemented
(the implemented mechanism is also described)

4.1.4. Attributes Associated to “Time behavior”

We need to differentiate here between those attributes which are appropriate for measuring
discrete values, and those appropriate for data streaming. In the first group we will define the following
attribute:

¢ Response Time
This attribute can be associated to any of the methods implemented in any of the component
interfaces, and measures the time taken since a request is received until a response has been sent.
Since this time may depend on the input parameters, the best, worst, or average time has to be
specified. In case this attribute is associated to an inter-face, then the best (worst or average)
response time will indicate the best (worst or average) response time of the interface’s operations. It
is measured by a Time metric.

Twao attributes deal with data streaming:

e Throughput
This attribute measures the output that can be successfully produced over a given period of time. An
Integer value is used to record this attribute, together with a string with the units used.

e Capacity
This attribute measures the amount of input in-formation that can be successfully processed by the
component over a given period of time. An Inreger value is used to record that attribute, together
with a string with the units used.

4,1.5. Attributes Associated to “Resource behavior (Resource utilization)”

¢ Memory utilization
The amount of memory needed by a component to operate. This attribute is a very relevant factor in
embedded and other critical systems. An Integer variable is used to determine the number of
kilobytes required. Besides, the minimum, maximum or estimated memory size may be indicated {(or
a recommended size for optimum performance).

o Disk utilization
This attribute specifies the disk space used by a component, including both the space used for
storing its code and constituent parts, and the space used temporarily or permanently during the
execution. An /nteger variable indicates the number of kilobytes required.

136 I+D Computacién, Vol. 1, No. 2, Noviembre 2002

Table 3. Quality attributes for COTS components that are measurable at runtime

Sub- Attribute Type
characteristic
Accuracy 1. Precision Ratio
2. Computational Ratio
Accuracy
Security 3. Data Encryption Presence
4. Controllability Presence
5. Auditability Presence
Recoverability 6. Serializable Presence
7. Persistent Presence
8. Transactional Presence
9. Error Handling Presence
Time behavior 10. Response time Time
11. Throughput Integer
12. Capacity Integer
Resource behavior | 13. Memory utilization Integer
14. Disk utilization Integer

4.2. Attributes Measurable during Component Life Cycle

The quality attributes for COTS components observable during life cycle are detailed in the
following sections and are summarized in Table 4, grouped by sub-characteristic.

4.2.2. Attributes Associated to “Suitability’

The level of suitability tries to express how well the component fits the user’s requirements.
Suitability will be measured by dividing the number of user-required interfaces by the total number of
interfaces provided by the component, i.e. how many of the provided interfaces are really required.

This attribute will depend on the user requirements for the specific application, and therefore
the component provider cannot directly measure it.

o (Coverage
This attribute tries to measure how much of the required functionality is covered by the component
implementation. It is measured by a Ratio metric according to the following formula:

N Used Interfaces (| Provided Interfaces 21

Provided Interfaces

100

e Excess
This attribute relates the number of the interfaces effectively used in the application with the number
of interfaces provided by the component.
A Ratio metric is used according to the following formula:

N Needed Interfaces) Provided Interfaces 2Q2)

Needed Interfaces

100

Bertoa y Vallecillo: Quality Attributes for COTS Components 137

¢ Service implementation coverage
It is possible that some component implementations do not completely cover the services specified
by the standard. This attribute tries to measure the number of implemented operations compared to
the total number of specified operations.
For instance, some CORBA or EIB component vendors provide component implementations that do
not cover the whole functionality as described in the service specification. This attribute serves to
measure these cases. It is measured by a Ratio metric according to the following formula:

2(3)

. Implemented Operations

100
Specifed Operations

4.2.3. Attributes Associated to “Interoperability”

¢ Data compatibility
This atiribute indicates whether the format of the data handled by the component is compliant with
any international or ’de facto’ standard or convention. The idea is to determine whether the
component handles open or proprietary data formats. A Presence metric indicates this ability and, if
so, which standard format is used {e.g. ASN1, XML, etc.)

4.2.4, Attributes Associated to “Compliance”

e Standardization
This attribute indicates the component conformance to international standards. We will use a
Presence metric to indicate whether the component conforms to an international standard,
convention or regulation or not and, if so, to which ones.

¢ Certification
Apart from conforming to a standard, the component may be certified by any internal or external
organization (e.g. X/open). This attribute uses a Presence metric to indicate whether it has some
kind of certification.

4.2.5. Attributes Associated to “Maturity”

The component maturity is measured in terms of the number of commercial versions that have
been marketed, and the interval between those versions.

e Volatility
This attribute measures the average time between commercial versions, and we also refer to it as
“Mean Time Between Versions”. We have named this attribute Volatility because it gives us an
indication about the lifetime of a version in the market. A Time metric is used for measuring this
attribute.

* Evolvability
The number of versions that have been marketed for a given component may provide an indication
about the product maturity, and how it has evolved from its first version. This attribute may be
interesting in conjunction with Volatility to indicate whether new versions are expected in a short
time or not. This attribute is measured by an Integer value that stores the absolute number of
versions that have been commercially produced.

138 I+D Computacién, Vol. 1, No. 2, Noviembre 2002

¢ Failure removal
A Maturity indicator is the number of bugs fixed in a given version of the component. Although a
priori a high number of bugs fixed in a version could indicate that the new version is more stable,
the authors’ experience shows that the more bugs discovered in a product, the more bugs remain to
fix. Thus, the number of fixed bugs is a good measure of the bugs that still remain hidden. An
Integer is used to store the average number of bugs fixed in all previous versions.

4.2.6. Attributes Associated to “Learnability”

Related to this characteristic, there is a set of at-tributes that try to measure the time and effort
needed to master some specific tasks (such as usage, configuration, or administration of the
component). These times, initially assigned by the component vendor or estimated by third parties,
provide an estimation of the learnability of the component. In this context, the times will correspond to
technical staff, with an average experience and knowledge (i.e. neither a novice nor an expert).

e Time to use
This attribute measures the average time needed for a developer to learn how to correctly use the
component.

¢ Time to configure
This attribute measures the average time needed for a developer to learn how to correctly configure
the component, and for properly understanding its configuration parameters.

e Time to admin
This attribute measures the average time needed for a developer or system administrator to learn
how to correctly administer the component.

e Time to expertise
This attribute measures the average time needed for a developer for mastering all the functionality
and possibilities offered by the component.

4.2.7. Attributes Associated to “Understandability”

These attributes deal with the component documentation, descriptions, demos, and tutorials
available, which have a direct impact on the understandability of the component.

It is important to notice that this characteristic is closely related to Learnability, since in order
for an entity or service to be learned, it has to be understood first. Thus, under this characteristic we
have grouped those attributes that facilitate the understandability of a component, and that therefore
influence its learnability.

e User Documentation
This attribute measures the quality of the user documentation, in terms of its completeness, clarity,
and usefulness. A Level metric will measure this subjective attribute.

Bertoa y Vallecillo: Quality Attributes for COTS Components 139

o Help System
This attribute measures the quality of the Help System provided with the component for discovering
and understanding its services, in terms of its completeness, clarity, and usefulness. A Level metric
will measure this attribute.

+ Computer Documentation
This attribute indicates whether the component provides any kind of mechanism or documentation
that can be used by component tools or platforms for discovering and understanding its services, and
for dynamically invoking them. Examples include reflective mechanism [14], or UML or MOF
(Meta-Object Facilities) descriptions of the component services and context. A Presence metric will
measure this attribute.

¢ Training
This attribute is measured by a Presence metric that indicates whether training courses are available
for the component, and information about them if this is the case.

e Demonsiration Coverage
This attributes tries to measure the percentage of the component services that are shown in a demo,
compared to the total number of provided services (interfaces). A Ratio metric is used to measure
this attribute, according to the formula:

Interfuces Shown ina demo 2(4)
100#

Provided Interfaces

4.2.8. Attributes Associated to “Operability”

This characteristic aims at measuring the complexity of using and integrating the component
into the final system. For that we will measure the number of provided and required interfaces, and the
average number of operations per interface.

¢ Provided Interfaces
This atiribute counts the number of provided interfaces by the component as an indirect measure of
its complexity. The greater the number, the greater the complexity to use and, probably, its
functional complexity. This attribute is measured by an Integer variable.

¢ Required Interfaces
This attribute counts the number of interfaces that the component requires from other components to
operate. It provides an indicator of the complexity of the component for integration in a system, as
well as the level of dependency with other external components. An Integer variable measures this
attribute.

e Complexity Ratio
This attribute shows the average number of operations per provided interface. It is measured by an
Index derived metric calculated according to the following formula:

2(5)

Operations in all Provided Interfuces
Provided Interfaces

140 I+D Computacién, Vol. 1, No. 2, Noviembre 2002

e Effort for operating
This attribute indicates, using a Level metric, the level of effort needed to properly operate the
component.

e Tailorability
This attribute indicates, using a Level metric, the level of effort needed to properly customize the
component by configuring its parameters.
In addition to the number of the component configuration parameters (which is measured by the
Customizability attribute) their issues need to be considered when measuring the effort required for
configuring the component correctly. Examples are the number of possible values these parameters
allow, their possible meanings, or heir implications on the component’s behavior.

e Administrability
This attribute indicates, using a Level metric, the level of effort needed to properly administer the
component.

4.2.9. Attributes Associated to “Changeability”

e Customizability
This attribute measures the number of customizable parameters that the component offers.

e Customizability Ratio
This attribute compares the number of parameters offered by the component with the number of its
provided interfaces. This measure gives us an indication of its ability to be customized. Thus, a
component with very few interfaces and lots of parameters will probably be very customizable,
although difficult to handle. On the contrary, a component with lots of interfaces but very few
parameters does not offer a high degree of customizability. An Index variable measures this

attribute according to the following formula:
2(6)

Number of Parameters

Number of Interfaces

e Change Control Capability
This attribute tries to capture the user ability to easily identify the current version of a component. It
is measured by a Level variable.

4.2.10. Attributes Associated to “Testability”

These attributes indicate whether the component provide some sort of tests or test suites that can
be performed to the component to check its functionality inside (or in isolation of) the final system in
which the component will be integrated.

e Start-up self-test
This attribute describes the component ability to test itself and the environment for successful
operation. It is measured by a Presence metric which indicates the provision of start-up self-tests
and, if so, their description.

Bertoa y Vallecillo: Quality Attributes for COTS Components 141

o Tests suite provided
This attribute indicates whether some test suites are provided for checking the functionality of the
component and/or for measuring some of its properties (e.g. performance). A Presence variable
describes whether such tests are available, as well as information about them if applicable.

4.2.11. Attributes Associated to “Replaceability”

¢ Backward Compatibility
This attribute is used for indicating whether the component is “backward compatible” with its
previous versions or not. If so, this means that the new component can substitute the previous ones
without being noticed by its prior clients. A Presence metric is used to measure this attribute. In case
of backwards-compatibility, the string variable contains the numbers of the previous versions for
which the compatibility is maintained.

Table 4. Quality attributes for components COTS measurable during life cycle

Sub-characteristic Attribute Type
Suitability 1. Coverage Ratio
2. Excess Ratio
3. Service Implementation Coverage Ratio
Interoperability 4. Data Compatibility Presence
Compliance 5. Standardization Presence
6. Certification Presence
Maturity 7. Volatility Time
8. Evolvability Integer
9. Failure removal Inteper
Learnability 10. Time to use Time
11. Time to configure Time
12. Time to admin Time
13. Time to expertise Time
Understandability 14. User Documentation Level
15. Help System Level
16. Computer Documentation Presence
17. Training Presence
18. Demonstration Coverage Ratio
Operability 19. Provided Interfaces Integer
20. Required Interfaces Integer
21. Complexity Ratio Index
22, Effort for operating Level
23, Tailorability Level
24. Administrability Level
Changeability 25. Customizability Integer
26. Customizability Ratio Index
27. Change Control Capability Level
Testability 28. Start-up Self-test Presence
29. Tests Suite Provided Presence
Replaceability 30. Backward Compatibility Presence

142 I+D Computacién, Vol. 1, No. 2, Noviembre 2002

5. ATTRIBUTE DOCUMENTATION

Once we count with a set of quality attributes for describing some of the extra-functional
properties of components, this section discusses how to document them.

Among the possible options, probably the ODP “properties” approach is the most convenient
[9]. In this approach, each attribute is described by a pair (name, value). Each name has also a type,
which determines the possible values it may hold.

One of the benefits of this way of describing properties, apart from being compliant with an
international standard, is that it is easy to document with XML templates. The following example
shows the description of a couple of attributes, using the W3C properties schemas and our quality
attributes:

<property name="Computational Accuracy">
<type>xsd:ratio</type>
<value>100</value>

</property>

<property name="Help Documentation">
<type>xsd:level</type>
<value>3</value>

< /property>

This notation is also consistent with other proposals for documenting COTS components, and
with some of the existing tools for searching and trading for COTS components in software repositories
or in the Web [7, §].

6. RELATED WORK

There are two kinds of proposals that can be directly related to ours. In the first place we find
those works that provide definitions and classifications of the quality characteristics of software
products. The international standards ISO 9126 [11] and IEEE/ANSI 830-1993 [6] are among those
works, together with some other academic proposals [3, 4, 12, 13]. The main difference between these
works and ours is the size of the domain for which the quality attributes are defined. Basically, their
generality hinders its practical applicability (specially in industrial environments). In this sense, our
proposal is much more focused on a particular domain, concentrating on the specific characteristics of
the COTS components.

The second line of works that can be related to ours is concerned with the evaluation process
required for selecting COTS components [1, 5, 10]. Although these proposals cover a wider scope than
we do in this work, they sit at a very high level of abstraction, failing to specify any detailed set of
attributes or metrics. In this sense, our work complements these proposals, allowing them to “touch the
ground” and provide some implementable processes.

Part of our future work is the closer integration of both the process and product aspects of
quality evaluation, using the quality model proposed here as a common base.

Bertoa y Vallecillo: Quality Attributes for COTS Components 143

7. DISCUSSION

In this position paper we have presented a particularization of the ISO quality model, adapted to
deal with the specific characteristics of COTS components. A set of quality attributes for this kind of
components has been identified, together with a set of metrics for measuring them. It is important to
notice the relationship between the quality model we propose and the identified attributes, something
that most of the current proposals and standards do not cover.

Our long-term objective is the definition and provision of better component selection and
evaluation processes and tools. Although it is a very interesting goal to pursue, we are also aware of
many of the difficulties involved. First, we do not think that component vendors will ever reach a
complete agreement on the quality attributes that need to be included in a quality model for COTS
components. Usually, vendors will try to include those attributes for which their products are
competitive, while not giving any importance to those not implemented or for which no good figures
are obtained. And even if a compromise is reached, most of the vendors will not be happy to provide all
the requested information. Marketing, image, and commercial reasons will hinder vendors to disclose
negative information about their products, such as the number of bugs reported for a given version, or
the lack of an important property. We personally think that these are part of the difficulties that ISO
standards are finding for getting support on quality matters—apart from being too general, of course.

We think however that a real Software Engineering cannot be achieved without metrics for
effectively evaluating software products. Two main factors can help solve this conflict. First, we need
agreements on specific and detailed quality models in order for these models to be applied. Our work
provides a modest proposal in this respect. We do not try to impose our model, but hope it can serve as
a starting point for further discussions. And second, we think that the evaluation of the quality of COTS
components (i.e. the assessment of their quality attributes) needs to be done by independent parties, at
least until software vendors acquire the level of maturity that hardware vendors currently have. We are
still far from counting with the hardware data sheets and catalogues available for hardware
components, which describe all their characteristics. However, we need to have them for software
components too if we want to talk about a “real” Component-based Software Engineering.

REFERENCES

[11 C. Abis, B.W. Boehm and E.B. Clark, “Cocots: A Cots Software Integration Lifecycle Cost
Model - Model Overview and Preliminary Data Collection Findings”, htip:/sunset.usc.edu/
publications/ TECHRPTS/2000/usccse2000-501/usccse2000-501%.pdf, 2000.

[2] M. Azuma, “Square the Next Generation of the ISO/IEC 9126 and 14598 International Standards
Series on Software Product Quality”, ESCOM (European Software Control and Metrics
conference), http://www escom.co.uk/conference2001/papersfazuma.pdf, April 2001.

[3] B.W. Boehm, et al, “Qualitative Evaluation of Software Quality”, Proc. 2nd ICSE, pp. 592605,
1976.

[4] I.Bosch, Design & Use of Safiware Architectures, Addison Wesley, 2000.

[5] W.I. Hansen, “A Generic Process and Terminclogy for Evaluating Cots Software™, http://
www.sei.cmu.edu/staff/wijh/Qesta.html, Aug. 2001.

[6] IEEE/ANSI, Recommended Practice for Software Requirements Specifications, International
Standard 830-1993, IEEE, 1993.

[7] L. Iribarne, C. Alves, J. Castro and A. Vallecillo, “A Non-Functional Approach for Cots-
Components Trading”, Proc. of WER 2001, Buenos Aires, Argentina, 2001.

144

(8]

[9]
[10]
[11]

[12]

[13]

[14]

I+D Computacién, Vol. 1, No. 2, Noviembre 2002

L. Iribarne, JM. Troya and A. Vallecillo, “Trading for COTS Components in Open
Environments”. Proc. of the 27th Euromicro Conference, pp. 30-37, Warsaw, Poland, IEEE CS
Press, Sep. 2001.

ISO/IEC, RM-ODP. Reference Model for Open Distributed Processing, Rec. ISO/IEC 10746-1 to
10746-4, ITU-T X.901 to X.904, ISO/ITU-T, 1997.

ISO/IEC-14598, Software Engineering — Product evaluation, International Standard ISO/IEC
14598, ISO.

ISO/MEC-9126-1:2001, Information technology — Product Quality — Partl: Quality Model,
International Standard ISO/IEC 9126, International Standard Organization, June, 2001.

J.A. McCall, P.K. Richards and G.F. Walters, “Factors in Software Quality”, Preliminary
handbook on software quality for an acquisition manager, Vol. 3, Technical Report RADC-TR-
77-369, Hanscom AFB, MA 01731, 1977.

O. Preiss, A. Wegmann and J. Wong, “On Quality Attribute based Software Engineering”, Proc.
of the 27th Euromicro Conference, Warsaw, Poland, IEEE CS Press, Sep. 2001.

C. Szyperski, Component Software. Beyond Object-Oriented Programming, Addison-Wesley and
ACM Press, Boston, Ma, 1998.

