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Abstract

The ODP computational viewpoint allows the description
of the functional decomposition of a system and its environ-
ment in terms of configurations of objects that interact at
interfaces. RM-ODP does not prescribe any concrete no-
tation for describing this viewpoint, which hinders the de-
velopment and use of tools for writing, analyzing and ex-
ecuting ODP computational specifications. Thus, several
authors have proposed either formal or visual languages
to describe this ODP viewpoint. However, the former no-
tations are complex and lack industrial support, while the
latter do not count with proper tools for executing and ana-
lyzing the specification produced. In this paper, we explore
the use of model transformation techniques to establish a
connection between UML models and Maude formal spec-
ifications of the ODP computational viewpoint, in order to
obtain the best of both worlds.

1 Introduction

As software technology becomes a core part of business en-
terprises in all market sectors, customers demand more flex-
ible enterprise systems. This demand coincides with the in-
creasing use of personal computers and devices, and today’s
easy access to local and global networks, which together
provide an excellent infrastructure for building open dis-
tributed systems. The problem is that these heterogeneous
and distributed systems are inherently much more complex
to specify, develop and maintain than classical, homoge-
neous, centralized systems. As a response to these needs,
ISO, IEC and ITU-T started working on a joint standard-
ization effort under the heading ofOpen Distributed Pro-
cessing(ODP). Their goal was to define a reference model
to integrate a wide range of ODP standards for distributed
systems and maintain consistency among them. TheRef-
erence Model of Open Distributed Processing(RM-ODP)
provides the coordination framework for ODP standards,
creating an infrastructure within which support of distribu-

tion, interworking and portability can be integrated.
However, there are some issues that may jeopardize the

wide diffusion and use of ODP. For instance, RM-ODP does
not prescribe any specific notation to represent its concepts
and viewpoint languages, which hampers the development
of tools for writing and analyzing ODP specifications.

So far, most notations and tools for capturing and model-
ing business requirements tend to be either graphical or for-
mal. Initially, most of the notations proposed as ODP spec-
ification languages were formal notations (e.g., Z, Object-
Z, LOTOS, etc.) [6]. These notations provide precise and
unambiguous system specifications and, more importantly,
they also allow the rigorous analysis of the systems, with
tools for reasoning about the specifications produced (i.e.,
quick-prototyping, model checking, or theorem proving).
However, the complexity inherent to formal description
techniques and the lack of industrial support has tradition-
ally hindered their wide adoption and use.

On the contrary, graphical notations are intuitive and
easy to learn and to use, and do not require users to have a
deep and specialized knowledge of complex concepts, for-
malisms, and mechanisms. The wide adoption of UML
by industry, the number of available UML tools, and the
increasing interest for model-driven development and the
MDA initiative [18], motivated ISO/IEC and ITU-T to
launch a joint project in 2004, which aims to define the use
of UML for ODP system specifications [13]. Thus, ODP
modelers could use the UML notation for expressing their
ODP specifications in a standard graphical way, and UML
modelers could use the RM-ODP concepts and mechanisms
to structure their UML system specifications. However,
graphical notations do not usually count with tools for ana-
lyzing the specification produced, nor to provide executable
systems that fully conform to these specifications.

The worlds of graphical and formal notations have usu-
ally lived apart. This paper tries to provide a bridge between
them in the context of the ODP computational viewpoint. In
particular, we show how model transformations can be ef-
fectively used for connecting the graphical ODP viewpoint
specification with their corresponding formal specifications
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in Maude, aiming at getting all the benefits that they indi-
vidually provide. More precisely, Maude specifications are
fully executable and can also be analyzed using the Maude
formal toolkit. In addition, they can be progressively refined
to obtain implementation of the system using commercial
technologies, such as CORBA or WebServices [1, 2].

This paper is structured as follows. Section 2 provides
a brief description of the ODP computational viewpoint.
Then, sections 3 and 4 discuss how it can be specified in
UML 2.0 and Maude, respectively. Section 5 shows how
model transformations can be defined between both ap-
proaches. Then, some issues for discussion are raised in
Section 6. Finally, Section 7 draws some conclusions and
outlines some future work.

2 The ODP Computational Viewpoint

The computational viewpoint specification describes the ba-
sic functionality of the system, independently from distribu-
tion. A computational specification decomposes the system
into a collection of objects performing their individual func-
tions and interacting at well-defined interfaces.

The computational viewpoint language, as defined in the
Reference Model of ODP [12], uses a set of basic concepts
and structuring rules. Some of the most relevant concepts
are described here.

ODP systems are modeled in terms ofobjects, each of
which contains information and offers services. Computa-
tional objects are abstractions of entities that occur in the
real world, in the same ODP system, or in other viewpoints.

Computational objects havestateand can interact with
their environment atinterfaces, which are considered as an
abstraction of the object’s behavior.

RM-ODP prescribes three different types of interactions:
signals, operationsandflows. A signal is regarded as an
atomic and simple action between computational objects.
Operations are used to model object interactions as repre-
sented by most message passing object models. Finally, a
flow represents an abstraction of a sequence of interactions
between aproducerand aconsumer, whose semantics de-
pend on the application domain. Operations and flows may
be modeled in terms of signals.

Computational objects and interfaces can be specified
by templates. In ODP, an<X> templateis “the specifi-
cation of the common features of a collection of<X>s in
sufficient detail that an<X> can be instantiated using it”.
<X> can be anything that has a type. Thus, an interface of
a computational object is usually specified by acomputa-
tional interface template, which is an interface template for
either a signal interface, a stream interface or an operation
interface. A computational interface template comprises a
signal, stream or operationinterface signatureas appropri-
ate; abehaviorspecification; and anenvironment contract
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Figure 1. A simple example system

specification.
An interface signatureconsists of a name, acausality

role (producer, consumer, etc.), and set ofinteraction sig-
natures, according to the interaction type.

Following ODP, a computational specification describes
the functional decomposition of an ODP system, in distri-
bution transparent terms, as:(a) a configuration of compu-
tational objects (including binding objects);(b) the inter-
nal actions of those objects;(c) the interactions that occur
among those objects;(d) environment contracts for those
objects and their interfaces.

To illustrate our proposal with an example, as shown
in Figure 1, let us consider a very simple multimedia
ODP system, which consists of three computational ob-
jects: an audioPlayer, that emits flows to aListener
through a binding object, namedSync, which manages
the synchronization of audio frames and delivers them to
the connected listener. All these objects, which are in-
stantiated from their corresponding computational object
templates, interact at computational interfaces, which are
also instantiated from their corresponding interface tem-
plates. Thus,pr producer, sc consumer, sc producer
and pr producer are instantiated fromIAudioStream
(with different causalities). This template is used to de-
clare a stream interface, through which the audio frames
will flow. lr initiator andpr receiver are instantiated from
the signal interface templateIControl. Both interfaces have
opposite causalities. In this case,IControl comprises two
different signals:play, which begins emitting flows, and
stop, which stops the flow.

3 Computational mapping between ODP and
UML 2.0 specifications

As previously mentioned, RM-ODP does not prescribe any
concrete syntax to represent the computational concepts.



However, both ODP modelers and UML experts would
find extremely profitable to be able to use some graphi-
cal notation for drawing their ODP specifications. In this
case, UML 2.0 provides the appropriate constructs to model
the software architecture of large distributed systems (e.g.,
components, connectors, etc.). The language extension
mechanisms have been greatly enhanced too, with the more
precise definition of UML Profiles that allow the customiza-
tion of UML constructs and semantics for specific applica-
tion domains.

These new concepts, improvements and mechanisms of
UML 2.0 constitute the basis of theUML profile proposed
in [21, 22, 13] for modeling ODP computational viewpoint
specifications. The definition of this profile comprises three
main parts: (a) the computational viewpointmetamodel,
which defines the semantics, properties and related ele-
ments to eachmetaclass; (b) the mappings between ODP
concepts and UML elements; and (c) the profile, whose el-
ements corresponds to the mappings to the specific ODP
domain. A short description of this modeling approach fol-
lows.

Every computational objectis instantiated from itsob-
ject template, which is expressed as a UMLcomponent.
UML components represent autonomous system units, that
encapsulatestate andbehavior and interact with their envi-
ronment in terms ofprovided andrequired interfaces. Then,
a computational objectis expressed as a UMLcomponent
instance.Binding objects, as a particular case ofcomputa-
tional objects, are modeled as UMLcomponent instances,
too.

Computational objectsinteract with their environment
at interfaces, which are instantiated from theircomputa-
tional interface templates. It is not possible to find a direct
mapping for these concepts in UML 2.0. However, there
are some UML elements that seem to provide the seman-
tics (slightly adapted) for its representation. For instance, a
computational interfacecan be mapped to a UMLinterac-
tion point, i.e., a UMLport at the instance level, as explained
in [21]. An interface templatecan be modeled in UML by
a port at the class level.

Everycomputational interface templatecomprises asig-
nature (according to the kind of interface), the behavioral
specification and its environment contracts. UMLinterfaces
are used to represent signatures. A UMLinterface is ex-
pressed as aclassifier that represents a declaration of a set
of coherent publicfeatures and obligations and, therefore,
it can be considered as the specification of a contract that
must be fulfilled by anyinstance of a classifier thatrealizes
the interface. Note that ODP allows the instantiation of in-
terfaces. However, this is not possible in UML.

We can distinguish between the different kinds of ODP
computational interfacesandsignaturesby using the proper
UML extension mechanisms, i.e.,stereotypes and tagged

Figure 2. Computational configuration

definitions. These mechanisms are also useful for modeling
causalities(at the object level) andinteractions.

In ODP, signals are considered as the basic one-way
communication mechanism from aninitiating object to a
responding object. As mentioned in Section 2,opera-
tions andflows can be handled in terms ofsignals. Both
synchronous and asynchronous interactions are possible in
UML and in ODP [15]. An ODPsignal is expressed as
a UML stereotypedmessage, which is the specification of
the conveyance of information from oneinstance to another.
In UML, a message can specify either the raising of a UML
signal or thecall of a UML operation.

In ODP, in order to specify aninteraction we need to
provide itssignatureand itsbehavior. An interaction signa-
turewill be represented by a UMLreception. As mentioned
in [20], “by declaring areception associated to a givensig-
nal, a classifier specifies that itsinstances will be able to
receive thatsignal, or a subtype thereof, and will respond
to it with the designatedbehavior.” In UML, these recep-
tions will be defined inside theinterface classifier. The be-
havior of interactionsrefers to the communication process
betweencomputational objects, which will be expressed in
UML with behavioral diagrams [5]:

• Interaction models describe howmessages are passed
betweenobjects and cause invocations of otherbehav-
iors.

• Activity models focus on the sequence, input/outputs
and conditions for invoking otherbehaviors.

• Finally, state machine models show howevents (e.g.,
signal events) cause changes to theobject state and
invoke otherbehaviors.

Using theUML Profile for the ODP Computational Viewpoint
(UML4ODP-CV), Figure 2 depicts the computational config-
uration corresponding to the snapshot presented in Figure
1. At the computational object template level, the system
could be modeled as shown in Figure 3.



Figure 3. Computational templates diagram

4 Computational mapping to Maude specifi-
cations

Maude [8] is a high-level language and a high-performance
interpreter and compiler in the OBJ [10] algebraic specifica-
tion family that supports membership equational logic and
rewriting logic specification and programming of systems.
This kind of rewriting logic [16] can naturally deal with
state and with highly nondeterministic concurrent compu-
tations. In rewriting logic, the state space of a distributed
system is specified as an algebraic data type in terms of an
equational specification(

∑
, E), where

∑
is a signature of

sorts (types) andoperations , andE is a set of (condi-
tional) equational axioms .

To specify the dynamics of a system in rewriting logic
we make use of rewriterules of the form t → t′, where
t and t′ are

∑
-terms. These rules describe the local, con-

current transitions possible in the system, i.e. when a part
of the system state fits the patternt then it can change to a
new local state fitting patternt′. The guards of conditional
rules act as blocking pre-conditions, in the sense that a con-
ditional rule can only be fired if the condition is satisfied.

Maude also allows to specify object-oriented systems by
using specificmodules , in which classes and subclasses are
declared. The objects instantiated from these classes can
interact in a number of different ways, including message
passing.Messages are declared in Maude bymsg clauses,
in which the syntax and arguments of the messages are de-

fined.

In a concurrent object-oriented system, the concurrent
state, which is called aconfiguration , has the structure
of a multiset made up of objects and messages that evolves
by concurrent rewriting using rules that describe the effects
of the communication events of objects and messages.

A description of how the ODP computational specifica-
tions can be expressed in Maude can be found in [23]. In
addition, rewriting logic allows us to write executable spec-
ifications, and we can also make use of a broad spectrum
of formal methods and analysis tools—the Maude toolkit,
which offers a model-checker, theorem prover, etc. A brief
description of the mapping between Maude and the ODP
computational specification follows.

Computational object templateswill be represented by
Maudeclasses , which are defined by a name and a set
of attributes (of certainsort ) that describe the state of the
objects of the class. Allcomputational object templates
will inherit from classCV-Object , which describes the
common features that anycomputational objectexhibits.
Computational objectswill be then represented by Maude
objects , instantiated fromCV-Object .

ODPsignalsare represented by Maudemessages . Ev-
ery message has a name and a set of parameters of
some type (Sort ), as specified in its message declaration
(msg). Thus, Maudemessage declaration will represent
signal signatures, while message instances will rep-
resent concretesignals. Operationsand flows can be ex-



pressed in terms of signals.
Interfaceswill be modeled as Maudeobjects . The

class to which any interface belongs will inherit from a gen-
eral Maudeclass CV-Interface , which represents a
genericinterface template. These interfaceobjects exist
inside the local configuration of the Maudeobjects repre-
sentingcomputational objects. Everycomputational inter-
face templateis declared in the scope of a Maudemodule ,
somessages andoperations declared there are local to
thecomputational interfaceit represents.

In the example described in Section 3, the computational
templatesPlayer andIControl shown in Figure 3 are spec-
ified in Maude as follows:

(omod COT-PLAYER is
class Player | fps : Nat .
subclass Player < CV-Object .

endom)

(omod CIT-ICONTROL is
class IControl .
subclass IControl < CV-Interface .
msgs play stop : -> Msg .

endom)

The code above declares two Maude
object-oriented modules (one per computational
template) which define theclasses that specify both the
computational object (Player) and the interface

(IControl). We have also included anattribute (fps)
representing theframes per secondrate at which the
flow is emitted. Object and interface templatesinherit
from CV-Object and CV-Interface , respectively.
According to the template diagram, theIControl interface
comprises twosignals(play andstop), which are specified
in terms of their corresponding Maudemessages .

Maudeconfigurations are collections ofobjects

andmessages that are used represent thestate of the sys-
tem in a given moment in time. Thus, the UML diagram
shown in Figure 2 can be naturally represented by a Maude
configuration . The following Maude code shows one of
the objects of such a configuration (namely, thePlayer with
its two interfaces):

< O : Player | fps : 25,
conf : < IC : IControl |

uniqueId : toListener,
objectRole : responder,
interfaceType : signal >

< IS : IStream |
uniqueId : toSync,
objectRole : producer,
interfaceType : stream > >

Attribute conf represents the collection of interfaces and
messages internally managed by the computational object.

5 Transforming computational specifications

Model transformation is the process of converting one model
to another model of the same system. With this purpose,
a transformation engine applies a series oftransformation
rules [7] on thesource model to generate atarget model.

According to [9], there are two different types of trans-
formations. Firstly,model-to-code transformations are nor-
mally based on using templates, which comprise predefined
parts of metacode text (e.g., FPL, XFramer, etc.). Secondly,
model-to-model transformations translate from source to tar-
get models, which can be in accordance to the same or dif-
ferent meta-model. Most of the available MDA-based tools
provides (restricted) functionalities for this second case,
sincemodel-to-code transformations can be seen as a par-
ticular case of the model-to-model ones but using a specific
programming language as meta-model.

Our purpose is to obtain executable computational spec-
ifications from models represented in terms of theUML pro-
file for ODP-CV. Thus, we will consider transformations be-
tween UML source models (written using theUML4ODP-
CV profile) and target models conforming to theMaude-CV
meta-model. As shown in Figure 4,transformation rules
will allow us to specify the way both models are translated,
conforming to the appropriatetransformation meta-model.
(In Section 6 we also discuss the possibility of using other
alternatives.)

The next step is to translate the Maude model repre-
senting the computational specification to the specific pro-
gram code that implements it (model-to-code transforma-
tion). This is a simple process, which can be performed with
well-known techniques, such as XSLT, TCS or just another
template-based language. As shown in Figure 5, these tem-
plates serve as a bridge betweentechnology spaces[11]. In
our case, the Maude code belongs to the “Syntax TS”, where
programming languages exist, which is characterized by its
excellent degree of executability and formalization. UML
is defined in the “MDA TS”. In this paper we focus on the
transformations performed in the scope of the MDA tech-
nology space.

There are many tools and languages proposed to perform
the translation between models. However, most of them are
still in a very early stage, so they are immature and difficult
to use properly. In fact, OMG proposes QVT (Query-View-
Transformation) [18] as the language to specify transfor-
mations between model conforming to MOF-based meta-
models. QVT defines three different (but closely related)
languages for specifying transformations using declarative
and imperative styles. Black-box implementations of op-
erations can also be used to allow reuse of existing algo-
rithms or domain specific libraries in certain model trans-
formations.

In particular, QVT Relations is a language to write



Figure 4. (Meta-)models involved in the trans-
formation process

Figure 5. Bridging from MDA to Syntax TS

declarative specifications of the relationships between MOF
models. The QVT Relations language supports object pat-
tern matching, and implicitly creates trace classes and their
instances to record what occurred during a transformation
execution. Relations can assert that other relations also hold
between particular model elements matched by their pat-
terns.

QVT Relations allow for the following desirable execu-
tion scenarios [19]: (a) check-only transformations to verify

that models are related in a specified way; (b) single direc-
tion and bi-directional transformations; (c) the ability to es-
tablish relationships between pre-existing models, whether
developed manually, or through some other tool or mecha-
nism; (d) incremental updates (in any direction) when one
related model is changed after an initial execution; and (e)
the ability to create as well as delete objects and values,
while also being able to specify which objects and values
must not be modified.

However, despite providing most of the desirable ca-
pabilities to specify the mapping fromUML4ODP-CV to
Maude-CV models, there is no actual tool-support for QVT,
which hinders its application for real cases, since any QVT-
based program should be translated first to another transfor-
mation language in order to be executed.

ATL (ATLAS Transformation Language) [4] is a model
transformation language aligned with QVT [14] that pro-
vides numerous advantages to perform the mapping be-
tween metamodels, and in particular between the UML
and Maude metamodels. Despite being still under devel-
opment/research, ATL already begins to bear fruit and is
probably the most widely used model transformation lan-
guage.

ATL considers source and target models as strictly sep-
arated models. Moreover, ATL transformation rules can
be specified in a declarative, imperative or hybrid manner.
When specifying declarative rules, the left side of each rule
defines a set of typed and constrained variables that char-
acterize the appropriate elements of the source model(s).
The right side contains a set of variables and some logic
to bind values to the proper attributes between source and
target model elements.

Apart from its benefits, ATL also presents some difficul-
ties that could limit its applicability: (a) ATL is unidirec-
tional, i.e., two individual mappings are required to imple-
ment transformations in both directions; (b) ATL programs
do not consider change propagation, as QVT does; (c) deal-
ing with models that use profiles is somehow cumbersome;
(d) tool-compability (e.g., importing (meta-)models from
external modeling tools) need to be improved; and (e) ATL
is not as efficient as desirable for large transformation pro-
grams in its current stage.

In any case, within the scope of this paper we think that
ATL provides a good approach to explore the possibility
of executing Maude computational specifications using a
transformation from their UML representation because of
the advantages it provides. Some open issues will be later
discussed in Section 6.

5.1 From UML4ODP-CV to Maude models

The next step is to determine which UML meta-model
elements, used to represent the computational concepts,



Figure 6. Structural mappings

should be mapped toMaude-CV meta-model elements.
These correspondences are made by applying a set of rules
that properly specify compatible and non-contradictory
equivalences between UML and Maude elements.

Transformations should be applied both to the computa-
tional model structure, and to the behavioral part. The for-
mer is simpler to do. However, it is always a challenge to
design and, even more, to translate behavior to some other
representation respecting the meaning and the semantics,
due to the dynamic nature of behavior. Moreover, behav-
ioral specifications often depends on the designer’s way of
modeling things. In this paper, we assume that a behavioral
specification is modeled in terms of state machines for the
computational objects, and interaction diagrams that repre-
sent how the dialog between the objects and their environ-
ment through their computational interfaces is carried out.

Figure 6 shows the most important structural correspon-
dences between both meta-models using a graphical nota-
tion, as indicated.Dependencies define relationships be-
tweentransformation rules, so if rule R2 depends on rule
R1, then ruleR1 implies one or more executions of ruleR2.
As shown in the diagram, sixtransformation rules have been
identified: INT (INTeration),CO (Computational Object),
CI (Computational Interface),COT (Computational Object
Template),CIT (Computational Interface Template) andIS
(Interface Signature). Note that this nomenclature for rule

names has been used for simplicity, since transformation
rules do not necessarily have to match ODP concepts. In
fact, an ATL program is usually composed of many other
elements, such ashelpers, imperative blocks, etc. [3]. These
rules, as presented in this paper, mainly represent the declar-
ative part of the transformation program.

For instance, the next piece of code specifies thetrans-
formation rule COT, which is just comprised of a declarative
block.

rule COT {
from

comp : UML!Component
(comp.isStereotyped(’CV_ObjectTemplate’))

to
cls : Maude!ClassDecl (

name <- comp.name,
attrDeclList <-

comp.ownedAttribute.toAttrString(),
compInterfaces <-

comp.ownedPort->iterate(
p; res : Sequence() |

res->union(thisModule.CIT(p)))),
subcls : Maude!SubclassDecl (

subsortRel.parents <- Set{comp.name}
subsortRel.subclasses <- Set{CV-Object}),

mod : Maude!Module (
name <- ’COT’ + comp.name,
oDeclList <- Set{cls, subcls})

}

lazy rule CIT {
from

p : UML!Port
(comp.appliedStereotypes->select(

e | e.name = ’CV_InterfaceTemplate’
)->notEmpty())

to ...
}

This rule takes a UMLcomponent (stereotyped as
CV ObjectTemplate ) as the source element and cre-
ates a Maude module instance for thecomputational object
templaterepresented by thecomponent. Thismodule con-
tains the declaration of the Maudeclass , whose instances
correspond tocomputational objects, and asubclass dec-
laration (because everycomputational objectis inherited
from CV Object ). The helper toAttrString is re-
sponsible of mapping a set of UMLfeatures (attributes) to
a string declaration of attributes in theMaude-CV format.
compInterfaces contains the set ofcomputational in-
terface templatesassociated to thiscomputational object
template. As mentioned in Section 3, an ODPcomputa-
tional interface templateis modeled as a UMLport, which
is a feature of thecomponent classifier that represents the
computational object template. All theseports are trans-



Figure 7. Behavioral mappings

lated using the lazy ruleCIT. In ATL, lazy rulesare not di-
rectly invoked by the transformation engine as the result of
the matching process, but they are called instead from other
rules by passing as parameters the source elements for the
lazy rule.

The transformation ruleCIT creates the Maude target el-
ements for an ODPcomputational interface templatein a
similar way thatCOT does forobject templates. Thus, for
brevity, the target block in the ruleCIT has been omitted.

Analogously, Figure 7 shows a schema of the transfor-
mation rules required to perform behavioral mappings from
UML state machines to the Maude specification model.
In this case, eachstate is translated to onesubclass of
the Maudeclass representing theobject template, from
which the object is instantiated. Atransition between two
states is represented by the trigger of a Mauderewriting

rule by properly indicating the left-hand side (previous
state and invariants) and the right-hand side (do, entry,
exit activities and effects) of the rule. In case thetransi-
tion includes someguard to be triggered, then it is speci-
fied with theconstraint of aconditional rewriting

rule . Both the left and the right sides are composed of
a configuration of messages and objects that rep-
resent which events are received or sent and how objects
are affected by any state change. One important feature of
Maude is that it allows toreclassifyobjects, i.e., the class
of an object can be changed at run-time. So, if the state
changes after a transition, the Maude object’s class also can

be changed to represent the new state.
For example, going back to the multimedia application,

the transformation process for theCOT rule produces the
effect shown in the right-hand side of Figure 8.

5.2 Executing the specifications

Once we have briefly shown the model transformations
required to transform UML4ODP computational specifica-
tions into Maude, we are now ready to execute and analyze
the specifications.

Figure 9 shows a diagram with a possible sequence of
model transformations. After representing his specifica-
tions in UML, the ODP designer makes the translation to
Maude-CV as described above, and then to Maude code by
using simple template-based transformations. The results
of the Maude execution or analysis is then modeled back
in UML by applying the reverse transformations (see also
Section 6).

Implementations to other technology platforms (Java,
CORBA) could be described too, as depicted in Figure 9. In
this way, starting from a UML computational specification
of the system we could analyze it using the Maude formal
toolkit and quick-prototype it with Maude. Once the results
are convincing, the system could be implemented in dif-
ferent technologies. (Notice that to ensure that these latter
implementations are also correct we need to prove that the
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Figure 8. Application of the transformation rule COT

UML-to-Java and UML-to-CORBA transformations pre-
serve the proved properties—see Section 6.)

Figure 9. Mappings to different models.

6 Issues for discussion

6.1 The ODP-CV metamodel as intermediate

The UML Profile for the ODP Computational Viewpoint
is not the only approach for representing a computational
specification; some other approaches are also available, e.g.,
EDOC-CCA [17]. In this paper we have defined transfor-
mations using UML4ODP-CV models as the source mod-
els, although the same could have been done for the EDOC
CCA models (see Figure 10(b)).

An alternative approach could use a metamodel of the
computational viewing as pivotal element for the transfor-
mations, as shown in Figure 10(a).

Figure 10. ODP-CV as intermediate.

In case (a), we would need to write(n + m) transforma-
tion programs (i.e., ATL programs), wheren is the number
of possible representations for the source model andm cor-
responds to the number of specific implementation-based
choices. However, in case (b), the number of programs



to code and, consequently, to be managed increases until
(n ∗m). However, the main problem with option (a) is that
we might lose some interesting information in the transfor-
mation processes (e.g., some behavioral descriptions of the
UML4ODP-CV models), that might be required specially
when transforming from Maude to UML4ODP-CV. This is
an issue that we’d like to explore further.

6.2 Preservation of properties

In the context of Figure 9, something which is really
required is the guarantee that the transformations between
models preserve some of the properties of the source model.
Thus, we’d be able to guarantee that the properties that
we have proved using Maude are preserved by the Java
or CORBA implementation of the system. Otherwise we
might be wasting our time and efforts by checking the sys-
tem first. In this sense, we would like to be able to check
whether a given model transformation preserves a given
(safety or liveness) property of a system.

6.3 Bidirectionality of transformations

Figure 9 shows some bidirectional transformations be-
tween the UML4ODP-CV and the Maude-CV models. Re-
verse transformations are usually difficult to define, spe-
cially in ATL where transformations are unidirectional (e.g.,
we would need to separately specify the transformation pro-
gramTMaudeCV→ ODPCV for obtaining the corresponding re-
verse translation). And even in QVT, dealing with bidirec-
tional transformations is not simple (probably not from the
technical side, but from the conceptual level). Do we really
need to define the full reverse translation from Maude-CV
to UML for ODP-CV?

In fact, what we have discovered is that the only thing
we need to transform back to UML4ODP-CV are the re-
sulting configurations or the errors found after executing or
analyzing the Maude specifications. And this is much more
simpler (no Maude behavior needs to be transformed).

7 Conclusions

In this paper, we have discussed how to build a bridge
between the UML 2.0 and the Maude specifications of
the ODP computational viewpoint, connecting both worlds.
One of the major benefits of our contribution is that it al-
lows the stakeholders of the system to use a more user-
friendly graphical notation like UML to express the sys-
tem’s structure, requirements and behavior, and then trans-
late them into Maude specifications. More precisely, we
have shown how model transformations can be specified in
ATL between the UML and Maude specifications, so model

transformation engines can later implement such transfor-
mations.

The connection between graphical and formal notations
is not a new problem. However, most of the existing propos-
als provide ad-hoc solutions, with hard-wired compilers of
graphical models into particular formal notations. What we
have showed in the paper is how the use of MDA principles
and mechanisms, together with MDA tools for specifying
and implementing model transformations, can help achieve
such connection in a high-level and declarative manner,
truly providing the primary goals of MDA: portability, in-
teroperability and reusability [18].

Apart from validating our proposal with more examples
and applications, addressing the discussed issues and evalu-
ating its performance and scalability, there are some lines
of work that we plan to address shortly. First, we want
to embed the transformations into a (UML) tool that can
provide access to the Maude toolkit from the UML envi-
ronment. That would allow systems engineers to execute
and model-check their UML ODP computational specifi-
cations, without being aware that they are using Maude or
its toolkit. We also want to study how to define transfor-
mations between the UML models and some commercial
implementation platforms, such as CORBA or .NET, that
can preserve the properties that have been validated with
Maude. In that way, we will be able to ensure that the sys-
tem implementation will satisfy a set of properties that have
been previously proved using the Maude toolkit. Thus, we
will be able to decide whether a given model transformation
from a repository can be used to produce target models that
satisfy that property, if the source models do.
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