* European Journal of Information Systems (2007) 16, 448-459
© 2007 Operational Research Society Ltd. All rights reserved 0960-085X/07 $30.00

www.palgrave-journals.com/ejis

Model-driven component adaptation in the

context of Web

Nathalie Moreno Vergara',
José M. Troya Linero' and
Antonio Vallecillo Moreno'

' Dpto. de Lenguajes y Ciencias de la
Computacién, Universidad de Mélaga, Malaga,
Spain

Correspondence: Nathalie Moreno Vergara,
Dpto. de Lenguajes y Ciencias de la
Computacion, Universidad de Malaga, ETSI
informatica, Campus de Teatinos, Malaga
29071, Spain.

Tel: +34 95 213 2846;

Fax: +34 95 213 1397;

E-mail: vergara@lcc.uma.es

Received: 1 December 2006
Revised: 12 July 2007
Accepted: 27 July 2007

Engineering

Abstract

Currently, Web-based applications are no longer monolithic and isolated
systems but, rather, distributed applications that need to interoperate with
third-party systems, such as external Web services, LDAP repositories or legacy
applications. When one component provides a service that the Web application
requires, it is often not possible to bind the two systems together if they were
not programmed to have compatible collaboration specifications. Modeling
the adaptation between a Web application and external assets becomes
therefore an essential issue in any realistic model-driven development scenario.
However, most of the existing Web Engineering proposals do not take this issue
into account, or they simply address it at the implementation level (in a
platform-specific way). In this work, we discuss the problems involved in
dealing with component adaptation within the context of Model-Driven Web
Engineering and show how design patterns can help addressing it. We first
identify the major interoperability problems that can happen when integrating
third-party application or legacy systems into our Web systems, and then
propose the mechanisms that need to be put in place at the design level to
generate the appropriate specification of adapters that compensate for the
possible mismatches and differences. We base our proposal on well-known
design patterns as they are established solutions to recurring problems, and the
generation of code from them is normally straightforward.

European Journal of Information Systems (2007) 16, 448-459.

doi: 10.1057/palgrave.ejis. 300069 |

Keywords: model-driven development; Web Engineering; interoperability; adaptation;
patterns

Introduction
Web applications are rapidly moving from stand-alone systems to
distributed applications that need to interoperate with third-party systems,
such as external Web services, LDAP repositories or legacy applications.
Modeling the interactions between a Web application and external assets is
something that needs to be properly addressed within any model-driven
development scenario, despite not being a simple issue. In previous works,
we showed how this can be done using a general model-based architectural
framework for Web application modeling (WEI) (Moreno & Vallecillo,
2005a, b, ¢). Such a framework provides the concepts and mechanisms to
facilitate the high-level integration of Web applications with third-party
systems, allowing the external entities of such systems to be manipulated
as native elements of our models. However, these works were based on the
assumption that no interoperability problems had appeared during the
integration phases.

To successfully integrate legacy or external assets into a Web application,
we need to guarantee that both parts are interoperable, that is, there are no

Model-driven component adaptation

Nathalie Moreno Vergara et af 449

potential mismatches between them. In this setting,
interoperability can be defined as the ability of two or
more entities to communicate and cooperate despite
differences in the implementation language, the execu-
tion environment, or the model abstraction (Wegner,
1996). Interoperability enables the composition of reu-
sable heterogeneous components and systems developed
by different people, at different times, and possibly with
different uses in mind.

Currently, some interoperability issues have been
addressed by the adoption of common standards. Many
of these have been proposed in recent years (e.g., XML,
XMI, MOF, RDF, SOAP, etc.) by organizations such as
W3C or OMG (Object Management Group). However,
this solution does not work well in practice. Most
proprietary tool vendors fail to generate fully standard-
compliant specifications of the models they produce,
adding particular extensions to the original one, which
are unable to be understood by other systems. On the
other hand, most current platforms (such as CORBA, EJB
or .NET) already provide the basic infrastructure for
component and service interoperability at the lower
levels, that is, they sort out most of the ‘plumbing’
issues. However, interoperability goes far beyond that; it
also involves behavioral compatibility, protocol compli-
ance, agreements on the business rules and on the
semantics, etc.

Recently, the Model-Driven Architecture (MDA) (OMG,
2001) initiative from the OMG has introduced a new
approach to organize the design of an application into a
set of separate models; so portability, interoperability and
reusability can be achieved through architectural separa-
tion of concerns. Regarding reusability, we think that
MDA can be successfully combined with design patterns
(Gamma et al., 1995) to facilitate the reuse of adaptation
designs. Since patterns describe only the core of the
solution to one problem, the implementation to carry
out the responsibilities and collaborations in the pattern
can take place under the guidance of MDA. In addition,
the generation of code from them is normally straight-
forward.

Here we will focus on Web Engineering, a domain in
which MDSD can be successfully applied. In fact, existing
Web Engineering proposals are model-driven because
they address the design and development of Web
applications using separate models (navigation, presenta-
tion, content, etc.). They are also supported by model
compilers that produce most of the application’s logic
and Web pages based on these models. However, most
Web Engineering proposals do not fully exploit ali the
potential benefits of MDSD, such as complete platform
independence or model transformation advantages,
when they address some specific issues such as the
integration of legacy assets into Web applications, or
modeling business process adaptation. In particular,
integration and adaptation are not properly addressed
by current Model-Driven Web Engineering proposals
(MDWE), which either ignore these problems or solve

them at very low level by means of ad hoc implementa-
tions of component adaptors that compensate for the
differences. However, they are not made explicit in the
system specifications or in any of the models.

In this paper, we discuss the main interoperability
issues that appear during model-based design and devel-
opment of Web applications, how they can be identified
and how they can be addressed using design patterns that
allow modeling, at the appropriate level of abstraction,
the bridges that help to mitigate the interoperability
conflicts.

Instead of discussing these issues in the context of any
of the MDWE proposals, we will use WEI, our model-
based architectural framework for WEI, for two main
reasons. Firstly, because it contains a richer and more
complete set of models than any other proposal and all
the other proposals can be naturally embedded into it
(Moreno & Vallecillo, 2007). This framework provides a
more precise separation of concerns, and better discrimi-
nation when it comes to identifying those models of the
application where interoperability problems may occur. It
also allows our contribution to be extrapolated to any
other MDWE proposal, not only ours. Secondly, WEI
already permits the integration of external services and
legacy systems into the models that comprise the
specification of a Web application (Moreno & Vallecillo,
2005a). This allows us to concentrate exclusively on the
interoperability problems, without having to worry about
the (normally ad hoc) mechanisms required by most
of the MDWE proposals for integrating such kinds of
external applications.

The structure of this document is as follows. Following
the introduction, the next section briefly describes WEI
and its constituent models. Then, the succeeding section
presents the main contribution of this paper, the
identification of a set of common conflicts and problems
encountered when integrating third-party systems into a
Web application design. For each problem, we analyze
when it can happen, how it can be detected and how it
can be solved at the design level by means of the
appropriate design patterns. The penultimate section
relates our work to other similar proposals and finally,
the last section draws some conclusions and outlines
some future lines of research.

The integration process in WEI

WEI in brief

WEI is a model-driven Web architectural framework for
organizing the models that address the different concerns
of a Web application development. At a high architectural
design level, the whole WEI concept space is captured by
means of 13 metamodels, organized in three main
packages (User Interface, Business Logic and Data); each
one corresponding to a viewpoint as shown in Figure 1.
In turn, each viewpoint is composed of a set of models,
which specify the entities relevant to that concern;
so, each model focuses on one particular concern

European Journal of Information Systems

A

450 Model-driven comp t adaptation

Nathalie Moreno Vergara et af

User intertace |
| et 1
b L
- O
[. [“ M User
& Prasentation ! ’_‘ t
- B T
r———— [~ User (nterface T L B '
: |'_ _l Structure g .] mp Adaptation l
! ! L - T I\
H : lI ; Navigation _ O L N Context
l ¢] [
I t) t
1 e !
1 e i
| 1 Bus}neqs tegic I g -
1 | [T i] \
I | I [— o] '
: ! i "] Processes PR T - e
I N . PiM t
T~ User interface —_——— -o‘ Business Logic ‘~ ————— - H
: I { : =] Component/’s - Viewpoint i‘, Viewpoint | DataViewpoint ;
1 I Tl & t . Style tnternal Tk T T
P | B S P REEREEYEY L g Processes | | { 5 ' !
Conceptual f& = — — — b [[oy
Model | Logie ' o)
Structure ' g e e +—
! i ; L T T _:
3 T A, D ! !]
i ! ! . - Lovy o BRI A
I i i Distribution Choreography . Y ni \ Y N - N
! i | Userinterface 4 — — — — Business Logic - — — — — — Mo
(= o e—) e H Viewpaiot $L Viewpoint Data Viewpaint |
| ! i A ! A 1 a
!] [! pon
t | 1 Data - ! ;o
i I i Gt b Lo
! |]]
| 1 —— 4 q—
| r i |) 1
i ' 3 Loy Lo bt
L | FaR AN l L 2 . LI
—— = information { ! i« CODE L co0E
L_l s smwewe o ____| Distribution User Im‘z'ace . BusipsssLogie |- —— ——— Data Viewpoint
Viewpolnt, Vi
N

Figure 1 The WEI framework.

(navigation, presentation, architectural style, distribu-
tion) and at different levels of abstraction (platform-
independent, platform-specific).

o The Data Structure viewpoint. 1t describes the organiza-
tion of the information managed by the application to
be stored persistently by means of, for example, a
database system (the Information Structure model).
It also describes the distribution and replication of
the data being modeled (the Information Distribution
model).

e The User Interface viewpoint. It focuses on the facilities
provided to the end user for accessing and navigating
through the information managed by the application
(the Navigation model), and how this information is
presented (the Presentation model) depending on
device, network, location and time aspects (the Context
model) and the user profile (the User model). The User
Interface level is responsible for accepting persistent,
processed or structured data from the Process and Data
viewpoints (the User Interface Structure model), in order
to interact with the end user and deliver the applica-
tion contents in a suitable format.

e The Business Logic viewpoint. It encapsulates the busi-
ness logic of the application, that is, how the informa-
tion is processed in order to achieve a business
objective (the Internal Processes model), and how the
application interacts with other computerized systems
(the Choreography model). The major classes or compo-
nent types representing services in the system, their
attributes, the signature of their operations and the
relationships between them are described in the

Business Logic Structure model. For a complete descrip-
tion of a business process, apart from the Business Logic
Structure model, we need information related to its
basic entities, which are connected by means of point-
to-point connections or links. Furthermore, the
Component + Architectural Style model defines the fun-
damental organization of a system in terms of its
components, their relationships, and the principles
guiding its design and evolution; that is, how func-
tionality is encapsulated into business components
and services.

In addition to models, the framework predefines some
dependencies between the models that determine those
cases in which a model definition requires the previous
specification of some other models. Furthermore, these
dependencies also specify correspondences between the
elements from different models of the framework,
especially when they may have been independently
developed by different parties, or when they represent
the system from different viewpoints, and therefore the
same element is specified in different ways in different
models (each one offering a partial view of the whole).
Correspondences between model elements may also be
subject to certain consistency rules, which check that the
views do not impose contradictory requirements on the
elements they share. In this regard, a central element of
the WEI architecture is the Conceptual Model, which can
be used both to specify the basic structure and contents
in the Web application (so the rest of the views can relate
to the elements of that model), and also to maintain the
consistency of the model specifications establishing how

European Journal of Information Systems

Model-driven component adaptation

Nathalie Moreno Vergara et al 451

the different viewpoints merge and complement each
other.

Based on previous metamodels, we have defined our
own DSL associated to them as light-weight extensions of
UML, that is, UML profiles that do not break the original
semantics of UML metamodel, but extend it using the
mechanisms provided by UML to specialize its meta-
classes (stereotypes, tag definitions and constraints). The
interested reader can visit the WEI Web site (http://
www.lcc.uma.es/~nathalie/WEI/) for a complete description
of the metamodels and profiles.

The WEI methodology

The integration process in WEI is supported as part of its
development methodology for building Web applica-
tions. This process conforms to the MDA principles, in
the sense that it is defined in terms of models and the
relationships between them, so transformations can be
easily formalized among the models until the final
implementation is reached. As illustrated in Figure 1,
WEI distinguishes three levels of abstraction (or view-
points). Since each viewpoint is usually implemented
using a different technology, WEI requires the definition
of at least three PIMs to generate the implementation of a
Web application: one for each layer (one PIM for the Data
layer, one PIM for the Business Logic layer and one for the
User Interface layer).

It is important to note that integration with external
systems must be achieved at all required levels of
abstraction. This will depend, of course, on the nature
of the element to be integrated. For instance, an LDAP
repository whose main functionality is storing data,
requires that its integration into a Web application be
carried out only at the Data level. Portlets expose
functionality through a user interface component. Thus,
their integration has to be considered both at the Business
Process tevel and at the User Interface level. In contrast,
Web services encapsulate functionality related to the
business logic of a system, without any predefined user
interface, so they will only be integrated within the
Business Logic level.

The detailed description of the process that WEI
follows for designing Web application using external
systems is outside the scope of this paper, and has been
reported elsewhere (we refer the interested reader to
Moreno & Vallecillo, 2005a, b, ¢, for the description of the
process and some illustrative examples). Although a priori
there are no major problems with this approach, it is
based on the assumption that no interoperability pro-
blems may occur. However, this is not always the case as
we may face different kinds of incompatibility issues
when trying to integrate external services or legacy
applications into the system, or to interoperate with
them. For instance, in the simplest case, the interface of
the services required by our application (as specified in
one of the PIMs) may not match the interface of the
actual service, as provided by the external service
provider. However other problems may also arise. The

following section is dedicated to identifying them, and
propose solutions at design level, that is, the solutions are
incorporated into the model of the application at the
highest level of abstraction possible, so they can be
foreseen and their solution (if required) be part of the
models of the application, and therefore be naturally
represented in a platform-independent manner.

Identifying and solving integration problems at
design-time

This section identifies the main problems that may
happen when integrating third-party application or
legacy systems into our Web designs. They are based on
our experience on modeling and building Web systems
that need to interoperate with external assets and
applications.

Please note that our contribution is not focused on the
automatic detection and correction of mismatches. Here
we concentrate on their identification, and on the
mechanisms that need to be put in place at the design
level to generate the appropriate specification of adapters
that resolve the possible mismatches and differences. We
base our proposal on well-known design patterns, as they
are established solutions to recurring problems and the
generation of code from them is usually straightforward.

Syntactic conflicts

We cannot assume that software developed by indepen-
dent parties will be assigned the same names. A syntactic
conflict occurs when architectural components use
different data structures and representations for identical
concepts. The concept in question may be an object type,
a process, a property, a relationship, or an instance of any
of these. The conflict could be as simple as a disagree-
ment on the spelling of a name (naming of methods,
parameter, types or exceptions), or as complex as a
different data organization and a different approach to
data representation (typing of methods or parameters).
Besides, when the interaction is more complex than one-
way communications, the matching conversion for the
reverse direction must also be constructed.

Where these problems appear. We have found this type of
problem at the three levels of abstractions established by
WEIL. For example, between pairs of Presentation models at
the User Interface level when we have to integrate external
interfaces of portlets; between pairs of Business Informa-
tion Structure models at the Business Logic viewpoint when
we have to integrate WSDL Web services descriptions, etc.

How to detect them. At first sight, the designer can detect
these conflicts when he compares the required with the
provided specification. Other automatic strategies based
on signature matching can also be applied here (Zaremski
& Wing, 1995, 1997), although their tool support is
currently quite limited. Model subtyping and type-
inference are recent approaches that can also be of great
help, because they allow checking that a given model is a
subtype of another, that is, one can safely replace the
other (Steel & Jézéquel, 2005; Romero et al., 2007).

European journal of Information Systems

452 Model-driven ¢

nt adaptation

|

Nathalie Moreno Vergara et al

AN
type =OneWay,;

Web Appication gj <<Syé

htacticAdapter>> @

P) e
i prat — - Sarver
e Sibaen i ke s —
| Slessubcenet I Somyrssrsscnnes ST O s
[EECE R seonvertinartacer) dptee

| !

integrated Asset = }

J

I

public updateCustomer{customer Chs(uma%’» 1

1_ N
1 public updateClient{client:Client);
client = customerToclient{customer);

generate updateCiient(client) to Server;

Figure 2 Solving syntactic conflicts with the adapter pattern.

How to address them. In general, what is required is an
intermediary component that translates between the two
representations: it converts the source data schema or
interface (and its data) to an equivalent one in the
language of the target model. Such a component need to
be specific for the set of interfaces involved but can be
constructed taking advantage of the adapter pattern. As
shown in Figure 2, from the general case the pattern has
to be customized to fit our needs. Its main participants
are: (i) the Target interface, which is the interface required
by a client component; (ii) the Client, which is a
component whose interface is compatible with the Target
interface; (iii) the Syntactic Adapter, which is the compo-
nent responsible for making an existing interface or data
schema compatible with the Target interface and (iv) the
Adaptee interface, which is the Server interface. The code
implementing the translation can also be specified at
design-time using any action semantic language, such as
Xion (Muller et al., 2005) or OAL (BridgePoint Obiject
Action Language) (Mellor & Balcer, 2002).

Example. Let us consider an LDAP directory that
defines an entry with one object type named ‘customer’,
while its counterpart in the Web application database is
called ‘client’. In this case, the adapter pattern provides a
simple and elegant solution (see Figure 2). The actions
shown for the adapter object have been defined using the
OAL notation.

As the reader can notice, the interactions between
cooperating parts are modeled in WEI in terms of ports
that encapsulate the programming abstractions through
which the client and service provider perceive and use
the communication. WEI requires that certain imple-
mentation choices about the selected target platform,
which are usually made implicit and therefore assumed
and hard-coded in the application, are made explicit in
the appropriate model(s). Thus, a <StubClient» identi-
fies a component that should obtain a reference to the
Stub before using it, which represents an instance of the
server provider. In this way, both the remote interface
and its implementation have to be available, so the client
relies on an implementation-specific class. On the other
hand, the <ServerPort> plays the other endpoint of
the Web interaction. It encapsulates the programming

abstractions through which the server carries out the
communications with the client.

Underlying platform or communication protocol
mismatches

These problems are common in Web applications that use
several platform technologies, simultaneously. This kind
of problem appears when the two systems disagree on the
technical specifications for performing the communica-
tion, or even when they use the same mechanism but the
specific protocols they use may be different.

Where these problems appear. They affect both the
Business Information Structure and the Choreography models.

How to detect them. They can usually be detected by
comparing the underlying platform or communication
protocols used by the client and server components.
Details about implementation protocols are also expli-
citly modeled in WEI], as tag definitions of stereotypes
<ServerPort>», <StubClient>, <DynamicClient>, etc.,
which allows this kind of conflict to be detected.

How to address them. Generally, the adapter pattern
allows solving this kind of mismatch in a natural way. In
other cases, we may require more sophisticated strategies
such as those provided by the mediator pattern, by
wrappers, or by combinations of both. Typically, a
wrapper acts as a server object and provides a standard
interface through which mediators can access hetero-
geneous components.

Example. Let us consider a document conversion Web
application that translates between different file formats
like PostScript, PDF, plain text, etc.,, using external
services for this purpose. Suppose that the application
uses the HTTP protocol to communicate with these
external services, but wants to make use of a new external
service that is available only as a CORBA component. In
order to solve this mismatch, Figure 3 shows a mediator-
wrapper pattern to transform data from the client
component to the server component in the format it
expects. The participants in the Mediator-Wrapper
pattern are: (i) the data-driven protocol adapter component,
which defines the interface required by a client compo-
nent; (ii) the mediator, which is a component that
coordinates wrapper objects; (iii) the wrappers, which

European journal of information Systems

Model-driven component adaptation

Nathalie Moreno Vergara et af 453

Web Appiication

Integrated Asset

=

- — |CorbaServer2
+convert2Ps()

®

{
L=

<<Wrapper>>

i] <Wrapper>> {]

... “<ProtocoiAdapter>>

Integrated Asset

gl

CorbaServer1
L econvenzrOr)

t

PAdaptar

*roquast(cuatdet: Detais §

> <<StubCient=> }——-(

+hook(custdet: Deais ¥ Boolean:
[————

BoakingService

o

FbookRequest tusidet: Daialls). nteger.
*oontia beokingonde iteger) Bookan

— <<ServerR)rt:1¢ |
i

-

1: book {customerDetails)

I BookingService

i

2: bookRequest {customerDetails) [

--------- o

s 6.0k

{
}
!
|
1

i
i
t
i
|
!
!

3: bookingcode

4: confirm (bookingcode)

u
!
|
i
i
{
H
f
{
!

Figure 4 Solving protocol problems with the mediator-wrapper pattern.

are the components responsible for making the transfor-
mation and (iv) the integrated assets, which provide
the corresponding server interfaces and implement the
services.

Chorecgraphy mismatches
This problem refers to mismatches in the relative order in
which an object expects its methods to be called, the
order in which it invokes other objects’ methods, and the
blocking conditions and rules that govern the interac-
tions. In this way, if a BPEL4WS specification assumes
that a component behaves in a certain way, but the actual
implementation of the component (which is not stated
anywhere in the WSDL specifications of the component)
does not behave like that, a choreography mismatch
occurs.

Where these problems
the Choreography model.

appear. They mainly happen in

How to detect them. There are several proposals that
address interoperability problems at this level (also called
the ‘protocol’ level), assuming that the components have
a precise specification of their choreography using some
formal description techniques: based on logical and
temporal rules (Lea & Marlowe, 1995); using UML’s
OCL pre- and post conditions on the object’s method
together with a simple finite state machine (Cho et al.,
1998); using process algebras (Bastide et al., 1999; Canal
et al., 2003), etc. On the other hand, we can aiso rely on
model checkers based on Promela or SDL to check this
kind of conflict.

How to address them. The solution should be given
depending on the extension of the conflict. In those
cases in which the only changes required to enable
the interoperability between the parts imply only
modifications in the communication choreography, but
without altering the content of the messages (i.e., only

European Journal of information Systems

454 Model-driven component adaptation

Nathalie Moreno Vergara et af

.)
Web Application 5-] R
t

- W&
4 «StubCl»em»HO—‘:ieLverPort»]

Client

<<component>>

‘g} integrated Asset 5

3 e:[(Port» (<<StubClient>> [~

Sever

Figure 5 Solving role problems with the adapter pattern.

changes in the connectors), the adapter pattern works
well. In other cases, the conflict may require combi-
nations of sets of patterns, or it may even be impossible
to solve. Some works are currently investigating the
automatic generation of mediators from the formal
specification of the incompatible components, under
certain circumstances (Bracciali et al., 2005). This is an
interesting line of future research, especially in the
context of the Web 2.0, where automatic mediation and
adaptation seems to be required.

Example. Let us consider a Web portal implementing a
booking service functionality in an airline ticketing
system. The AirlineTicketing system is composed of three
Web services: a BookingService, and two hypothetical
Traveller and Airline components. Let us consider the
UML class and sequence diagrams shown in Figure 4
specifying the provided booking service protocol and the
required protocol corresponding to a potential client of
the service, that is, the Traveller. In this simple example,
an adaptor can solve the protocol mismatch capturing all
the exchanged messages between cooperating parts and
discarding the results of undesired messages.

Incompatibility of roles

Role conflicts occur when communicating components
present incompatible assumptions about their functional
roles in their interactions (e.g., both want to play the
client role or, alternatively, both want to be in control).
This kind of problem also happens in other environ-
ments, for example, when composing object-oriented
application frameworks (Mattsson & Bosch, 1997).

Where these problems appear. They can be considered
a kind of protocol problem, in which there is no
agreement on who is providing what information to
whom, and who is performing which function. This kind
of problem affects mainly the Choreography and the
Component models.

How to detect them. They can be detected comparing
the ‘required’ component model with the ‘provided’
component model: each client port should have a server
port satisfying its requirements. Consequently, proposals
that address interoperability problems at the protocol
level are also suitable here (e.g., Lea & Marlowe, 1995;
Cho et al., 1998; Canal et al., 2003).

How to address them. What is required for solving this
type of incompatibility problem is an intermediary
component that plays the missing role with respect to
the parts being connected. WEI solves this kind of
problem applying the adapter pattern. The participants
are similar to those described in ‘Syntactic conflicts’

section; but in this case, the adapter component acts only
as a channel receiving messages and delivering them
without any kind of transformation.

Example. Let us consider the example proposed in
Figure 5. We can observe that both components expect to
behave as ‘clients’, and neither expects to be the ‘server’
(or vice versa). In this case, the adapter component must
be both a push server who accepts and queues messages
from the push client, and a pull server who delivers them
to the pull client on request.

Data format problems

Although the meaning or purpose of the exchanged data
may be similar or identical, there may be differences in
the data formats required by the various applications and
platforms.

Where these problems appear. Although this conflict
may appear at the three levels of abstraction established
by WE], it normally happens between pairs of Information
Structure, Business Logic Structure and User Interface Structure
models.

How to detect them. The criteria for determining the
existence of data format conflicts can be assisted by
subtyping techniques (Simons, 2002; McKegney & She-
pard, 2003; Steel & Jézéquel, 2005; Romero et al., 2007).
When it is not possible to derive a relationship between
two types, a data format conflict probably exists.

How to address them. The solution is based on the
wrapper pattern. It translates the data considering the
characteristics of the integrated data sources. In these
cases, it is preferable to let a mediation component
handle the transformation from one format to another. It
may even be possibie to define a canonical data model,
although it may force service consumers to deal with it
(or use other wrappers).

Example. The example illustrated in Figure 3 describes
also a data format problem that can be addressed by the
mediator-wrapper pattern. The proposed architecture
provides a model-driven solution that allows transparent
access to heterogeneous data formats.

Data consistency problems
These kind of problems arises when the two systems
maintain their own copy of the information that they
share, but these copies are inconsistent. There are many
causes that may lead to this situation, especially when
both systems update their data individually.

Where these problems appear. They are mainly present
in the Conceptual, Information Structure, User Interface
Structure and Business Logic Structure models.

European journal of Information Systems

Model-driven comp

t adaptation

Nathalie Moreno Vergara et of 455

Web Application z]

Client f <<StubClient>>

<<ConsistencyAdapter>> {I

Integrated Asset

&
it of Wk L““J
Hregiterow (3
HreglsterDiety()
#ragisterCisan()
= {erdgserbeistel)
ACONH()

Sever

<<ServerPort>>ic.

Figure 6 Solving consistency data problems with the unit of work pattern.

<<ProteLtionProxy>> @
Web Application g] & Integrated Assat @
Safe
Chag " —
- StubClient> s 5 -
3 <<StubClient>> | (O—— e et - “’E,‘.]((j{ <<ServerPort>> ReatSafe
; , sgetSecrel()
i
{ProtactionProxie) |
“pASEW oFl —
ity
*geiSerrel(y

Figure 7 Solving QoS problems with the protection proxy pattern.

How to detect them. They are normally problems that
happen at run-time. However, the initial design can be
prepared to avoid them by using the appropriate
synchronization mechanisms. Alternatively, if behavioral
models are used, it is possible to detect some of them or at
least some critical regions.

How to address them. Unlike most other conflicts,
solutions to data consistency conflicts are particularly
difficult to automate because much detailed analysis is
required to determine exactly what the problem is, and
the best way to solve it. In many cases, the solution
consists of avoiding the problem in the first place, by
synchronizing the processes by means of transactions.
The unit of work pattern can be used here to keep track of
everything that happens during a business transaction,
which -may affect the databases or the data sources that
need to be kept consistent. When a transaction is
completed, it figures out what needs to be done to alter
the database as a result of the session, and propagates the
changes to the other data sources. Alternatively, monitors
could be included in the design to deal with the
management of potential critical regions, also using the
unit of work pattern.

Example. Let us consider a component that maintains
a private file or a database with information about user
logins and passwords that is not being regularly updated
from the ‘primary database’ held in the Web application.
This example may present a data consistency problem,
solved as shown in Figure 6.

Quality-of-service and other service-level agreement
problems

A quality-of-service (QoS) conflict occurs when the
behavior of a component does not satisfy the QoS
requirements imposed by the system specifications. Such
requirements deal with security, timing, redundancy and
similar aspects of the application.

Where these problems appear. WEI mainly models the
QoS requirements in the Component model as properties
of the interaction ports.

How to detect them. These are usually problems that
happen at run-time, and need to be detected by special
processes that monitor the behavior of the integrated
components (especially when they are external assets).
Thus, the initial design has to incorporate such kind of
monitor processes. Furthermore, there are cases in which
we might also want to consider the use of adaptors that
allow solving the disagreements between the system
requirements and the integrated components’ behavior.

How to address them. There is extensive literature
available on QoS monitoring and resource adaptation
and allocation to meet Service-Level Agreements, mostly
based on the use of the wrapper or proxy patterns.

Example. Let us consider a component that expects to
use a secure communication mechanism for certain kinds
of transactions, while its counterpart in the communica-
tion does not work in that way. In this case, the proxy
pattern is frequently applied to implement some of the
required access control mechanisms. Protection proxies
are also useful when objects should have different access
rights. Figure 7 shows how to apply this pattern if we
have an object storing a protected information.

The main participants in this pattern are: (i) the client
that wants to get a protected information; (2) the
protection proxy that asks the user to authenticate itself —
if the user gives the correct information to the proxy,
then it calls the object and passes the protected informa-
tion to the client and (3) the RealSafe object that
represents the protected object.

Semantic mismatches

The semantic requirement for integration tries to ensure
that the exchange of services and data among commu-
nicating parties make sense, that is, that requesters and

European journal of Information Systems

456 Model-driven comp t adaptation

Nathalie Moreno Vergara et af

providers agree on the ‘meaning’ of objects, properties
and processes that they share within the Web application.

Where these problems appear. Semantic conflicts result
from mismatches between communicating components
in the Conceptual, Information Structure, User Interface
Structure and Business Logic Structure models. They may
also appear in the activities in which they must interact,
or in the interpretation of references to object types and
instances in such activities.

How to detect them. Some proposals try to endow
component interfaces with semantic (behavioral) infor-
mation. In these cases, we can apply behavioral subtyp-
ing algorithms or techniques for detecting these
mismatches, see for example Zaremski & Wing (1997).
Other proposals use ontologies and semantic matchmak-
ing for detecting these problems.

How to address them. Solutions to semantic problems
are generally formulated in terms of ontologies that
expose similarity relations among concepts of different
schemas. We can simulate this approach by using the
OCL constraints and QVT relations present in the WEI
Conceptual model. Another solution to solve some
basic semantic conflicts uses semantic adaptors that
implement translations between the original concepts
and the target elements by, for example, applying the
adapter pattern as illustrated in the resolution of
syntactic conflicts.

Example. Let us consider a Web application that
integrates two data sources, whose data schema defini-
tion uses the same term (e.g., ‘Tiger’) to refer to two
different things (e.g., an animal and a car). That is, they
assign different meanings to the same term. A simple way
of solving this problem is by using renaming techniques.
More precisely, in WEI it is easy to define QVT relations
that allow the renaming of a term, and the automatic
propagation of the changes to the rest of the models (to
maintain consistency).

relation Tiger2Tiger{ /+*solving mismatch Tiger to Tiger*/

checkonly domain webml.WebML_Metamodel el:WebMLEntity{

name = ‘Tiger’,

attribute = al:WebMLAttribute{name = aln,

type = pl:WebMLDataType(name = pln}}};

checkonly domain och.00-H_Metamodel e2:O0OHEntity({

name = ‘Tiger’,

attribute = a2:00HAttribute{name = a2n,

type = p2:0OHDataType{name = p2n}}}:

where{

rename (e2} ; }

Functional conflicts

Functional conflicts arise when the behavior of one
communicating resource differs from the behavior ex-
pected by its counterpart in the interaction. A functional
conflict may both modify the subsequent interactions of
functions of each part, and may also affect the successful
performance of the joint action.

Where these problems appear. These conflicts appear
in the Internal Processes and Choreography models, which
describe how the business functionality is decomposed
into small pieces of required behavior for the individual
resources comptising the system.

How to detect them. Automatic strategies based on
protocol and behavioral mismatches can be applied here
(Lea & Marlowe, 1995; Cho et al., 1998; Canal et al., 2003).

How to address them. When the provided function-
ality is larger than the required one, it may be possible to
construct an interceptor that captures requests and
decomposes it into multiple requests to be executed.
But, in general, the problem may not allow a common
solution.

Example. Let us consider a UserTrace Web system,
which interprets that a deleteUserOnly() operation means
only deleting the row representing the information about
the wuser currently connected, while a cooperating
external system interprets that this operation implies
deleting not only the information about the user but also
all the other information relating to him. This may
represent serious interoperability problems, which are
very difficult to detect and to solve in practice. As shown
in Figure 8, from the general case the adapter pattern has
to be customized to fit our needs.

Related work
Closer proposals to the contribution we have presented
in this paper fall into two main categories: ones that
follow a model-driven approach for coping with a subset
of the problems identified here, either in the Web context
or in other domains, and others that follow a code-
centric or implementation-driven approach, applying or
not design patterns, for solving particular conflicts.
With regard to the first group of works, several authors
have provided a number of interesting proposals regard-
ing Enterprise Application Integration (EAI) systems (Linthi-
cum, 2000). These systems address three major
integration goals: data or information integration, pro-
cess integration, underlying platform independent and
common facade. To solve the integration conflicts

Web Application

UserTracer
+deletetiserOnly{ name: String }

<<FunctionalAdapter>> o

= Integrated Asset %J
FAdapter: 1 tem
e L smomrle [
SuattelserOntyl name - String 1§ sdaisteliser{ name : Siring }

-deleteCascadeUser()

Ve
7/

s

generate deleteUser(self userName) to System; Il]

Figure 8 Solving functional conflicts with the adapter pattern.

European Journal of Information Systems

Model-driven component adaptation

Nathalie Moreno Vergara et af 457

presented, they usually implement the mediation and
federation patterns. However, the integration is achieved
by defining an interaction conceptual model that
particularizes an existing conceptual model provided by
the EAI vendor (linked in such a way to the models of a
particular system). Often this conceptual model is not
Web —oriented; so many of the modeling, integration and
adaptation requirements of Web applications that we
have identified here are not supported by EAI vendors. In
addition, most EAI solutions are provided to deal with
these issues at a very low level, that is, they are
implementation dependent. Probably, one of the major
benefits of our proposal is that it is platform- and
technology independent, according to the MDA princi-
ples. This allows designs to be reused across many
different platforms, and permits organizations to count
of long-lived designs of their systems, which are not tied
to particular technologies. And then they can be linked to
the particular implementations provided by some EAI
vendors, as we shall later see.

In the particular context of Web Engineering, model-
driven adaptation has been neglected by most Web
methodologies. In fact, modeling the integration of
third-party systems into a Web application design is not
yet fully supported by most MDWE approaches. And
those methodologies that allow reusing external compo-
nents at design level (such as WebML (Brambilla et al.,
2003), UML-Guide (Dolog, 2004) or MIDAS (De Castro
et al., 2006)) are normally based on the assumption that
no interoperability problems will occur. Thus, any
incompatibility conflict that may appear during the
integration phase is usually hard-coded at the implemen-
tation level, and not documented by any of the Web
methodology views, as previously mentioned. Conse-
quently, the ideal objectives and advantages derived from
applying model-driven development (such as platform,
technology and implementation independence) are lost.

More mature results solving specific adaptation re-
quirements can be found in the Component-based
Software Engineering and data-based fields. In Schmidt
& Reussner (2002), the authors address some protocol
interoperability conflicts by deriving adapters for mer-
ging and splitting interface protocols. In Spitznagel &
Garlan (2003), Garlan et al. tackle the problem of solving
component interactions conflicts by using wrappers that
alter the behavior of a component without modifying the
component or the infrastructure itself. Yellin & Strom
(1997) also develop adapters for software components
that have compatible functionality but present syntactic
or protocol mismatches assuming that interface map-
pings are provided. On the other hand, Thiran & Hainaut
(2001) propose a technology for the automated produc-
tion of hard-coded wrappers for data systems. They show
that the code of a wrapper can be dedicated to solving
syntactic and semantic mappings, and that these map-
pings can be modeled through semantics-preserving
transformations. Finally, Reck & Koenig-Ries (1997)
support the quick development of mediators by auto-

matically deriving their specifications — which are subse-
quently fed to a mediator generator.

These efforts can be considered mechanisms that can
be leveraged for Web application adaptation, but are not
sufficient because in this context richer description
models than component interfaces and protocols or
database schemas are required. This is due to the fact
that clients and services are typically developed by
separate teams, possibly even by different companies,
and service descriptions are all that client developers
have to understand to know how the service behaves.
Thus, the work presented here can be seen as comple-
mentary to these other works. Here we have focused on a
platform-independent specification of such adaptors and
wrappers, while the previously mentioned works in this
section can provide the implementation details of our
designs for specific platforms. More precisely, our work
provides a bridge between the platform-independent
models of a Web application (which are now able to
capture the interoperability aspects at the design level),
and the current solutions for EAI integration and
component adaptation, which allow solving most of
these problems - but usually at a platform-specific
implementation level.

Conclusions and future directions

This paper identifies the main conflicts encountered in
solving integration problems during Model-Driven Web
applications design and development. A set of well-
known design patterns are proposed to tackle these
problems at design level, addressing them in the different
models that constitute the specification of a Web system.
In this way, this work tries to improve the design,
documentation and maintenance of existing Web sys-
tems by filling the current gap between the design of a
Web application and its implementation — achieved in
most cases as a set of interacting parts where some of
them are external services.

On the basis of this design-time adaptation, our
proposal can be implemented applying transformation
rules that determine how to derive the code from the
pattern models for a target platform technology. In doing
so, not only the structure but also the behavior of
patterns need to be described, as we have briefly
illustrated in some of the examples shown in ‘Identifying
and solving integration problems at design-time’ section.
In that sense, there is a lack of a standard syntax for
specifying actions in UML. Instead, there is a variety of
action languages such as the OAL (Mellor & Balcer, 2002),
the Kennedy Carter Ltd. Action Specification Language
(ASL) (Raistrick et al., 2006), the Shlaer-Mellor Action
Language (SMALL) (Shlaer & Mellor, 1992), the Xion
language (Muller ef al., 2005), etc. Although most of the
existing action languages and tools are not Web oriented,
we have successfully used them to model many of the
behavioral parts of the adaptors, and we have obtained
good implementations, because these tools generally give
explicit support for statecharts diagrams (generating Web

European Journal of Information Systems

458 Model-driven comp t adaptation

Nathalie Moreno Vergara et af

services or software components at the implementation
level).

Our future research is directed toward developing a
Web development environment capable of supporting
the automatic suggestion of pattern(s), which can be
applied to solve the identified integration conflicts.
This tool might integrate some of the proposals and
engines that we need to evaluate the distance between
the models of the ‘required’ and the ‘actual’ services and
also make use of proposed patterns to create the links and
adapters needed to connect two or more available
resources.

Finally, we want to point out that although the
proposal has been addressed from the WEI viewpoint,
there is nothing to prevent us from extrapolating the
results to other Web Engineering methodologies. The
analysis conducted here and the proposed solutions
could be very useful to other model-based Web Engineer-
ing methods if they decide to extend their proposals to
address adaptation requirements following a model-
driven approach. Since each integration conflict has been
localized in terms of the WEI models that could present
that specific problem, and there is a compatibility

About the authors

Nathalie Moreno Vergara is Assistant Professor at the
Department of Computer Science of the University of
Malaga where she received the M.Sc. degree in Computer
Science. Her current research interest is oriented toward
model-driven development of Web applications, concep-
tual modeling methodologies, model transformation
languages and code-generation techniques in the Web
context.

José M. Troya Linero is Full Professor at the Department
of LCC of the University of Malaga. He received his M.Sc.
and Ph.D. degrees in Computer Science from the

References

BASTIDE R, SY O and PALANQUE P (1999) Formal specification and
prototyping of CORBA systems. In Proceedings of the 13th European
Conference on Object-Oriented Programming ECOOP’99. Lecture Notes
in Computer Science No. 1628. Lisbon, Portugal Springer-Verlag,
Heildelberg.

BRACCIALL A, BroGI A and CaNAL C (2005) A formal approach to
component adaptation. journal of Systems and Software, Special Issue
on Automated Component-Based Software Engineering 74, 45-54.

BrRAMBILLA M, CERI S, COMAI S, FRATERNALI P and MANOLESCU I (2003)
Model-driven development of Web services and hypertext applica-
tions. In Proceedings of the Systemics, Cybernetics and Informatics
Multiconference (SCI’03). Orlando, Florida.

CANAL C, FUENTES L, PIMENTEL E, TROYA JM and VALLECILLO A (2003) Adding
roles to CORBA objects. IEEE Transactions on Software Engineering
29(3), 242-260.

between models and design elements coming from
different methodologies and the appropriate ones of our
framework, this goal can easily be achieved. For example,
in the WebML context every WEI adapter would be
modeled as a parameterizable operation unit being able
to interact with other content and operation units in the
hypertext model. In the same way, WEI assembly
connectors would have their counterpart in the defini-
tion of appropriated WebML transport links allowing
both the parameters passing and the specification of
correspondences between required and provided require-
ments.

Acknowledgements

The authors like to thank the anonymous referees for their
insightful and constructive comments and suggestions.
Although the views in this paper are the authors’ sole
responsibility, they could not have been formulated without
many hours of detailed discussions with MDWE experts. In
particular, we like to thank Nora Koch and Piero Fraternali for
sharing their expertise and knowledge with us. This work has
been supported by Spanish Research Project TIN2005-
09405-02-01.

University Complutense of Madrid in 1975 and 1980,
respectively. His research interests include parallel algo-
rithms for optimization problems and software engineer-
ing for distributed systems.

Antonio Vallecillo Moreno is Associate Professor at the
Department of Computer Science of the University of
Milaga where he holds the Ph.D. degree in Computer
Science and the B.Sc. and M.Sc. degrees in mathematics.
His research interests include model-driven software
development, open distributed processing and the in-
dustrial use of formal methods.

CHO IH, MCGREGOR JD and KRrause L (1998) A protocol based approach to
specifying interoperability between objects, In Proceedings of the 26th
International Conference on Technology of Object-Oriented Languages
and Systems (TOOLS’98). \EEE Computer Society, Washington, USA.

Dt CASTRO V, MARCOS £ and L6PEZSANZ M (2006) A model driven method
for service composition modelling: a case study. International Journal of
Web Engineering and Technology 2(4), 335-353.

DoLoG P (2004) Model-driven navigation design for semantic Web
applications with the UML-guide. In Engineering Advanced Web
Applications: Proceedings of Workshops in connection with the Fourth
International Conference on Web Engineering (ICWE 2004). Rinton Press,
Munich, Germany.

GAMMA E, HELM R, JOHNSON R and VUSSIDES] (1995) Design Patterns:
Flements of Reusable Object-Oriented Software. Addison-Wesley, Read-
ing, Massachusetts.

European Journal of Information Systems

Model-driven component adaptation

Nathalie Moreno Vergara et af 459

Lea D and MARLOWE | (1995) Interface ~ based protocol specification of
open systems using PSL. In Proceedings of the Ninth European
Conference on Object-Oriented Programming (ECOOP’95). Lecture
Notes in Computer Science No. 952 Springer-Verlag, London, UK.

LiNtHicum DS (2000) Enterprise Application Integration. Addison-Wesley
Longman Ltd., Essex, UK.

MatTsson M and BoscH | (1997) Framework composition: problems,
causes and solutions. In Proceedings of the TOOLS-23: Technology of
Object-Oriented Languages and Systems (TOOLS '97). IEEE Computer
Society, Santa Barbara, CA.

MCKEGNEY R and SHEPARD T (2003) Techniques for embedding executable
specifications in software component interfaces. in Proceedings of the
Second International Conference on COTS-Based Software Systems
(ICCBSS03). Lecture Notes in Computer Science No, 2580 Springer-
Verlag, London, UK.

MELLOR §] and BALCER M (2002) Executable UML: A Foundation for Model-
Driven Architectures. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

MoORENO N and VAUECHIO A (2005a) A modelbased approach for
integrating third party systems with Web applications. In Proceedings of
the Fifth intemational Conference on Web Engineering (ICWE'05). Lecture
Notes in Computer Science No. 3579 Springer-Verlag, Sydney, Australia.

MoreNo N and VALLECILLO A (2005b) incorporating cooperative portlets
in Web appilication development. in Proceedings of the First Workshop
on Model-driven Web Engineering (MDWE 2005). Sydney, Australia,

Moreno N and VALLECILLO A (2005¢) Modeling interactions between Web
applications and third party systems. In Proceedings of the Fifth
International Workshop on Web Oriented Software Technologies
(IWWOST'05). Porto, Portugal.

MoRreNo N and VALLECILLO A (2007) Towards Interoperable Web
Engineering Methods. Submitted for publication.

MULLER PA, STUDER P, FONDEMENT F and BéziviN) (2005) Platform
independent Web application modeling and development with
Netsilon. Software and System Modeling 4(4), 424-442.

OMG (2001) Model Driven Architecture. A Technical Perspective. Object
Management Group. OMG document ab/2001-01-01.

RaisTRick C, FRANCIS P, WRIGHT |, CARTER C and WIikE | (2006)
Model Driven Architecture with eXecutable UML. Cambridge University
Press, New York, USA.

Reck C and KOENIG-RIES B (1997) An architecture for transparent access to
semantically heterogeneous information sources. In Proceedings of the
First International Workshop on Cooperative Information Agents, Kiel,
Germany. 3

ROMERO |R, RIVERA JE, DURAN F and VALLECILLO A (2007) Formal and tool
support for model driven engineering with Maude. journal of Object
Technology (JOT) 6(9), http://www.jot.fm/.

ScHMIDT HW and ReussnEer RH (2002) Generating adapters for concurrent
component protocol synchronisation, In Proceedings of the IFIP TC6/
WG6.1, Fifth International Conference on Formal Methods for Open
Object-Based Distributed Systems V (FMOODS’02). Kiuwer, B.V.,
Deventer, The Netherlands.

SHLAER S and MELLOR §) (1992) Object Lifecycles: Modeliing the World in
States. Yourdon Press, Englewood Cliffs, New Jersey, USA.

SIMONs AJH (2002) The theory of classification, object types and
subtyping. Journal of Object Technology 1(5), 27-35.

SPITZNAGEL B and GARLAN D (2003) A compositional formalization of
connector wrappers. In Proceedings of the 25th International Conference
on Software Engineering (ICSE’03). IEEE Computer Society, Washing-
ton, USA.

STeeL] and JEzEQUEL JM (2005) Model typing for improving reuse in
model-driven engineering. In Proceedings of the 8th International
Conference, MoDELS 2005. Lecture Notes in Computer Science No.
3713 (Briano L and WiLuams C, Eds) Springer-Verlag, Montego Bay,
Jamaica.

THIRAN P and HAINAUT JL (2001) Wrapper development for legacy
data reuse. In Proceedings of the Eighth Working Conference on
Reverse Engineering (WCRE‘01). IEEE Computer Society, Washington,
USA.

WEGNER P (1996) interoperability. ACM Computer Survey 28(1), 285-287.

YELWN D and STROM R (1997) Protocol specification and component
adaptor. ACM Transactions on Programming Languages and Systems
19(2), 292-333.

ZAREMSKI AM and WING JM (1995) Signature matching: a tool for using
software libraries. ACM Transactions on Software Engineering and
Methodology 4(2), 146-170.

ZAReMsKI AM and WING |M (1997) Specification matching of software
components. ACM Transactions on Software Engineering and Metho-
dology 6(4), 333-369.

European Jjournal of Information Systems

