

ISO/IEC JTC1/SC7/WG19 BAR-022

ISO/IEC 19793

Date: 2005-12-12

 WG19 Helsinki 2005

Committee Draft v02.00

Output Document from the
 May 2005 meeting in Helsinki

ISO/IEC JTC 1/SC 7

Software Engineering

Secretariat: Canada (SCC)

Doc Type: Committee Draft
Title: Information technology — Open distributed processing —
 Use of UML for ODP system specifications
 ITU-T Recommendation X.906 | ISO/IEC 19793
Source: WG19 output
Project: 1.07.19793
Status: Consolidated Input for the progression of CD v2.0 of ITU-T Recommendation X.906 |

ISO/IEC 19793
Action:
Distribution: SC 7/WG19 and ITU-T
Medium: E
Number of Pages:
Version: 02.00

ISO/IEC JTC1/SC7 Secretariat
École de Technologie Supérieure – ETS
1100 Notre-Dame Ouest,
Montréal, Québec
Canada H3C 1K3
Phone: +1 - 514 - 396-8632
Fax: +1 - 514 - 396-8684

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) i

CONTENTS 1
 Page 2
Foreword .. iii 3
0 Introduction ... iv 4

0.1 RM-ODP.. iv 5
0.2 UML... iv 6
0.3 Overview and motivation.. v 7

1 Scope.. 1 8
2 Normative references ... 1 9

2.1 Identical Recommendations | International Standards .. 1 10
2.2 OMG specifications .. 2 11

3 Definitions.. 2 12
3.1 Definitions from ODP standards ... 2 13
3.2 Definitions from the Enterprise Language .. 2 14
3.3 Definitions from the Unified Modelling Language... 2 15
3.4 Definitions from ODP standards refined or extended in this standard.. 3 16

4 Abbreviations ... 3 17
5 Conventions.. 3 18
6 Overview of modelling and system specification approach ... 4 19

6.1 Introduction... 4 20
6.2 Universes of discourse, ODP specifications and UML models... 4 21
6.3 Overview of ODP concepts (extracted from RM-ODP Part 1) ... 5 22
6.4 Overview of UML modelling concepts... 9 23
6.5 General principles for expressing and structuring ODP system specifications using UML............ 11 24
6.6 Conformance in UML specifications of ODP systems ... 11 25
6.7 Correspondences between viewpoint specifications ... 11 26

7 Enterprise Specification ... 13 27
7.1 Modelling concepts ... 13 28
7.2 UML mappings ... 17 29
7.3 Enterprise specification structure (in UML terms).. 24 30
7.4 Viewpoint correspondences for the enterprise language... 24 31

8 Information Specification... 25 32
8.1 Modelling concepts ... 25 33
8.2 UML mappings ... 27 34
8.3 Information specification structure (in UML terms) ... 30 35
8.4 Viewpoint correspondences for the information language.. 30 36

9 Computational Specification .. 31 37
9.1 Modelling concepts ... 31 38
9.2 UML mappings ... 35 39
9.3 Computational specification structure (in UML terms) .. 39 40
9.4 Viewpoint correspondences for the computational viewpoint .. 39 41

10 Engineering Specification .. 41 42
10.1 Modelling concepts ... 41 43
10.2 UML mappings ... 48 44
10.3 Engineering specification structure (in UML terms)... 51 45
10.4 Viewpoint correspondences for the engineering viewpoint specifications 52 46

11 Technology Specification... 52 47
11.1 Modelling concepts ... 52 48
11.2 UML mappings ... 53 49
11.3 Technology specification structure (in UML terms) ... 54 50
11.4 Viewpoint correspondences for the technology viewpoint ... 55 51

12 Correspondences specification ... 55 52
13 Conformance and compliance .. 55 53

Committee Draft ISO/IEC 19793:2005 (E)

ii Committee Draft ITU-T Rec. X.906 (12/2005)

13.1 Conformance... 55 1
13.2 Compliance ... 55 2

Annex A Summary of UML profiles of ODP languages using ITU-T guidelines for UML profile design 56 3
A.1 Enterprise viewpoint ... 56 4
A.2 Information viewpoint... 68 5
A.3 Computational viewpoint .. 73 6
A.4 Engineering viewpoint .. 83 7
A.5 Technology viewpoint... 95 8
A.6 Conformace profile ... 98 9
A.7 Structuring the specifications.. 99 10

Annex B An example of ODP specifications using UML... 101 11
B.1 The Templeman Library System ... 101 12
B.2 Enterprise specification in UML... 102 13
B.3 Information specification in UML .. 116 14
B.4 Computational specification in UML.. 123 15
B.5 Engineering specification in UML.. 127 16
B.6 Technology specification in UML .. 129 17

Annex C Relationship with MDA® .. 132 18
C.1 Overview of the MDA® .. 132 19
C.2 Relationship of this document with the MDA®... 133 20

Annex D Architectural Styles.. 135 21
D.1 Introduction... 135 22
D.2 Distribution Styles... 135 23

Bibliography.. 139 24
Related standards.. 139 25
Related projects and initiatives... 139 26
References .. 139 27

Index .. 141 28

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) iii

Foreword 1

This is Committee Draft version 02.00 of ITU-T Recommendation X.906 | ISO/IEC International Standard 19793: 2
Information technology — Open distributed processing — Use of UML for ODP system specifications. It is the output 3
from the May 2005 meeting of SC7 WG19 in Helsinki which continued in Bari in October 2005. 4
 5

Committee Draft ISO/IEC 19793:2005 (E)

iv Committee Draft ITU-T Rec. X.906 (12/2005)

0 Introduction 1

The rapid growth of distributed processing has led to the adoption of the Reference Model of Open Distributed 2
Processing (RM-ODP). This Reference Model provides a co-ordinating framework for the standardisation of open 3
distributed processing (ODP). It creates an architecture within which support of distribution, interworking, and 4
portability can be integrated. This architecture provides a framework for the specification of ODP systems. 5

RM-ODP is based on precise concepts derived from current distributed processing developments and, as far as possible, 6
on the use of formal description techniques for specification of the architecture. It does not recommend any notation. 7

The Unified Modelling Language (UML) was developed by the Object Management Group (OMG). It provides a 8
notation for modelling in support of information system design and is widely used throughout the IT industry as the 9
language and notation of choice. 10

This Recommendation | International Standard refines and extends the definition of how ODP systems are specified by 11
defining the use of the Unified Modelling Language for the expression of ODP system specification. 12

0.1 RM-ODP 13

The RM-ODP consists of: 14
– ITU-T Recommendation X.901 | ISO/IEC 10746-1: Overview, which contains a motivational overview of 15

ODP, giving scoping, justification and explanation of key concepts, and an outline of the ODP 16
architecture. It contains explanatory material on how the RM-ODP is to be interpreted and applied by its 17
users, who may include standards writers and architects of ODP systems. It also contains a categorisation 18
of required areas of standardisation expressed in terms of the reference points for conformance identified 19
in ITU-T Recommendation X.903 | ISO/IEC 10746-3. This part is not normative. 20

– ITU-T Recommendation X.902 | ISO/IEC 10746-2: Foundations, which contains the definition of the 21
concepts and analytical framework for normalised description of (arbitrary) distributed processing 22
systems. It introduces the principles of conformance to ODP standards and the way in which they are 23
applied. This is only to a level of detail sufficient to support ITU-T Recommendation X.903 | ISO/IEC 24
10746-3 and to establish requirements for new specification techniques. This part is normative. 25

– ITU-T Recommendation X.903 | ISO/IEC 10746-3: Architecture, which contains the specification of the 26
required characteristics that qualify distributed processing as open. These are the constraints to which 27
ODP standards shall conform. It uses the descriptive techniques from ITU-T Recommendation X.902 | 28
ISO/IEC 10746-2. This part is normative. 29

– ITU-T Recommendation X.904 | ISO/IEC 10746-4: Architectural semantics, which contains a 30
formalisation of the ODP modelling concepts defined in clauses 8 and 9 of ITU-T Recommendation 31
X.902 | ISO/IEC 10746-2. The formalisation is achieved by interpreting each concept in terms of the 32
constructs of one or more of the different standardised formal description techniques. This part is 33
normative. 34

In the same series as the RM-ODP are a number of other standards and recommendations, and, of these, the chief that 35
concerns this Recommendation | International Standard is: 36

– ITU-T Recommendation X.911 | ISO/IEC 15414: Enterprise language, which refines and extends the 37
enterprise language defined in ITU-T Recommendation X.903 | ISO/IEC 10746-3 to enable full enterprise 38
viewpoint specification of an ODP system. 39

0.2 UML 40

The Unified Modelling Language (UML) is a visual language for specifying and documenting the artefacts of systems. It 41
is a general-purpose modelling language that can be used with all major object and component methods and that can be 42
applied to all application domains (e.g., health, finance, telecom, aerospace) and implementation platforms (e.g., J2EE, 43
CORBA, .NET). UML 2.0 has been structured modularly, with the ability to select only those parts of the language that 44
are of direct interest. It is extensible, so it can be easily tailored to meet the specific user requirements. 45

UML defines twelve types of diagrams, divided in three categories: static application structure; dynamic behaviour; and 46
organization and management of the application's modules. In addition, UML incorporates powerful extensions 47
mechanisms that allow the definition of new dialects of UML to customize the language for particular platforms and 48
domains. 49

The UML specification is defined using a metamodelling approach (i.e., a metamodel is used to specify the model that 50
comprises UML). That metamodel has been architected so that the resulting family of UML languages is fully aligned 51
with the rest of the OMG specifications (e.g., MOF, OCL, XMI) and initiatives (e.g., MDA), and to allow the exchange 52
of models between tools. 53

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) v

0.3 Overview and motivation 1

ITU-T Recommendation X.903 | ISO/IEC 10746-3 defines a framework for the specification of ODP systems comprising 2
a) five viewpoints, called enterprise, information, computational, engineering and technology, which provide 3

a basis for the specification of ODP systems; 4
b) a viewpoint language for each viewpoint, defining concepts and rules for specifying ODP systems from 5

the corresponding viewpoint. 6

This Recommendation | International Standard defines: 7
– use of the viewpoints prescribed by the RM-ODP to structure UML system specifications; 8
– rules for expressing RM-ODP viewpoint languages and specifications with UML and UML extensions 9

(e.g. UML profiles). 10

It allows UML tools to be used to process viewpoint specifications, facilitating the software design process. 11

Currently there is growing interest in the use of UML for system modelling. However, there is no widely agreed 12
approach to the structuring of such specifications. This adds to the cost of adopting the use of UML for system 13
specification, hampers communication between system developers and makes it difficult to relate or merge system 14
specifications where there is a need to integrate IT systems. 15

The RM-ODP family of recommendations and international standards defines essential concepts necessary to specify 16
open distributed processing systems from five prescribed viewpoints and provides a well-developed framework for the 17
structuring of specifications for large-scale, distributed systems. 18

However, the RM-ODP family of standards is notation free, as well as model development method free. This document 19
defines a notation for the ODP system specification concepts and structuring approaches for system specification using 20
the notation, thus providing the basis for model development methods. 21

By defining how UML and UML extensions should be used to represent RM-ODP viewpoint languages and express 22
viewpoint specifications, the standard enables the ODP viewpoints and ODP architecture to provide the needed 23
framework for system specification using UML. 24

This Recommendation | International Standard contains the following annexes: 25
– Annex A: Summary of UML profiles of ODP languages using ITU-T guidelines for UML profile design 26
– Annex B: Example specifications 27
– Annex C: Relationship with MDA® 28
– Annex D: Architectural styles 29

Annexes B, C and D are not normative. 30

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 1

INTERNATIONAL STANDARD 1
ITU-T RECOMMENDATION 2

Information technology — Open distributed processing — 3
Use of UML for ODP system specifications 4

1 Scope 5

This Recommendation | International Standard defines use of the Unified Modelling Language (UML, OMG 6
documents ptc/03-12-01, UML 2.0 Infrastructure Specification, and formal/05-04-07, UML 2.0 Superstructure 7
Specification) for expressing system specifications in terms of the viewpoint specifications defined by the Reference 8
Model of Open Distributed Processing (RM-ODP, ITU-T Rec. X.901 to X.904 | ISO/IEC 10746 Parts 1 to 4) and the 9
Enterprise Language (ITU-T Rec. X.911 | ISO/IEC 15414). It covers: 10

a) the expression of a system specification in terms of RM-ODP viewpoint specifications using defined 11
UML concepts and extensions (e.g. structuring rules, technology mappings, etc.); 12

b) relationships between the resultant RM-ODP viewpoint specifications; 13
c) relationships between RM-ODP viewpoint specifications and model driven architectures such as the 14

OMG MDA. 15

This document is intended for the following audiences: 16
– ODP modellers who want to use the UML notation for expressing their ODP specifications in a 17

graphical and standard way; 18
– UML modellers who want to use the RM-ODP concepts and mechanisms to structure their UML 19

system specifications; and 20
– modelling tool suppliers, who wish to develop UML-based tools that are capable of expressing RM-21

ODP viewpoint specifications. 22

2 Normative references 23

The following Recommendations and International Standards contain provisions which, through reference in this text, 24
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions 25
indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on 26
this Recommendation | International Standard are encouraged to investigate the possibility of applying the most 27
recent edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of 28
currently valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of 29
currently valid ITU-T Recommendations. 30

2.1 Identical Recommendations | International Standards 31

– ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1996, Information technology – Open 32
Distributed Processing – Reference Model: Foundations. 33

– ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1996, Information technology – Open 34
Distributed Processing – Reference Model: Architecture. 35

– ITU-T Recommendation X.904 (1997) | ISO/IEC 10746-4:1998, Information technology – Open 36
Distributed Processing – Reference Model: Architectural semantics. 37

– ITU-T Recommendation X.911 (2002) | ISO/IEC 15414:2002, Information technology – Open 38
distributed processing – Reference model – Enterprise language. 39

– ITU-T Recommendation X.725 | ISO/IEC 10165-7, Information Technology – Open Systems 40
Interconnection – Structure of Management Information – Part 7: General Relationship Model 41

Committee Draft ISO/IEC 19793:2005 (E)

2 Committee Draft ITU-T Rec. X.906 (12/2005)

2.2 OMG specifications 1
– OMG document ptc/04-10-14, UML 2.0 Infrastructure Specification 2
– OMG document formal/05-04-07, UML 2.0 Superstructure Specification 3

3 Definitions 4

For the purposes of this Recommendation | International Standard, the following definitions apply. 5

3.1 Definitions from ODP standards 6

3.1.1 Modelling concept definitions 7

This Recommendation | International Standard makes use of the following terms as defined in ITU-T X.902 | 8
ISO/IEC 10746-2: 9

 abstraction; action; activity; architecture; atomicity; behaviour (of an object); binding; class; client 10
object; communication; composition; component object [2-5.1]; composite object; configuration (of 11
objects); conformance point; consumer object; contract; creation; data; decomposition; deletion; 12
distributed processing; distribution transparency; <X> domain; entity; environment; environment 13
contract; epoch; error; establishing behaviour; failure; fault; <X> group; identifier; information; 14
initiating object; instance; instantiation (of an <X> template); internal action; interaction; interchange 15
reference point; interface; interface signature; interworking reference point; introduction; 16
invariant;location in space; location in time; name; naming context; naming domain; notification; 17
object; obligation; ODP standards; ODP system; open distributed processing; perceptual reference 18
point; permission; persistence; producer object; programmatic reference point; prohibition; 19
proposition; quality of service; reference point; refinement; role; server object; spawn action; stability; 20
state (of an object); subdomain; subtype; supertype; system; <X> template; term; terminating 21
behaviour; trading; type (of an <X>); viewpoint (on a system). 22

3.1.2 Viewpoint language definitions 23

This Recommendation | International Standard makes use of the following terms as defined in ITU-T X.903 | 24
ISO/IEC 10746-3: 25

 binder; capsule; channel; cluster; community; computational behaviour; computational binding object; 26
computational object; computational interface; computational viewpoint; dynamic schema; 27
engineering viewpoint; enterprise object; enterprise viewpoint; <X> federation; information object; 28
information viewpoint; interceptor; invariant schema; node; nucleus; operation; protocol object; static 29
schema; stream; stub; technology viewpoint; <viewpoint> language. 30

3.2 Definitions from the Enterprise Language 31

This Recommendation | International Standard makes use of the following terms as defined in ITU-T X.911 | 32
ISO/IEC 15414: 33

 actor (with respect to an action); agent; artefact (with respect to an action); authorization; commitment; 34
community object; declaration; delegation; evaluation; field of application (of a specification); 35
interface role; objective (of an <X>); party; policy; prescription; principal; process; resource (with 36
respect to an action); scope (of a system); step; violation. 37

3.3 Definitions from the Unified Modelling Language 38

This Recommendation | International Standard makes use of the following terms as defined in OMG documents 39
ptc/03-12-01 and formal/05-04-07: 40

 abstract class; action; activity; activity diagram; aggregate; aggregation; association; association class; 41
association end; attribute; behaviour; behaviour diagram; binary association; binding ; cardinality; call; 42
class; classifier; classification; class diagram; client; collaboration; collaboration occurrence; 43
communication diagram; component; component diagram; composite; composite structure diagram; 44
composition; concrete class; connector; constraint; container; context; delegation; dependency; 45
deployment diagram; derived element; diagram; distribution unit; dynamic classification; element; 46
entry action; enumeration; event; exception; execution occurrence; exit action; export; expression; 47

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 3

extend; extension; feature; final state; fire; generalizable element; generalization; guard condition; 1
implementation; implementation class; implementation inheritance; import; include; inheritance; initial 2
state; instance; interaction; interaction diagram; interaction overview diagram; interface; internal 3
transition; lifeline; link; link end; message; metaclass; metamodel; method; model element; multiple 4
classification; multiplicity; n-ary association; name; namespace; node; note; object; object diagram; 5
object flow state; object lifeline; operation; package; parameter; parameterized element; parent; part; 6
partition; pattern; persistent object; pin; port; postcondition; precondition; primitive type; profile; 7
property; pseudo-state; realization; receive [a message]; receiver; reception; refinement; relationship; 8
role; scenario; send [a message]; sender; sequence diagram; signal; signature; slot; state; state machine 9
diagram; state machine; static classification; stereotype; stimulus; structural feature; structure diagram; 10
subactivity state; subclass; submachine state; substate; subpackage; subsystem; subtype; superclass; 11
supertype; supplier; synch state; tagged value; time event; time expression; timing diagram; trace; 12
transient object; transition; type; usage; use case; use case diagram; value; vertex; visibility. 13

3.4 Definitions from ODP standards refined or extended in this standard 14

This Recommendation | International Standard refines or extends the following terms from ITU-T X.902 | ISO/IEC 15
10746-2, ITU-T X.903 | ISO/IEC 10746-3, or ITU-T X.911 | ISO/IEC 15414: 16

Temporary Note – This clause will be deleted or completed when Clauses 7 to 11 are finalised. 17

4 Abbreviations 18

For the purposes of this Recommendation | International Standard, the following abbreviations apply. 19
MDA® Model Driven Architecture 20
ODP Open Distributed Processing 21
RM-ODP Reference Model of Open Distributed Processing 22
UML Unified Modelling Language 23

5 Conventions 24

In the following, this Recommendation | International Standard will be referred to as “this document”. 25

ITU-T Recommendation X.902 | ISO/IEC 10746-2 (RM-ODP Part 2: Foundations) and ITU-T Recommendation 26
X.903 | ISO/IEC 10746-3 (RM-ODP Part 3: Architecture) are referred to as “Part 2” and “Part 3” of the RM-ODP, 27
respectively. 28

ITU-T Recommendation X.911 | ISO/IEC 15414 (RM-ODP Enterprise Language) are referred to as “the Enterprise 29
Language”. 30

OMG document formal/05-04-07 is referred as “the UML standard” 31

References to the normative text of this document, to the text of Parts 2 and 3 of the RM-ODP, and to the Enterprise 32
Language are expressed in one of these forms: 33

[Part 2 – n.n] – a reference to clause n.n of RM-ODP Part 2; 34
[Part 3 – n.n] – a reference to clause n.n of RM-ODP Part 3; 35
[E/L – n.n] – a reference to clause n.n of the Enterprise Language; 36
[UML – n.n] – a reference to clause n.n of the UML standard; 37
[n.n] – a reference to clause n.n of this document. 38

For example, [Part 2 – 9.4] is a reference to subclause 9.4 of Part 2 of the RM-ODP; and [6.5] is a reference to clause 39
6.5 of this document. These references are for the convenience of the reader. 40

NOTE – The clauses correspond to the specific dated versions of the documents referenced in Clause 2. 41

In the clauses that follow, except in the headings, terms in italic face are terms of the RM-ODP viewpoint languages 42
as defined in Parts 2 and 3 of the RM-ODP, or in the Enterprise Language. UML concepts are shown in sans-serif 43
typeface. UML stereotype names are shown in normal font, enclosed in guillemets (« and »). 44

The following conventions will apply to the UML diagrams: 45

Committee Draft ISO/IEC 19793:2005 (E)

4 Committee Draft ITU-T Rec. X.906 (12/2005)

– Association end names will be placed at the end of the association that is adjacent to the class playing 1
the role. Association end names are omitted if they do not add meaning to the diagram. In this case, the 2
implied association end name is the name of the class at that end of the association. 3

– Cardinalities of associations are placed adjacent to the class that has the cardinality. 4
– Where there are no attributes, the attribute part of the class box is suppressed. 5
– Black diamonds are used to represent whole/part associations, with no cardinality or role name at the 6

whole end of the association, and no role name at the part end of the association. The meaning is that 7
the part cannot exist without exactly one instance of the whole. 8

– The use of UML aggregation associations (i.e., those that use white diamonds) is discouraged in the 9
diagrams. 10

– Nouns are used in association end names, rather than verbs. 11
– Class names representing ODP concepts start with upper case. 12
– Arrowheads accompanying association names are avoided. 13

6 Overview of modelling and system specification approach 14

6.1 Introduction 15

This clause provides an introduction to this document, covering: 16
– an overview of ODP system specification concepts; 17
– an overview of UML modelling concepts; 18
– an introduction to the approach taken in expressing ODP system specifications using UML; 19
– an overview of the structuring principles for system specifications defined in the document; 20
– an explanation of the concept of correspondences (relationships) between viewpoint specifications and 21

how these are expressed using UML. 22

6.2 Universes of discourse, ODP specifications and UML models 23

In using the techniques described in this document, it is necessary to understand the relationships between the subject 24
of a model, i.e., its Universe of Discourse (UOD), ODP specifications for that UOD and how those ODP 25
specifications are represented in UML. 26

The four main sets of notions involved in understanding these relationships are: 27
– the entities, and the relationships amongst them, in the UOD being modelled; 28
– the ODP specification(s) of that UOD; 29
– the UML model(s) that represent the ODP specifications; 30
– the UML notation (diagramming techniques and other mechanisms) by means of which the UML 31

models are expressed. 32

There are three important kinds of relationship between these notions. 33
– First, in the same way that an ODP object is defined as a model of an entity (a concrete or abstract 34

thing of interest), an ODP specification is a model of a UOD. The modeller uses the concepts and 35
structuring rules of RM-ODP Part 2, together with those of the relevant ODP viewpoint language(s) 36
(RM-ODP Part 3 and the Enterprise Language), to produce a specification that represents relevant facts 37
and assertions about the entities that exist in the UOD. The rules for this kind of relationship are stated 38
in Parts 2 and 3 of the RM-ODP, and in the Enterprise Language. 39

– Secondly, instances of ODP viewpoint language concepts in the ODP specifications are represented by 40
instances of one or more UML metaclasses that, through the relevant profile (set of stereotypes, tag 41
definitions and constraints), map to and from the ODP concepts, to produce a UML model of the ODP 42
specification. The rules for this kind of relationship are stated in this document. 43

– Thirdly, the UML notation is used to express graphically the underlying UML model. The rules for 44
this kind of relationship are stated in the UML specification. 45

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 5

This document addresses the three simple relationships described above. While there are other derived relationships 1
between elements in this chain (e.g., between UOD and UML model), they are not otherwise referred to in this 2
document. These relationships are illustrated in Figure 1. 3

Universe

of Discourse
(UOD)

ODP
specification

UML
model

Notation suitable
for representing a

UML model

models
(see RM-ODP)

maps to

(descried here)

expresses
(see UML spec)

 4

Figure 1 – Relationships between UOD, ODP specifications, and UML models 5

6.3 Overview of ODP concepts (extracted from RM-ODP Part 1) 6

An overview of the ODP modelling concepts and the structuring rules for their use is given in RM-ODP Part 1 7
(ITU-T Rec. X.901 | ISO/IEC 10746-1: Overview) and the concepts and structuring rules are formally defined in RM-8
ODP Parts 2 and 3. The text that follows (i.e. the rest of [6.3]), is abstracted from the text in RM-ODP Part 1. RM-9
ODP Parts 2 and 3 are the authoritative standards, and should be followed in case of any conflict between those Parts 10
and this clause. 11

The framework for system specification provided by the RM-ODP has four fundamental elements: 12
– an object modelling approach to system specification; 13
– the specification of a system in terms of separate but interrelated viewpoint specifications; 14
– the definition of a system infrastructure providing distribution transparencies for system applications; 15
– a framework for assessing system conformance. 16

6.3.1 Object Modelling 17

Object modelling provides a formalization of well-established design practices of abstraction and encapsulation. 18
– Abstraction allows the description of system functionality to be separated from details of system 19

implementation. 20
– Encapsulation allows the hiding of heterogeneity, the localization of failure, the implementation of 21

security and the hiding of the mechanisms of service provision from the service user. 22

The object modelling concepts cover: 23
– basic modelling concepts: providing rigorous definitions of a minimum set of concepts (action, object, 24

interaction and interface) that form the basis for ODP system descriptions and are applicable in all 25
viewpoints; 26

– specification concepts: addressing notions such as type and class that are necessary for reasoning about 27
specifications and the relations between specifications, providing general tools for design, and 28
establishing requirements on specification languages; 29

Committee Draft ISO/IEC 19793:2005 (E)

6 Committee Draft ITU-T Rec. X.906 (12/2005)

– structuring concepts: building on the basic modelling concepts and the specification concepts to 1
address recurrent structures in distributed systems, and covering such concerns as policy, naming, 2
behaviour, dependability and communication. 3

6.3.2 Viewpoint specifications 4

A viewpoint (on a system) is an abstraction that yields a specification of the whole system related to a particular set of 5
concerns. Five viewpoints have been chosen to be both simple and complete, covering all the domains of architectural 6
design. These five viewpoints are: 7

– the enterprise viewpoint, which is concerned with the purpose, scope and policies governing the 8
activities of the specified system within the organization of which it is a part; 9

– the information viewpoint, which is concerned with the kinds of information handled by the system 10
and constraints on the use and interpretation of that information; 11

– the computational viewpoint, which is concerned with the functional decomposition of the system into 12
a set of objects that interact at interfaces – enabling system distribution; 13

– the engineering viewpoint, which is concerned with the infrastructure required to support system 14
distribution; 15

– the technology viewpoint, which is concerned with the choice of technology to support system 16
distribution. 17

EnterpriseEnterprise
Business Aspects

The purpose, scope and policies for the
organization that will own the system

What for? why? who? when?

ComputationalComputational
Application Design Aspects

Functional decomposition of the system
into objects suitable for distribution

How does each bit work?

EngineeringEngineering
Solution Types & Distribution

Infrastructure required to support distribution
How do the bits work together?

TechnologyTechnology
Implementation

System hardware & software
and actual distribution

With what?

ODP
System

Information System Aspects
Information handled by the system and
constraints on the use and interpretation

of that information
What is it about?

InformationInformation

 18

Figure 2 – RM-ODP viewpoints 19

For each viewpoint there is an associated viewpoint language which can be used to express a specification of the 20
system from that viewpoint. The object modelling concepts give a common basis for the viewpoint languages and 21
make it possible to identify relationships between the different viewpoint specifications and to assert correspondences 22
between the representations of the system in different viewpoints (see [6.7]). 23

NOTE – Although the different viewpoints can be independently defined and there is no explicit order imposed by the RM-24
ODP for specifying them, a common practice is to start by developing the enterprise specification of the system, and then 25
prepare the information and computational specifications. These two specifications may have constraints over each other. An 26
iterative specification process is quite common too, whereby each viewpoint specification may be revised and refined as the 27
other two are developed. Correspondences between the elements of these three viewpoints are defined during this process. 28
After that, the engineering specification of the system is prepared, based on the computational specification. Correspondences 29
between the elements of these viewpoints are then defined together with the newly specified elements. Finally, the technology 30

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 7

specification is produced based on the engineering specification. Again, some refinements may be performed on the rest of the 1
viewpoint specifications, due to the new requirements and constraints imposed by the particular selection of technology. 2

6.3.3 Distribution transparency 3

Distribution transparencies enable complexities associated with system distribution to be hidden from applications 4
where they are irrelevant to their purpose. For example: 5

– access transparency masks differences of data representation and invocation mechanisms for services 6
between systems; 7

– location transparency masks the need for an application to have information about location in order to 8
invoke a service; 9

– relocation transparency masks the relocation of a service from applications using it; 10
– replication transparency masks the fact that multiple copies of a service may be provided in order to 11

provide reliability and availability. 12

ODP standards define functions and structures to realize distribution transparencies. However, there are performance 13
and cost tradeoffs associated with each transparency and only selected transparencies will be relevant in many cases. 14
Thus, a conforming ODP system shall implement those transparencies that it supports in accordance with the relevant 15
standards, but it is not required to support all transparencies. 16

6.3.4 Conformance 17

The basic characteristics of heterogeneity and evolution imply that different parts of a distributed system can be 18
purchased separately, from different vendors. It is therefore very important that the behaviours of the different parts 19
of a system are clearly defined, and that it is possible to assign responsibility for any failure to meet the system's 20
specifications. 21

The framework defined to govern the assessment of conformance addresses these issues. RM-ODP Part 2 defines four 22
classes of reference points: programmatic reference point, perceptual reference point, interworking reference point, 23
and interchange reference point. The reference points in those classes are the candidate for conformance points. Part 2 24
covers: 25

– identification of the reference points within an architecture that provide candidate conformance points 26
within a specification of testable components; 27

– identification of the conformance points within the set of viewpoint specifications at which 28
observations of conformance can be made; 29

– definition of classes of conformance point; 30
– specification of the nature of conformance statements to be made in each viewpoint and the relation 31

between them. 32

6.3.5 Enterprise language 33

The enterprise language provides the modelling concepts necessary to represent an ODP system in the context of the 34
business or organisation in which it operates. An enterprise specification defines the purpose, scope, and policies of 35
an ODP system and it provides the basis for checking conformance of system implementations. The purpose of the 36
system is defined by the specified behaviour of the system while policies capture further restrictions of the behaviour 37
between the system and its environment, or within the system itself related to the business decisions of the system 38
owners. 39

NOTE – An enterprise specification of a system may therefore be thought of as a statement of the “requirements” for the 40
system. However, it must be emphasised that it is not fundamentally different from any other element of the specification for 41
the system. 42

In an enterprise specification the system is represented by one or more enterprise objects within the communities of 43
enterprise objects that represent its environment, and by the roles in which these objects are involved. These roles 44
represent, for example, the users, owners and providers of information processed by the system. 45

6.3.6 Information language 46

The individual components of a distributed system should share a common understanding of the information they 47
communicate when they interact, or the system will not behave as expected. Some of these items of information are 48
handled, in one way or another, by many of the objects in the system. To ensure that the interpretation of these items 49
is consistent, the information language defines concepts for the specification of the meaning of information stored 50

Committee Draft ISO/IEC 19793:2005 (E)

8 Committee Draft ITU-T Rec. X.906 (12/2005)

within, and manipulated by, an ODP system, independently of the way the information processing functions 1
themselves are to be implemented. 2

Information held by the ODP system about entities in the real world, including the ODP system itself is represented in 3
an information specification in terms of information objects, and their relationships and behaviour. Basic information 4
elements are represented by atomic information objects. More complex information is represented as composite 5
information objects each expressing relationships over a set of constituent information objects. 6

Just as in familiar data modelling, the information specification comprises a set of related schemata, namely, the 7
invariant, static and dynamic schemata: 8

– An invariant schema expresses relationships between information objects which must always be true, 9
for all valid behaviour of the system. 10

– A static schema expresses assertions which must be true at a single point in time. A common use of 11
static schemata is to specify the initial state of an information object. 12

– A dynamic schema specifies how the information can evolve as the system operates. 13

6.3.7 Computational language 14

The computational viewpoint is directly concerned with the distribution of processing but not with the interaction 15
mechanisms that enable distribution to occur. The computational specification decomposes the system into objects 16
performing individual functions and interacting at well-defined interfaces. It thus provides the basis for decisions on 17
how to distribute the jobs to be done, because objects can be located independently assuming communications 18
mechanisms can be defined in the engineering specification to support the behaviour at the interfaces to those objects. 19

The heart of the computational language is the computational object model which constrains the computational 20
specification by defining: 21

– the form of interface an object can have; 22
– the way that interfaces can be bound and the forms of interaction that can take place at them; 23
– the actions an object can perform, in particular the creation of new objects and interfaces, and the 24

establishment of bindings. 25

The computational object model provides the basis for ensuring consistency between different engineering and 26
technology specifications (including programming languages and communication mechanisms) since they must be 27
consistent with the same computational object model. This consistency allows open interworking and portability of 28
components in the resulting implementation. 29

The computational language enables the specifier to express constraints on the distribution of an application (in terms 30
of environment contracts associated with individual interfaces and interface bindings of computational objects) 31
without specifying the actual degree of distribution in the computational specification — which is specified in the 32
engineering and technology specifications. This ensures that the computational specification of an application is not 33
based on any unstated assumptions affecting the distribution of engineering and technology objects. Because of this, 34
the configuration and degree of distribution of the hardware on which ODP applications are run can easily be altered, 35
subject to the stated environment constraints, without having a major impact on the application software. 36

6.3.8 Engineering language 37

The engineering language focuses on the way object interaction is achieved and on the resources needed to do so. It 38
defines concepts for describing the infrastructure required to support selective distribution transparent interactions 39
between objects, and rules for structuring communication channels between objects and for structuring systems for 40
the purposes of resource management. These rules can be expressed as engineering templates (for example 41
engineering channel template). 42

Thus the computational viewpoint is concerned with when and why objects interact, while the engineering viewpoint 43
is concerned with how they interact. In the engineering language, the main concern is the support of interactions 44
between computational objects. As a consequence, there are very direct links between the viewpoint descriptions: 45
computational objects are visible in the engineering viewpoint as basic engineering objects and computational 46
bindings, whether implicit or explicit, are visible as either channels or local bindings. 47

The concepts and rules are sufficient to enable specification of internal interfaces within the infrastructure, enabling 48
the definition of distinct conformance points for different transparencies, and the possibility of standardization of a 49
generic infrastructure into which standardized transparency modules can be placed. 50

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 9

NOTE – The engineering language assumes a virtual machine that corresponds to a computing environment offering minimal 1
support for distribution (e.g. a set of computing systems with stand-alone OS facilities plus communication facilities). In 2
practice, the functionality available from current vendor technology, for example when it offers a CORBA or J2EE 3
environment, already provides significant elements of the functionality to be covered by the engineering specification. 4
Thus, the engineering specification is interpreted in this document as defining the mechanisms and functions required to 5
support distributed interaction between objects in an ODP system, making use of the supporting functionality provided by the 6
specific vendor technology defined by the technology specification. 7

6.3.9 Technology language 8

The technology specification describes the implementation of the ODP system in terms of a configuration of 9
technology objects representing the hardware and software components of the implementation. It is constrained by 10
cost and availability of technology objects (hardware and software products) that would satisfy this specification. 11
These may conform to implementable standards which are effectively templates for technology objects. Thus, the 12
technology viewpoint provides a link between the set of viewpoint specifications and the real implementation, by 13
listing the standards used to provide the necessary basic operations in the other viewpoint specifications, and the aim 14
of the technology specification is to provide the extra information needed for implementation and testing by selecting 15
standard solutions for basic components and communication mechanisms. Such a selection is necessary to complete 16
the system specification, but is largely divorced from the rest of the design process. 17

6.4 Overview of UML modelling concepts 18

The Unified Modelling Language (UML) is a visual language for specifying, constructing and documenting the 19
artefacts of systems. It is a general-purpose modelling language that can be used with all major object and component 20
methods and that can be applied to all application domains (e.g., health, finance, telecom, aerospace) and 21
implementation platforms (e.g., J2EE, CORBA, .NET). However, not all of UML modelling capabilities are 22
necessarily useful in all domains or applications. Therefore, UML 2.0 has been structured modularly, with the ability 23
to select only those parts of the language that are of direct interest, and extensible, so it can be easily customized. 24

UML 2.0 defines twelve types of diagrams, divided in three categories that represent, respectively: the static 25
application structure; different aspects of dynamic behaviour; and three ways for organizing and managing the 26
application modules. In addition, UML 2.0 incorporates powerful extension mechanisms that allow the definition of 27
new dialects of UML to customize the language for particular platforms and domains. 28

6.4.1 Structural models 29

Structural models specify the structure of objects in a model. They are represented in: 30
– class diagrams, which show a collection of declarative (static) model elements, such as classes, types, 31

and their contents; 32
– object diagrams, which encompass objects and their relationships at a point in time. An object diagram 33

may be considered a special case of a class diagram or a communication diagram; 34
– component diagrams, which show the organizations and dependencies among components; 35
– deployment diagrams, which represent the execution architecture of systems. They represent system 36

artifacts as nodes, which are connected through communication paths to create network systems of 37
arbitrary complexity. Nodes are typically defined in a nested manner, and represent either hardware 38
devices or software execution environments; 39

– composite structure diagrams, which depict the internal structure of a classifier, including the 40
interaction points of the classifier to other parts of the system. They show the configuration of parts 41
that jointly perform the behaviour of the containing classifier. 42

– package diagrams, which depict how model elements are organized into packages and the 43
dependencies among them, including package imports and package extensions. 44

6.4.2 Behavioural models 45

Behavioural models specify the behaviour of objects in a model. They are represented by: 46
– use case diagrams, each of which illustrates the relationships among actors and the system, and use 47

cases; 48
– statechart diagrams, which depict discrete behaviour modelled through finite state-transition systems. 49

In particular, a state machine diagram specifies the sequences of states that an object or an interaction 50
goes through during its life in response to events, together with its responses and actions; 51

Committee Draft ISO/IEC 19793:2005 (E)

10 Committee Draft ITU-T Rec. X.906 (12/2005)

– activity diagrams, which depict behaviour using a control and data-flow model; 1
– interaction diagrams, which emphasize object interactions, can be one of the following: 2

– collaboration diagrams, each of which represents a configuration of objects interacting for a given 3
set of purposes; 4

– sequence diagrams, that depict interactions by focusing on the sequence of messages that are 5
exchanged, along with their corresponding event occurrences on the lifelines. Unlike a 6
communication diagram, a sequence diagram includes time sequences but does not include object 7
relationships. A sequence diagram can exist in a generic form (describes all possible scenarios) 8
and in an instance form (describes one actual scenario). Sequence diagrams and communication 9
diagrams express similar information, but show it in different ways; 10

– communication diagrams, which focus on the interaction between lifelines where the architecture 11
of the internal structure and how this corresponds with the message passing is central. The 12
sequencing of messages is given through a sequence numberering scheme. Sequence diagrams 13
and communication diagrams express similar information, but shown it in different ways. 14

– interaction overview diagrams, which represent interactions through a variant of activity diagrams 15
in a way that promotes overview of the control flow, and where each node can be an interaction 16
diagram; 17

– timing diagrams, which show the change in state or condition of a lifeline (representing a 18
classifier instance or classifier role) over linear time. The most common usage is to show the 19
change in state of an object over time in response to accepted events or stimuli. 20

6.4.3 Model management 21

Model management concerns the structuring of a model in terms of the groupings of model elements that comprise it. 22
There are four grouping elements: 23

– Models, which are used to capture different views of a physical system; 24
– Packages, which are used within a model to group model elements; 25
– Subsystems, which represents behavioural units in the physical system being modelled; 26
– Profiles, which are packages grouping UML extensions. 27

6.4.4 Extension mechanisms 28

UML 2.0 provides a rich set of modelling concepts and notations that have been carefully designed to meet the needs 29
of typical software modelling projects. However, users may sometimes require additional features beyond those 30
defined in the UML standard. 31

UML 2.0 can be extended in two ways. First, a new dialect of UML can be defined by using Profiles to customize the 32
language for particular platforms (e.g., J2EE/EJB, .NET/COM+) and domains (e.g., finance, telecommunications, 33
aerospace). Alternatively, a new language related to UML can be specified by reusing part of the UML 2.0 34
InfrastructureLibrary package and augmenting with appropriate metaclasses and metarelationships. The former case 35
defines a new dialect of UML, while the latter case defines a new member of the UML family of languages. 36

A Profile is a kind of Package that extends a reference metamodel. The primary extension construct is the Stereotype, 37
which defines how an existing metaclass may be extended, and enables the use of platform or domain specific 38
terminology or notation in place of or in addition to the ones used for the extended metaclass. Just like a class, a 39
stereotype may have properties, which are referred to as tag definitions. When a stereotype is applied to a model 40
element, the values of the properties are referred to as tagged values. 41

Constraints are frequently defined in a profile, and typically define well-formedness rules that are more constraining 42
(but consistent with) those specified by the reference metamodel. The constraints that are part of the profile are 43
evaluated when the profile has been applied to a package, and need to be satisfied in order for the model to be well 44
formed. 45

NOTE – In this document, stereotypes are used to represent domain specific specializations of UML 2.0 metaclasses in order 46
to represent the semantics of the RM-ODP viewpoint language concerned. 47

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 11

6.5 General principles for expressing and structuring ODP system specifications using UML 1

This clause defines the structuring style for ODP system specifications, expressed using the UML profiles defined in 2
Clauses 7 to 11 of this document. ODP system specifications that are in compliance with this document will use this 3
structuring style. 4

The ODP system specification will consist of a single UML model stereotyped as «ODP_SystemSpec», that contains 5
a set of UML models, one for each viewpoint specification, each stereotyped as «<X>_Spec», where <X> is the 6
viewpoint concerned. 7

Each viewpoint model will be expressed in the corresponding viewpoint language, using the appropriate UML profile 8
for that language, as described in Clauses 7 to 11 of this document. 9

In general, using the UML to represent a given viewpoint specification (which will consist of a coherent set of 10
instances of the concepts described in each viewpoint language) requires that: 11

– suitable mappings be identified from each of the viewpoint language concepts to one or more 12
appropriate UML sub-typed metaclasses (expressed by the use of stereotypes), and that 13

– the relationships (meta-associations) between the viewpoint language concepts (e.g. “a community has 14
exactly one objective”, in the enterprise language) be similarly represented, preferably by meta-15
associations between the corresponding UML metaclasses (e.g. “Class may be associated with 16
Class”) or, failing that, by use of specific additional UML model elements. 17

This must be done in a way that is consistent with the semantics implicit in the UML metamodel. 18

In addition, a set of traces between elements from different UML models will specify the correspondences between 19
the corresponding ODP modelling elements (see [6.7]). 20

Temporary Note – This way of representing correspondences might change as the result of the NB contributions for Clause 12. 21

6.6 Conformance in UML specifications of ODP systems 22

Conformance relates an implementation to a specification. Any proposition that is true in the specification must be 23
true in its implementation. A conformance statement is a statement that identifies conformance points of a 24
specification and the behaviour which must be satisfied at these points. Conformance statements will only occur in 25
specifications which are intended to constrain some feature of a real implementation, so that there exists, in principle, 26
the possibility of testing. 27

The RM-ODP identifies certain reference points in the architecture as potentially declarable as conformance points in 28
specifications. That is, as points at which conformance may be tested and which will, therefore, need to be accessible 29
for test. However, the requirement that a particular reference point be considered a conformance point must be stated 30
explicitly in the conformance statement of the specification concerned, together with the conformance criteria that 31
should be satisfied at this point. 32

Reference points will be identified in the UML specification by the use of the stereotype «ODP_ReferencePoint» 33
(which extends UML 2.0 metaclass element) on the model elements that map to the corresponding reference points. 34
Conformance statements will be mapped to UML comments stereotyped «ODP_ConformanceStatement», attached to 35
the UML model elements (stereotyped «ODP_ReferencePoint») that map to the corresponding reference points. 36
These comments will describe the conformance criteria that should be satisfied at the reference point. Therefore, 37
conformance criteria are those model elements stereotyped «ODP_ReferencePoint», which have also attached a 38
«ODP_ConformanceStatement» comment. It is possible to attach multiple «ODP_ConformanceStatement» comments 39
to one model element stereotyped «ODP_ReferencePoint», thus declaring several conformance criteria at the same 40
reference point. 41

6.7 Correspondences between viewpoint specifications 42

6.7.1 ODP Correspondences 43

The correspondences between viewpoint specifications are defined in Part 3 of the RM-ODP and in the Enterprise 44
Language. The text that follows in this clause is abstracted from these standards, which remain the authoritative 45
standards, and should be followed in case of conflicts between this document and those standards. 46

A set of specifications of an ODP system written in different viewpoint languages should not make mutually 47
contradictory statements i.e., they should be mutually consistent. Thus, a complete specification of a system includes 48

Committee Draft ISO/IEC 19793:2005 (E)

12 Committee Draft ITU-T Rec. X.906 (12/2005)

statements of correspondences between terms and language constructs relating one viewpoint specification to another 1
viewpoint specification, showing that the consistency requirement is met. 2

The key to consistency is the idea of correspondences between different viewpoint specifications, i.e., a statement that 3
some terms or structures in one specification correspond to other terms and specifications in a second specification. 4
The underlying rationale in identifying correspondences between different viewpoint specifications of the same ODP 5
system is that there are some entities that are represented in one viewpoint specification, which are also represented in 6
another viewpoint specification. The requirement for consistency between viewpoint specifications is driven by, and 7
only by, the fact that what is specified in one viewpoint specification about an entity needs to be consistent with what 8
is said about the same entity in any other viewpoint specification. This includes the consistency of that entity's 9
properties, structure and behaviour. 10

The specifications produced in different ODP viewpoints are each complete statements in their respective languages, 11
with their own locally significant names, and so cannot be related without additional information in the form of 12
correspondence statements that make clear how constraints from different viewpoints apply to particular elements of 13
a single system to determine its overall behaviour. The correspondence statements are statements that relate the 14
various different viewpoint specifications, but do not form part of any one of the five basic viewpoints. The 15
correspondences can be established in two ways: 16

– by declaring correspondences between terms in two different viewpoint languages, stating how their 17
meanings relate. This implies that the two languages are expressed in such a way that they have a 18
common, or at least a related, set of foundation concepts and structuring rules. Such correspondences 19
between languages necessarily imply and entail correspondences relating to all things of interest which 20
the languages are used to model (e.g. things modelled by objects or actions); 21

– by considering the extension of terms in each language, and asserting that particular entities being 22
modelled in the two specifications are in fact the same entity. This relates the specifications by 23
identifying which observations need to be interpretable in both specifications. 24

The correspondence statements to be provided in a system specification are specified in Part 3 and in the Enterprise 25
Language of the RM-ODP, and in Clauses 7 to 11 of this document. They fall into two categories: 26

– Some correspondences are required in all ODP specifications; these are called required 27
correspondences. If the correspondence is not valid in all instances in which the concepts related 28
occur, the specification simply is not a valid ODP specification. 29

– In other cases, there is a requirement that the specifier provides a list of items in two specifications that 30
correspond, but the content of this list is the result of a design choice; these are called required 31
correspondence statements. 32

Enterprise

Information Computational Engineering Technology 33

Figure 3 – Correspondences between RM-ODP viewpoints 34

NOTE – Correspondences between viewpoint specifications are illustrated in Figure 3. In RM-ODP Part 3, the following 35
correspondences are specified. 36

– Between computational and information ([Part 3 – 10.1]) 37
– Between engineering and computational ([Part 3 – 10.2]) 38

In the Enterprise Language standard, the following correspondences are specified. 39
– Between enterprise and information ([E/L – 11.2]) 40
– Between enterprise and computational ([E/L – 11.3]) 41
– Between enterprise and engineering ([E/L – 11.4]) 42

Note as well that the RM-ODP is silent about the correspondences between the engineering and technology viewpoint 43
specifications. 44

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 13

6.7.2 Expressing ODP correspondences in UML 1

For checking the consistency between specifications, UML traces can be used to show the correspondences of UML 2
elements of different viewpoint specifications, so that the ODP consistency rules can be checked. Thus, the 3
application of specifications from the enterprise viewpoint to another (for example, between enterprise objects and 4
information objects, or between enterprise policies and the information schemata) will be expressed as UML traces 5
between the corresponding UML model elements. The interactions at these conformance points can then be 6
interpreted in enterprise language terms to check that they are consistent with the community contract and the policies 7
defined for the system. 8

Temporary Note – The contents of this clause may change as the result of the NB contributions requested for Clause 12. 9

7 Enterprise Specification 10

7.1 Modelling concepts 11

The modelling concepts used in an enterprise specification are defined, together with the structuring rules for their 12
use, in Clause 6 of Part 3 of RM-ODP, and in the Enterprise Language. The explanations of the concepts in the text 13
that follows are not normative, and in case of conflict between these explanations and the text in Part 3 or the 14
Enterprise Language, the latter documents should be followed. 15

7.1.1 System concepts 16

An enterprise specification describes an ODP system (a kind of enterprise object) and relevant aspects of its 17
environment. The ODP System has a scope, which defines the behaviour that the system is expected to exhibit. An 18
enterprise specification has a field of application which describes its usability properties. 19

7.1.2 Community concepts 20

A community is a configuration of enterprise objects, formed to meet a single objective, which is expressed in a 21
contract. Any objective may be refined into a set of (sub-)objectives. 22

A contract specifies the required behaviour of the community, and may specify policies that govern its structure or 23
behaviour (see 7.1.3). 24

Each enterprise object models some entity (abstract or concrete thing of interest) in the Universe of Discourse. A 25
particular kind of enterprise object is a community object, which represents, as a single object, an entity that is 26
elsewhere in the model refined as a community. 27

The configuration of a community is expressed in the way enterprise objects interact in fulfilling roles, which are 28
names standing for behaviours intended to meet the objective of the community concerned. 29

A behaviour is expressed as a collection of actions (things that happen), with constraints on when they occur. An 30
enterprise object may be involved in (play roles in) an action in one or more of three ways: 31

– if it participates in the action it is an actor with respect to that action; 32
– if it is referenced (i.e. mentioned) in the action, it is an artefact with respect to that action; 33
– if it is essential to the (performance of) that action, and requires allocation or may become unavailable, 34

it is a resource with respect to that action. 35

A role is an identifier for a behaviour of an enterprise object as can be observed from its interactions with its 36
environment and the relationships between them. This implies that the behaviour of an object has to be viewed in the 37
context of the corresponding behaviour of the objects with which it interacts. 38

Communities may be open or closed; that is they may or may not interact with their environment. Where a role that is 39
in (i.e. is part of the configuration of) a community identifies behaviour that takes place with the participation of one 40
or more objects that are not in that community, it is an interface role. 41

The expression of behaviour may be structured into one or more processes, each of which is a graph of steps taking 42
place in a prescribed manner and leading to the fulfilment of an objective. In this approach, a step is an abstraction of 43
an action in which the enterprise objects that participate in that action may be unspecified. 44

Committee Draft ISO/IEC 19793:2005 (E)

14 Committee Draft ITU-T Rec. X.906 (12/2005)

7.1.3 Policy concepts 1

A policy is a set of rules related to a particular purpose. It identifies the specification of behaviour, or constraints on 2
behaviour, that can be changed during the lifetime of the ODP system, or that can be changed to tailor a single 3
specification to apply to a range of different ODP systems. 4

The specification of a policy includes: 5
– the name of the policy; 6
– the rules, expressed as obligations, permissions, prohibitions and authorizations; 7
– the elements of the enterprise specification affected by the policy; 8
– behaviour for changing the policy. 9

The policies of a community are specified in its contract. 10

Where there is a requirement to model dynamic policy setting, a policy can be changed by a behaviour. 11

A policy may also constrain the structure (configuration) of a community, by governing the assignment of roles to 12
enterprise objects. Such a policy is called an assignment policy. 13

A violation is a behaviour contrary to a rule, i.e. contrary to some element in a policy. 14

A policy may be about Quality of Service (QoS) and other extra-functional requirements such as security, robustness, 15
scalability, etc. 16

A policy is defined in Part 2 of RM-ODP as a “set of rules related to a particular purpose”, and this concept is refined 17
in the Enterprise Language to indicate that it is intended to be used where the desired behaviour of the system may be 18
changed to meet particular circumstances (the “particular purpose” referred to in the definition). However, this fails to 19
make any distinction between two uses of the concept. On the one hand it is appropriate to use the concept to refer to 20
a particular set of rules, all of which apply together at some moment in time, and which implement a particular 21
business or operational decision. On the other hand it may be used to refer to a more general set of rules that 22
determine what policy values are acceptable. 23

Since both these concepts meet the RM-ODP definition of policy, it is considered better to introduce two new terms, 24
rather than use policy for one and a new term for the other. Thus the first concept (the set of rules in force at some 25
particular time) is called “policy value” and the second concept (the whole set of rules, and their relation to the 26
particular concern involved) is called “policy envelope”. In this document specific UML mappings have been 27
developed for these two concepts and to their relations with other enterprise language concepts. 28

The changes to the enterprise language model that arise from this refinement of the policy concept are illustrated in 29
Figure 8. 30

Temporary Note – National bodies are invited to suggest alternative approaches, for example involving the introduction of 31
only a single new term. 32

7.1.4 Accountability concepts 33

Accountability concepts concern the modelled behaviour of parties. A party is an enterprise object modelling a 34
natural person or any other entity considered to have some of the rights, powers and duties of a natural person, and 35
which can therefore be considered accountable for its actions. A party may delegate authority to another enterprise 36
object (which may or may not be a party), in which case it is referred to as the principal in that action of delegation, 37
and the enterprise object to whom authority is delegated is the agent of that party. 38

Only parties can take part in accountable actions. Such actions may take the following forms: 39
– prescription: an action that establishes a rule; 40
– commitment: an action resulting in an obligation by one or more of the participants in the act to 41

comply with a rule or perform a contract; 42
– declaration: an action that establishes a state of affairs in the environment of the object making the 43

declaration; 44
– delegation: an action that assigns authority, responsibility or a function to another object. 45

7.1.5 Structure of an enterprise specification 46

An enterprise specification is structured in terms of communities and community objects. 47

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 15

Each community is modelled in terms of the following concepts and the relationships between them: 1
– the objective and sub-objectives (of the community), 2
– the behaviour of the community, expressed in terms of actions and constraints on the order in which 3

they may occur. Expression of behaviour can be structured to emphasise: 4
– roles fulfilled by enterprise objects that interact as members of the community, 5
– processes that represent sequences of actions, carried out by one or more enterprise objects, 6

– enterprise objects that fulfil the roles in the community, 7
– policies constraining the behaviour. 8

Some enterprise objects may be composite objects and are sub-classified as community objects and refined as 9
communities. 10

At some level of detail the ODP system will be present in the model as an enterprise object. 11

7.1.6 Model of the enterprise language 12

The diagrams below illustrate the concepts of the enterprise language and the relationships between them. 13
NOTE – These diagrams are not identical to those in Annex A of the Enterprise Language, because they have been developed 14
according to the conventions agreed for the UML diagrams of this document. The main difference is that these diagrams use 15
nouns for association end names rather than verbs, and association end names are omitted when the name of the class at the 16
end of the association is representative enough as role name for the association end. In addition, some of the n-ary associations 17
in the former document have been replaced by semantically equivalent association classes, as this is believed to be clearer. A 18
technical corrigendum to the Enterprise Language is being prepared. 19

 20

Figure 5 – Enterprise concepts 21

Committee Draft ISO/IEC 19793:2005 (E)

16 Committee Draft ITU-T Rec. X.906 (12/2005)

 1

 2

Figure 6 – Community concepts 3

 4

Figure 7 – Policy concepts 5

 6

Figure 8 – Additional policy concepts 7

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 17

 1

Figure 9 – Accountability concepts 2

7.2 UML mappings 3
NOTE – In this clause mappings are only defined for those concepts for which use has been demonstrated through an example, 4
included in the main body of this document or in its annexes. Where no example has been identified, the concept concern is 5
mentioned, but no mapping is offered. 6

The following paragraphs describe how the ODP enterprise concepts described in the previous Clause are represented 7
in UML in an enterprise specification. A brief explanation of the UML concepts used in the representation of each 8
concept is given, together with a justification of the representation used. 9

7.2.1 ODP system 10

An ODP System is a special kind of enterprise object. It maps to UML with a class stereotyped as 11
«EV_ODPSystem», see [7.2.5]. Note also that modelling purposes may require that an ODP system be further 12
detailed as a community, in which case the enterprise object that represents it is classified as a community object and 13
refined as a community, see [7.2.4]. 14

7.2.2 Scope 15

The scope of an ODP system is the set of behaviours that the system is expected to exhibit, e.g. its roles. It does not, 16
therefore, map to a single UML model element, but to the set of elements that represent its behaviour. 17

7.2.3 Field of application 18

The field of application is a property of the enterprise specification as a whole, and maps to a comment stereotyped as 19
«EV_FieldOfApplication», attached to the UML model stereotyped as «Enterprise_Spec» which contains the 20
enterprise specification. 21

7.2.4 Community 22

A community maps to a component stereotyped as «EV_Community», which is included in a package stereotyped as 23
«EV_CommunityContract» that contains the specification of the community, i.e., its objective, its behaviour, and any 24
enterprise objects that are specific to the community concerned (see [7.2.8]). 25

Any component mapping to a community will have exactly one association, stereotyped as «EV_ObjectiveOf» to a 26
class stereotyped as «EV_Objective», that maps to the objective of the community, and a set of realizations, each 27
stereotyped as «EV_CommunityBehaviour», to the UML classifier model elements mapping to its roles and the 28
associated behaviour (interactions, actions, steps and processes). 29

See also [7.2.7] and [7.2.8]. 30

7.2.5 Enterprise object 31

Each enterprise object is mapped to a class stereotyped as «EV_EnterpriseObject». Where a specific individual entity 32
is being referenced (e.g. the ODP system), the class concerned is a singleton. Any class stereotyped as 33
«EV_EnterpriseObject» may have any number of associations, each stereotyped as «EV_FulfilsRole», with any 34
number of classes stereotyped as «EV_Role» in one or more community, expressing the fact that the enterprise object 35
fulfils the roles. 36

Committee Draft ISO/IEC 19793:2005 (E)

18 Committee Draft ITU-T Rec. X.906 (12/2005)

NOTE – In theory, an enterprise object could be mapped to a UML object, but since most behavioural aspects in UML are 1
best modelled with classifiers, this approach is not adopted in this document. 2

7.2.6 Community object 3

A community object is an enterprise object that is refined in the model as a community. It is mapped to a class 4
stereotyped as «EV_CommunityObject», with a dependency, stereotyped as «EV_RefinesAsCommunity», to the 5
component stereotyped as «EV_Community» which maps to the community that refines it. 6

7.2.7 Objective 7

An objective (of a community) is mapped to a class, stereotyped as «EV_Objective». This class has an association, 8
stereotyped as «EV_ObjectiveOf» with the component, stereotyped as «EV_Community» that maps to the community 9
being specified. 10

7.2.8 Contract 11

A contract for a community specifies the objective of that community, and how that objective can be met (i.e., its 12
behaviour and policies). It is the specification of that community as it appears in the enterprise specification. The 13
mapping, for contract is to a package stereotyped as «EV_CommunityContract». 14

In the name space of the package will be the UML model elements mapping to the community itself, its objective, its 15
roles and the associated behaviour (actions, interactions, steps and processes), and the policy and accountability 16
concepts specific to the community. Relationships between all these UML model elements may also be included in 17
this package’s namespace. The package may also contain some or all of the elements mapping to the enterprise 18
objects that fulfil its roles. (Those elements mapping to enterprise objects that fulfil roles in other communities may 19
be contained in any one of the packages mapping to those communities.) 20

7.2.9 Behaviour 21

7.2.9.1 General 22
NOTE – In this clause phrases such as “interactions between roles” and “steps performed by roles” should be read as 23
“interactions between enterprise objects fulfilling roles” and “steps performed by enterprise objects fulfilling roles” 24
respectively. 25

A behaviour is a set of actions with constraints on when they may occur, and is not mapped to any single UML model 26
element. It is expressed as a set of model elements representing the behaviour in terms of interactions between roles 27
in a community, and/or a set of model elements representing the behaviour as a set of processes of a community in 28
which the steps are performed by roles in the community. 29

7.2.9.2 Behaviour as interactions between roles 30

Where the behaviour is expressed in terms of interactions between roles in a community, a role is mapped to a class 31
stereotyped as «EV_Role», in the name space of the package (stereotyped as «EV_CommunityContract») that 32
specifies the community in which the role is specified. The behaviour identified by the role is mapped to the 33
following combination of UML model elements: 34

– One or more classes each having one or more associations with the class stereotyped as «EV_Role» 35
mapping to the role being specified. Each of these classes is stereotyped as «EV_Interaction». These 36
associations are stereotyped as «EV_InteractionInitiator» or «EV_InteractionResponder» depending 37
upon the part played by the corresponding role in the interaction. 38

– Each class stereotyped as «EV_Interaction» will also, in general, have associations (also stereotyped 39
as above) with other classes that are stereotyped as «EV_Role», where there is an interaction between 40
the enterprise objects fulfilling these roles. 41

– An interaction may be defined as a composition of interactions. When it is not defined as a 42
composition it has an association with a signal stereotyped as «EV_Artefact» mapping to an artefact 43
role (see [7.2.11]), which also has an association with an «EV_EnterpriseObject» class, defining the 44
information that is exchanged in the interaction. 45

– A StateMachine for which the context is the «EV_Role», that defines the constraints on the receiving 46
and sending of information by an enterprise object fulfilling the role and any associated internal 47
actions of the enterprise object. This StateMachine shows the sending and receiving of the signals, 48
each stereotyped as «EV_Artefact», associated with the interactions of the role, and thus shows the 49
logical ordering of these interactions and may define the internal actions of the role in terms of the 50
behaviours associated with the states. 51

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 19

Annex B illustrates the application of these concepts. 1

7.2.9.3 Behaviour as processes and steps 2

Where the behaviour is expressed in terms of processes of a community, a process is mapped to an activity 3
stereotyped as «EV_Process» with a realization link, stereotyped as «EV_CommunityBehaviour» from the 4
component, stereotyped as «EV_Community», mapping to the community that uses this process to achieve its 5
objective. Within this activity: 6

– the steps of the process are mapped to Actions, stereotyped as «EV_Step»; 7
– the roles of the enterprise objects that perform the steps (as actors) are mapped to ActivityPartitions 8

stereotyped as «EV_Role»; 9
– the enterprise objects that are referenced in the steps (as artefacts) are mapped to ObjectNodes, 10

stereotyped as «EV_Artefact». 11

If there is a corresponding interaction model, the Actions in a ActivityPartition mapping to a role must correspond to 12
the internal actions identified in (the states of) the StateMachines for the class mapping to the role concerned in the 13
interaction model. 14

7.2.9.4 Interface role 15

An interface role is mapped to a class stereotyped as an «EV_Role». The part of the behaviour identified by the 16
interface role that takes place with the participation of one or more external objects (objects that do not form part of 17
the decomposition of the community object that is refined by that community) is represented by an interaction with a 18
role that identifies the required behaviour of the external objects. This behaviour maps to a class stereotyped as an 19
«EV_Interaction» that has associations with each of the classes (stereotyped as «EV_Role») that map to the interface 20
role on the one hand and the role that identifies the behaviour of the external objects on the other. 21

7.2.10 Actor (with respect to an action) 22

The concept actor is a relationship between an enterprise object and an action. There is no single UML model 23
element that maps to an instance of the RM-ODP enterprise language concept, actor. Actors in a model may be 24
identified from either or both of: 25

– an examination of the interaction model where the existence of actors will be indicated by the 26
associations, stereotyped as «EV_FulfilsRole», between the classes stereotyped as «EV_Role» and 27
«EV_EnterpriseObject», respectively, taken in combination with the StateMachine that represents the 28
behaviour of the relevant role. 29

– in an examination of the process model, the presence of an «EV_Step» in an «EV_Role» 30
ActivityPartition indicates that the enterprise object fulfilling the role is an actor for the step concerned. 31

7.2.11 Artefact (with respect to an action) 32

The concept artefact is also a relationship between an enterprise object and an action. In an interaction model, an 33
artefact referenced in an action maps to a Signal stereotyped as «EV_Artefact», which has two associations: 34

– one association, stereotyped as «EV_ArtefactRole», will be with the «EV_EnterpriseObject» class 35
mapping to the enterprise object that is an artefact with respect to the action; 36

– the other association, stereotyped as «EV_ArtefactReference», will be with the «EV_Interaction» 37
Class that maps to the (inter-)action for which the enterprise object is an artefact. 38

In a process model, it is possible to map each instance of artefact to a single UML model element, namely an 39
ObjectFlow stereotyped as «EV_Artefact». 40

7.2.12 Resource (with respect to an action) 41

No specific mappings are defined. It may be useful in a model to identify, in a comment, that some behaviour 42
requires the existence of an enterprise object as a resource. 43

7.2.13 Policy 44
NOTE – In this clause a distinction is made between policy value (the particular set of rules related to some purpose that are 45
applicable at some moment in time as a result of a business decision to apply them), and policy envelope (a general set of rules 46
related to a purpose, which constrain any particular set of rules that may be applicable at any particular time). See [7.1.3]. 47

Committee Draft ISO/IEC 19793:2005 (E)

20 Committee Draft ITU-T Rec. X.906 (12/2005)

Policies are expressed in UML using a combination of model elements, which together are used to express the policy 1
itself, and the other model elements that represent the objects and the behaviour constrained by the policy, as well as 2
the objects and their behaviour by which the policy value may be changed. 3

The policy envelope maps to a class stereotyped as «EV_PolicyEnvelope», with a note stereotyped as «description» 4
which explains the policy and its rules in natural language. 5

Each policy value maps to a class stereotyped as «EV_PolicyValue» each with two associations (one an aggregation, 6
the other a regular association in which the policy value has the role “current value”) with the «EV_PolicyEnvelope» 7
class that maps to the policy envelope that provides the context for the policy value. 8

Where the enterprise specification includes elements representing the behaviour concerned with setting the policy 9
value, this is represented as normal by processes or interactions, with associations, stereotyped as 10
«EV_ControllingAuthority», between the classes mapping to the policy envelope and the classes mapping to the 11
behaviour. 12

The relationships between a policy envelope and the behaviour it constrains are expressed by one or more 13
dependencies, stereotyped as «EVAffectedBehaviour», from the classes mapping to the behaviour to the class 14
mapping to the policy envelope. 15

Unless the set of policy values is pre-determined, a set of constraints stereotyped as «EV_PolicyEnvelopeRule» 16
expressing rules governing acceptable policy values is attached to the «EV_PolicyEnvelope» class. 17

Attached to each «EV_PolicyValue» class are a set of constraints stereotyped as «EV_PolicyValueRule», which 18
together express behaviour rules related to the policy value. These rules may be expressed in OCL or other suitable 19
notation. 20

The pattern for expression of policy and its impact on other parts of an enterprise specification is shown in Figure 10. 21

 22

Figure 10 – Pattern for UML expression of a policy 23

7.2.14 Obligation 24

No specific mappings are defined. It may be useful in a model to identify, in a comment, that some behaviour places 25
or fulfils an obligation. 26

7.2.15 Authorisation 27

No specific mappings are defined. It may be useful in a model to identify, in a comment, that some behaviour 28
requires or creates an authorisation. 29

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 21

7.2.16 Permission 1

No specific mappings are defined. It may be useful in a model to identify, in a comment, that some behaviour 2
requires or creates a permission. 3

7.2.17 Prohibition 4

No specific mappings are defined. It may be useful in a model to identify, in a comment, that some behaviour 5
requires or creates a prohibition. 6

7.2.18 Assignment policy 7

No specific mappings are defined. An assignment policy is expressed in the same way as any other policy; see 7.2.13. 8

7.2.19 Violation 9

No specific mappings are defined. It is difficult to envisage the circumstances in which a behaviour might be 10
specified which is a violation. 11

7.2.20 Party 12

A party is an enterprise object modelling an entity with some of the rights, powers and duties of a natural person. It is 13
expressed in UML as a class stereotyped as «EV_Party», which must also be stereotyped as «EV_EnterpriseObject». 14

7.2.21 Accountable action 15

An action may be accountable when it is part of the behaviour identified by a role fulfilled by a party. This is 16
expressed in UML with an association, stereotyped as «EV_Accountable», between the class expressing the role and 17
the class or activity expressing the interaction or process respectively in which the accountable party participates. 18

Note: Where this construyct is used for a process, this only indicates that the role is accountable for those steps which it 19
performs, and not for those that performed by some other role. This is a limitation of the semantics of the UML approach 20
chosen, as it is not possible to associate a classifier with the model element expressing steps. 21

7.2.22 Delegation 22

A Delegation is expressed in UML by an association, stereotyped as «EV_Delegation», between two classes 23
stereotyped as «EV_Role» with association ends showing the party which is the principal and the enterprise object 24
which is the agent to whom the delegation is made. 25

7.2.23 Principal 26

No specific mappings are defined. See [7.2.22]. 27

7.2.24 Agent 28

No specific mappings are defined. See [7.2.22]. 29

7.2.25 Prescription 30

No specific mappings are defined. It may be useful in a model to identify, in a comment, that some behaviour 31
represents a prescription. 32

7.2.26 Commitment 33

No specific mappings are defined. It may be useful in a model to identify, in a comment, that some behaviour 34
represents a commitment. 35

7.2.27 Declaration 36

No specific mappings are defined. It may be useful in a model to identify, in a comment, that some behaviour 37
represents a declaration. 38

7.2.28 Summary of UML Mappings for the enterprise language 39

The Enterprise language profile (EV_Profile) specifies how the enterprise viewpoint modelling concepts relate to and 40
are represented in standard UML using stereotypes, tagged values, and constraints. It represents the concepts of the 41
enterprise language model (see [7.1.6]). 42

Committee Draft ISO/IEC 19793:2005 (E)

22 Committee Draft ITU-T Rec. X.906 (12/2005)

The following Figures show a graphical representation of the UML Profile for the Enterprise Language, using the 1
notation provided by UML 2.0. 2

 3

Figure 11 – Model management 4

 5

Figure 12 – Comments and Constraints 6

 7

Figure 13 – Classifiers 8

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 23

 1

Figure 14 – Activities 2

 3

Figure 15 – Relationships 4

Committee Draft ISO/IEC 19793:2005 (E)

24 Committee Draft ITU-T Rec. X.906 (12/2005)

7.3 Enterprise specification structure (in UML terms) 1

An enterprise specification is contained in a model, stereotyped as «EnterpriseSpec». At the top level within this 2
model there will be one or more packages, stereotyped as «EV_CommunityContract», with where necessary, 3
associated classes, stereotyped as «EV_CommunityObject», expressing the relevant communities as enterprise 4
objects. 5

Within each «EV_CommunityContract» package, there will be a single component, stereotyped as 6
«EV_Community» and a single class, stereotyped as «EV_Objective», as well as other elements, packaged as 7
convenient, expressing behaviour (roles, processes and interactions), and enterprise objects that are local to the 8
community. 9

7.4 Viewpoint correspondences for the enterprise language 10

7.4.1 Enterprise and information viewpoint specification correspondences 11

In general, not all the elements of the enterprise specification of a system need correspond to elements of its 12
information specification. However, the information viewpoint shall conform to the policies of the enterprise 13
viewpoint and, likewise, all enterprise policies shall be consistent with the static, dynamic, and invariant schemata of 14
the information specification. 15

Where there is a correspondence between enterprise and information elements (e.g., between an enterprise object and 16
the information object that stores the relevant information about it), the specifier shall provide: 17

– for each enterprise object in the enterprise specification, a list of those information objects (if any) that 18
represent information or information processing concerning the entity represented by that enterprise 19
object; 20

– for each role in each community in the enterprise specification, a list of those information object types 21
(if any) that that specify information or information processing of an enterprise object fulfilling that 22
role; 23

– for each policy in the enterprise specification, a list of the invariant, static and dynamic schemata of 24
information objects (if any) that correspond to the enterprise objects to which that policy applies; an 25
information object is included if it corresponds to the enterprise community that is subject to that 26
policy; 27

– for each action in the enterprise specification, the information objects (if any) subject to a dynamic 28
schema constraining that action; 29

– for each relationship between enterprise objects, the invariant schema (if any) which constrains 30
objects in that relationship; 31

– for each relationship between enterprise roles, the invariant schema (if any) which constrains objects 32
fulfilling roles in that relationship. 33

7.4.2 Enterprise and computational viewpoint specification correspondences 34

Not all the elements of the enterprise specification of a system need correspond to elements of its computational 35
specification. In particular, not all states, behaviours and policies of an enterprise specification need correspond to 36
states and behaviours of a computational specification. There may exist transitional computational states within 37
pieces of computational behaviour which are abstracted as atomic transitions in the enterprise specification. 38

Where there is a correspondence between enterprise and computational elements, the specifier shall provide: 39
– for each enterprise object in the enterprise specification, that configuration of computational objects (if 40

any) that realizes the required behaviour; 41
– for each interaction in the enterprise specification, a list of those computational interfaces and 42

operations or streams (if any) that correspond to the enterprise interaction, together with a statement 43
of whether this correspondence applies to all occurrences of the interaction, or is qualified by a 44
predicate; 45

– for each role affected by a policy in the enterprise specification, a list of the computational object types 46
(if any) that exhibit choices in the computational behaviour that are modified by the policy; 47

– for each interaction between roles in the enterprise specification, a list of computational binding object 48
types (if any) that are constrained by the enterprise interaction; 49

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 25

– for each enterprise interaction type, a list of computational behaviour types (if any) of computational 1
behaviours capable of carrying out an interaction of that enterprise interaction type. 2

7.4.3 Enterprise and engineering viewpoint specification correspondences 3

Not all the elements of the enterprise specification of a system need correspond to elements of its engineering 4
specification. Where there is a correspondence between enterprise and engineering elements, the specifier shall 5
provide: 6

– for each enterprise object in the enterprise specification, the set of those engineering nodes (if any) 7
with their nuclei, capsules, and clusters, all of which support some or all of its behaviour; 8

– for each interaction between roles in the enterprise specification, a list of engineering channel types 9
and stubs, binders, protocol objects and interceptors (if any) that are constrained by the enterprise 10
interaction. 11

NOTE 1 – The engineering nodes may result from rules about assigning support for the behaviour of enterprise objects to 12
nodes. These rules may capture policies from the enterprise specification. 13
NOTE 2 – The engineering channel types and stubs, binders or protocol objects may be constrained by enterprise policies. 14

7.4.4 Enterprise and technology viewpoint specification correspondences 15

In accordance with [Part 2 – 15.5] and [Part 3 – 5.3], an implementer provides, as part of the claim of conformance, 16
the chain of interpretations that permits observation at conformance points to be interpreted in terms of enterprise 17
concepts. While there may be specific correspondences between enterprise policies and technology viewpoint 18
specifications that require the use of particular technologies, there are neither required correspondences nor required 19
correspondence statements. 20

NOTE – Although there are no required viewpoint correspondences between enterprise viewpoint and technology viewpoint 21
specifications, there may be cases where part of enterprise viewpoint specification has a direct relationship with a technology 22
viewpoint specification or a choice of technology. Such examples include enterprise policies covering performance (e.g. 23
response time), reliability, and security. 24

8 Information Specification 25

8.1 Modelling concepts 26

The modelling concepts used in an information specification are defined, together with the structuring rules for their 27
use, in Clause 6 of Part 3 of RM-ODP. The explanations of the concepts in the text that follows are not normative, 28
and in case of conflicts between these explanations and the text in Part 3, the latter should be followed. 29

The information viewpoint is concerned with information modelling. It focuses on the semantics of information and 30
information processing in the ODP system. The individual components of a distributed system must share a common 31
understanding of the information they communicate when they interact, or the system will not behave as expected. 32
Some of these items of information are handled, in one way or another, by many of the objects in the system. To 33
ensure that the interpretation of these items is consistent, the information language defines concepts for the 34
specification of the meaning of information stored within, and manipulated by, an ODP system, independently of the 35
way the information processing functions themselves are to be implemented. 36

In general, the information language helps answer the questions “what kind of information is managed by the 37
system?” and “what constraints and criteria need to be applied to access the information?” 38

In the ODP Reference Model, the information language uses a basic set of concepts and structuring rules, including 39
those from Part 2 of RM-ODP, and three concepts specific to the information viewpoint: invariant schema, static 40
schema, and dynamic schema. 41

8.1.1 Information object 42

Information held by the ODP system about entities in the real world, including the ODP system itself is represented in 43
an information specification in terms of information objects, and their relationships and behaviour. 44

Basic information elements are represented by atomic information objects. More complex information is represented 45
as composite information objects expressing relationships over a set of constituent information objects. Information 46
objects, as any other ODP object, exhibit behaviour, state, identity, and encapsulation. 47

NOTE – Information objects may have operations, although information operations are names for significant stimuli for state 48
changes, and are not necessarily the same as computational operations. 49

Committee Draft ISO/IEC 19793:2005 (E)

26 Committee Draft ITU-T Rec. X.906 (12/2005)

8.1.2 Information object type 1

The type of an information object is a predicate characterizing a collection of information objects. 2

8.1.3 Information object class 3

A class of information objects is the set of all information objects satisfying a given type. 4

8.1.4 Information object template 5

An information object template is the specification of the common features of a collection of information objects in 6
sufficient detail that an information object can be instantiated using it. In ODP, information object templates may 7
reference static, invariant and dynamic schemata. 8

8.1.5 Information action and action types 9

An action is a model of something that happens in the real world. In ODP, actions are instances, not types. Types of 10
actions are represented by ODP action types. An action in the information viewpoint is associated with at least one 11
information object. 12

Actions can be either internal actions or interactions. An internal action always takes place without the participation 13
of the environment of the object. An interaction takes place with the participation of the environment of the object. 14
Objects can only interact at interfaces. ODP interactions are instances of ODP communications. 15

8.1.6 Invariant schema 16

An invariant schema is a set of predicates on one or more information objects which must always be true. The 17
predicates constrain the possible states and state changes of the objects to which they apply. 18

ODP also notes that an invariant schema can describe the specification of the types of one or more information 19
objects, that will always be satisfied by whatever behaviour the objects might exhibit. 20

8.1.7 Static schema 21

A static schema is a specification of the state of one or more information objects, at some point in time, subject to the 22
constraints of any invariant schemata. 23

A static schema is expressed as the specification of the types of one or more information objects, at some particular 24
point in time, where these types are subtypes of the types specified in the invariant schema. 25

8.1.8 Dynamic schema 26

A dynamic schema is a specification of the allowable state changes of one or more information objects, subject to the 27
constraints of any invariant schemata. A dynamic schema specifies how the information can evolve as the system 28
operates. In addition to describing state changes, dynamic schemata can also create and delete information objects, 29
and allow reclassifications of instances from one type to another. Besides, in the information language, a state change 30
involving a set of objects can be regarded as an interaction between those objects. Not all the objects involved in the 31
interaction need to change state; some of the objects may be involved in a read-only manner. 32

8.1.9 Structure of an information specification 33

In ODP, an information specification defines the semantics of information and the semantics of information 34
processing in an ODP system in terms of a configuration of information objects, the behaviour of these objects, and 35
environment contracts for the objects in the system. More precisely, an information specification is expressed in 36
terms of: 37

– a configuration of information objects, described by a set of static schemata; 38
– the behaviour of those information objects, described by a set of dynamic schemata; and 39
– the constraints that apply to either of the above (invariant schemata). 40

The different schemata may apply to the whole system, or they may apply to particular domains within it. Particularly 41
in large and rapidly evolving systems, the reconciliation and federation of separate information domains will be one 42
of the major tasks to be undertaken in order to manage information. 43

There are also some considerations that need to be taken into account when specifying the information viewpoint of 44
an ODP system: 45

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 27

– Information objects are either atomic or are represented as a composition of component information 1
objects. When an information object is a composite object, the schemata are composed as well. 2

– Allowable state changes specified by a dynamic schema can include the creation of new information 3
objects and the deletion of information objects involved in the dynamic schema. Allowable state 4
changes can be subject to ordering and temporal constraints. 5

– The configuration of information objects is independent from distribution, i.e., there is no sense or 6
focus on distribution in this viewpoint. 7

8.1.10 Model of the information language 8

The diagram below illustrates the concepts of the information language and the relationships between them. 9

 10

Figure 16 – Information language concepts 11

8.2 UML mappings 12

The following paragraphs describe how the ODP information concepts described in the previous Clause are 13
represented in UML in an information specification. A brief explanation of the UML concepts used in the 14
representation of each concept is given, together with a justification of the representation used. 15

NOTE – In this clause mappings are only defined for those concepts for which use has been demonstrated through an example, 16
included in the main body of this document or in its annexes. Where no example has been identified, the concept concern is 17
mentioned, but no mapping is offered. 18

8.2.1 Information object 19

An information object is modelled as a UML object, which is an instance of a class, and therefore it is mapped to an 20
InstanceSpecification. An InstanceSpecification is a UML model element that represents an instance in a modelled 21
system. It specifies existence of an entity in a modelled system and completely or partially describes the entity. The 22
description includes the classification of the entity by one or more classifiers of which the entity is an instance. 23

In UML, an object is an entity with a well-defined boundary and identity that encapsulates state and behaviour. State 24
is represented by attributes and relationships. The behaviour of UML object mapping to ODP information objects is 25
represented by state machines. 26

Committee Draft ISO/IEC 19793:2005 (E)

28 Committee Draft ITU-T Rec. X.906 (12/2005)

8.2.2 Information object type 1

An information object type is modelled as a UML class. A class describes a set of objects that share the same 2
specifications of features, constraints, and semantics. 3

NOTE – The UML concept of class is different to the ODP concept of class. A UML class is a “description” of a set of 4
objects, while an ODP class is the set of objects itself. Therefore, the UML concept of class is closer to the ODP concept of 5
type, and there is no UML concept corresponding to the ODP concept of class. Therefore, no mapping for the ODP concept of 6
class is provided. 7

8.2.3 Information object template 8

An ODP object template is modelled as a UML concrete class (i.e., a class that can be directly instantiated). 9

8.2.4 Information action and action types 10

In the information viewpoint, actions are mainly used for describing events that cause state changes, or for 11
implementing communications between objects, i.e., flows of information. 12

In an information specification, an internal action is mapped to an internal transition of a state of the state machine for 13
the information object concerned. 14

An interaction is mapped to a signal sent or received by the state machines of the information objects concerned. An 15
ODP action type is then mapped to a UML Signal. 16

8.2.5 Relationships between information objects and between information object types 17

A relationship between information object types, when modelled as part of the state of the objects of those types, can 18
be mapped to a UML association between the UML classes modelling those types. In UML, an association is defined 19
as the semantic relationship between one or more classifiers that specifies connections between their instances. 20

Instances of UML associations (i.e., links) will model the relationships between the information objects. 21

When associations between information objects are modelled in ODP as invariant schemata, the mapping rules in 22
Clause 8.2.6 apply. 23

8.2.6 Invariant schema 24

Invariant schemata may impose different kinds of constraints in an information specification. 25

First, invariant schemata can provide the specification of the types of one or more information objects, that will 26
always be satisfied by whatever behaviour the objects might exhibit. This kind of invariant schema may be 27
represented in a UML Package, and drawn in a class diagram, which specifies a set of object types (in terms of the 28
set of UML classes that represent such object types), their possible relationships (represented as UML associations), 29
and constraints on those object types, on their relationships, and possibly on their behaviours (represented by the 30
specification of the corresponding UML objects’ state machines). The association multiplicities and the UML 31
constraints on the different modelling elements will constrain the possible states and state changes of the UML 32
elements to which they apply. 33

NOTE – OCL is the recommended notation for expressing the constraints on the modelling elements that form part of the 34
UML representation of an invariant schema. However, other notations can be used when OCL does not provide enough 35
expressive power, or is not appropriate due to the kind of expected user of the specification. For example, a temporal logic 36
formula or an English text can be used for expressing a constraint that imposes some kind of fairness requirement on the 37
behaviour of the system (e.g., “Objects of class X will produce requests to objects of class Y, no later than a given time T after 38
condition A on objects of classes X, Y and Z is satisfied”). 39

As noted in ODP there are cases, however, in which an invariant schema in an information viewpoint specification is 40
defined over a set of concrete information objects. Such a kind of invariant schema may be represented as a UML 41
package of UML objects. The UML constraints on these objects, together with the specifications of the UML 42
classifiers of these objects, constrain the possible states and state changes of the UML objects. 43

NOTE – The UML classifiers of the objects will constrain the possible states and state changes of the UML objects to 44
which they apply (through the UML associations, state machines, and constraints of these classifiers). 45

Finally, individual UML constraints can also be used to capture invariant schemata. 46

8.2.7 Static schema 47

An ODP static schema is represented as a UML package of UML objects, their attribute links, their UML link ends 48
which have an associated target link end which is navigable, and their UML classifiers. 49

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 29

NOTE – The possible associations of the information objects described in a static schema with other objects not contemplated 1
in the schema need not be included in the UML package, since they are not part of the specification provided by the schema. 2
Therefore, whenever the absence of an association instance (i.e., a link) needs to be expressed, it should be explicitly stated 3
(by, e.g., using constraints attached to the appropriate objects). 4

8.2.8 Dynamic schema 5

A dynamic schema is expressed in terms of state machines for the information objects in the information 6
specification. The actions that relate to the state changes are mapped to signals that are sent and received on 7
transitions of the state machines. 8

8.2.9 Summary of the UML mappings for the information language 9

The Information language profile (IV_Profile) specifies how the information viewpoint modelling concepts relate to 10
and are represented in standard UML using stereotypes, tag definitions, and constraints. It represents the concepts of 11
the information language model (see [8.1.11]). 12

The following Figure shows the graphical representation of the UML Profile for the Information Language, using the 13
notation provided by UML 2.0. 14

 15

Figure 17 – Graphical representation of the Information Language profile 16

The constraint on the InstanceSpecification element stereotyped as «IV_Object» states that it should be an UML 17
object, i.e., an instance of a Class. The constraint on the Class element stereotyped as «IV_ObjectTemplate» states 18
that a Class that maps to an information object template should be a concrete class, i.e., a class that contains all the 19
information to instantiate objects. 20

Committee Draft ISO/IEC 19793:2005 (E)

30 Committee Draft ITU-T Rec. X.906 (12/2005)

8.3 Information specification structure (in UML terms) 1

All the UML elements representing the information specification will be defined within a UML model, stereotyped 2
«Information_Spec». Such a model contains the UML packages that represent the invariant, static and dynamic 3
schemata of the system. 4

These packages may be defined and organized as follows: 5
– In the first place, a set of «IV_InvariantSchema» packages with UML class diagrams will define the 6

information object and object types of the system, their relationships, and the constraints on these 7
elements. 8

– Second, a set of «IV_StaticSchema» packages with UML object diagrams will represent the state of 9
the system or parts of it at specific locations in time — that may be of interest to any of the system 10
stakeholders. The classifiers of the objects of these diagrams should have been previously defined in 11
the «IV_InvariantSchema» packages that define the structure and composition of the system. 12

– Third, dynamic schemata mapping to individual state machines, will be associated with the 13
corresponding elements in the previous packages. Thus, individual state machines will be associated 14
with the corresponding object types or objects. Likewise, constraints describing invariants and pre- and 15
post-conditions of signals will be associated to the states of the state machines and with the 16
corresponding object type definitions. 17

– Finally, a set of «IV_InvariantSchema» constraints will impose further constraints on the elements of 18
all the previous packages. Such constraints can be either directly attached to the corresponding UML 19
elements, establishing an implicit context by attachment, or they can form part of a separate piece of 20
specification in which the context of each constraint is explicitly established by naming. 21

8.4 Viewpoint correspondences for the information language 22

8.4.1 Enterprise and information viewpoint specification correspondences 23

In general, not all the elements of the enterprise specification of a system need to correspond to elements of its 24
information specification. However, the information viewpoint shall conform to the policies of the enterprise 25
viewpoint and, likewise, all enterprise policies shall be consistent with the static, dynamic, invariant schemata of the 26
information specification. 27

Where there is a correspondence between information and enterprise elements (e.g., between an enterprise object and 28
the information object that stores the relevant information about it), the specifier shall provide: 29

– for each enterprise object and for each artefact role in an enterprise action, the corresponding 30
configuration of information objects (if any) that represent them in the information viewpoint; 31

– for each enterprise role, action and process in the enterprise viewpoint, the corresponding dynamic and 32
invariant schema definitions in the information viewpoint that specify that behaviour. 33

– for each enterprise policy in the enterprise viewpoint, the constraints in the corresponding schemata 34
that implement it—since enterprise policies may become constraints in any of the schemata. 35

NOTE – In the case of a notional incremental development process of the ODP viewpoint specifications, whereby the 36
information specifications are developed taking into account the previously defined enterprise specifications, information 37
objects may be discovered through examination of an enterprise specification. For example, each artefact referenced in any 38
actions in which an ODP System participates will correspond in some way with one or more information objects. 39

8.4.2 Information and computational viewpoint specification correspondences 40

Not all the elements of the information specification of a system need to correspond to elements of its computational 41
specification. In particular, not all states of an information specification need to correspond to states of a 42
computational specification. There may exist transitional computational states within pieces of computational 43
behaviour that are abstracted as atomic transitions in the information specification. 44

Where an information object corresponds to a set of computational objects, static and invariant schemata of the 45
information object correspond to possible states of the computational objects. Every change in state of an information 46
object corresponds either to some set of interactions between computational objects, or to an internal action of a 47
computational object. The invariant and dynamic schemata of the information object correspond to the behaviour and 48
environment contract of the computational objects. 49

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 31

8.4.3 Information and technology viewpoint specification correspondences 1

While there may be specific correspondences between information schemata and technology viewpoint specifications 2
that require the use of particular technologies, there are neither required correspondences nor required correspondence 3
statements. 4

NOTE – There may be cases where part of an information viewpoint specification has a direct relationship with a technology 5
viewpoint specification or a choice of technology. Such examples include invariant schemata covering performance (e.g., 6
response time) or security. 7

9 Computational Specification 8

9.1 Modelling concepts 9

The modelling concepts used in a computational specification are defined, together with the structuring rules for their 10
use, in Clause 7 of Part 3 of RM-ODP. Some of the concepts in Part 2 of RM-ODP are also used when defining the 11
computational language concepts. The explanations of the concepts in the text that follows are not normative, and in 12
case of conflicts between these explanations and the text of Parts 2 or 3, the latter documents should be followed. 13

9.1.1 Computational object 14

An object is a model of an entity. An object is characterized by its behaviour and, dually, by its state. An object is 15
distinct from any other object. An object is encapsulated, i.e. any change in its state can only occur as a result of an 16
internal action or as a result of an interaction with its environment. 17

A computational object is an object as seen in the computational viewpoint. It represents functional decomposition 18
and interacts with other computational objects. Since it is an object, it has state and behaviour, and interactions are 19
achieved through interfaces. 20

9.1.2 Interface [Part 2 – 8.4] 21

An interface is an abstraction of the behaviour of an object that consists of a subset of the interactions of that object 22
together with a set of constraints on when they can occur. 23

9.1.3 Interaction [Part 2 – 8.3] 24

An interaction is one of two defined kinds of actions. Action itself is defined as something that happens, and every 25
action of interest for modelling purposes is associated with at least one object. The set of actions associated with an 26
object is partitioned into internal actions and interactions. An internal action always takes place without the 27
participation of the environment of the object. An interaction takes place with the participation of the environment of 28
the object. 29

9.1.4 Environment contract [Part 2 – 11.2.3] 30

Environment contract is a contract between an object and its environment, including Quality of Service (QoS) 31
constraints, usage and management constraints. 32

QoS constraints include: 33
– temporal constraints (e.g. deadlines); 34
– volume constraints (e.g. throughput); 35
– dependency constraints covering aspects of availability, reliability, maintainability, security and safety 36

(e.g. mean time between failures). 37

QoS constraints can imply usage and management constraints. For instance, some QoS constraints (e.g. availability) 38
are satisfied by provision of one or more distribution transparencies (e.g. replication). 39

An environment contract can describe both: 40
– requirements placed on an object’s environment for the correct behaviour of the object, and 41
– constraints on the object behaviour in a correct environment. 42

9.1.5 Behaviour (of an object) [Part 2 – 8.6] 43

Behaviour of an object is a collection of actions with a set of constraints on when they may occur. 44

Committee Draft ISO/IEC 19793:2005 (E)

32 Committee Draft ITU-T Rec. X.906 (12/2005)

The specification language in use determines the constraints which may be expressed. Constraints may include, for 1
example, sequentiality, non-determinism, concurrency or real-time constraints. 2

Behaviour may include internal actions. 3

The actions that actually take place are restricted by the environment in which the object is placed. 4

9.1.6 Signal [Part 3 – 7.1.1] 5

A signal is an atomic shared action resulting in one-way communication from an initiating object to a responding 6
object. 7

9.1.7 Operation [Part 3 – 7.1.3] 8

An operation is an interaction between a client object and a server object which is either an interrogation or an 9
announcement. 10

9.1.8 Announcement [Part 3 – 7.1.3] 11

An interaction — the invocation — initiated by a client object resulting in the conveyance of information from that 12
client object to a server object, requesting a function to be performed by that server object. 13

9.1.9 Interrogation [Part 3 – 7.1.4] 14

An interaction consisting of: 15
– one interaction — the invocation — initiated by a client object, resulting in the conveyance of 16

information from that client object to a server object, requesting a function to be performed by the 17
server object, 18

followed by 19
– a second interaction — the termination — initiated by the server object, resulting in the conveyance of 20

information from the server object to the client object in response to the invocation. 21

9.1.10 Flow [Part 3 – 7.1.5] 22

A flow is an abstraction of a sequence of interactions, resulting in conveyance of information from a producer object 23
to a consumer object. 24

9.1.11 Signal interface [Part 3 – 7.1.6] 25

A signal interface is an interface in which all the interactions are signals. 26

9.1.12 Operation interface [Part 3 – 7.1.7] 27

An operation interface is an interface in which all the interactions are operations. 28

9.1.13 Stream interface [Part 3 – 7.1.4] 29

A stream interface is an interface in which all the interactions are flows. 30

9.1.14 Computational object template [Part 3 – 7.1.9] 31

A computational object template is an object template which comprises a set of computational interface templates 32
that the object can instantiate, a behaviour specification and a environment contract specification. 33

9.1.15 Computational interface template [Part 3 – 7.1.9] 34

A computational interface template is an interface template for either a signal interface, a stream interface or an 35
operation interface. A computational interface template comprises a signal, a stream or an operation interface 36
signature as appropriate, a behaviour specification and environment contract specification. 37

9.1.16 Signal interface signature [Part 3 – 7.1.11] 38

A signal interface signature is an interface signature for a signal interface. A signal interface signature comprises a 39
finite set of action templates, one for each signal type in the interface. Each action template comprises the name for 40
the signal, the number, names and types of its parameters and an indication of causality (initiating or responding, but 41
not both) with respect to the object that instantiates the template. 42

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 33

9.1.17 Operation interface signature [Part 3 – 7.1.12] 1

An operation interface signature is an interface signature for an operation interface. An operation interface 2
signature comprises a set of announcement and interrogation signatures as appropriate, one for each operation type 3
in the interface, together with an indication of causality (client or server, but not both) for the interface as a whole, 4
with respect to the object which instantiates the template. 5

Each announcement signature is an action template containing the name of the invocation and the number, names and 6
types of its parameters. 7

Each interrogation signature comprises an action template with the following elements: 8
– the name of the invocation; 9
– the number, names and types of its parameters, 10
– a finite, non-empty set of action templates, one for each possible termination type of the invocation, 11

each containing both the name of the termination and the number, names and types of its parameters. 12

9.1.18 Stream interface signature [Part 3 – 7.1.13] 13

A stream interface signature is an interface signature for a stream interface. A stream interface comprises a finite set 14
of action templates, one for each flow type in the stream interface. Each action template for a flow contains the name 15
of the flow, the information type of the flow, and an indication of causality for the flow (i.e. producer or consumer but 16
not both) with respect to the object which instantiates the template. 17

9.1.19 Binding object [Part 3 – 7.1.14] 18
A binding object is a computational object which supports a binding between a set of other computational objects. 19

9.1.20 Structure of a computational specification 20

In ODP, a computational specification describes the functional decomposition of an ODP system, in distribution 21
transparent terms, as: 22

– a configuration of computational objects; 23
– the internal actions of those objects; 24
– the interactions that occur among those objects; 25
– environment contracts for those objects and their interfaces. 26

The set of computational objects specified by the computational specification constitute a configuration that will 27
change as the computational objects instantiate further computational objects or computational interfaces; perform 28
binding actions; effect control functions upon binding objects; delete computational interfaces; or delete 29
computational objects. 30

The computational language defines a set of rules that constrain a computational specification. These comprise: 31
– interaction rules, binding rules and type rules that provide distribution transparent interworking; 32
– template rules that apply to all computational objects and computational interfaces; 33
– failure rules that apply to all computational objects and identify the potential points of failure in 34

computational activities. 35

9.1.21 Model of the computational language 36

Figure 18 illustrates the concepts of the computational language and the relationships between them. 37
NOTE – Some of the relationships between Computational language concepts are not shown in Figure 18, e.g. relationship 38
between interface and signature, since they are related through their super-types. 39

Committee Draft ISO/IEC 19793:2005 (E)

34 Committee Draft ITU-T Rec. X.906 (12/2005)

 1

Figure 18 – Computational language concepts 2

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 35

The following restrictions apply to the elements of the diagram shown in Figure 18. 1
– A binding object is associated with at least two different objects. 2
– A binding object binds two or more objects through the same type of interface (signal, announcement, 3

interrogation, or flow). 4
– All interfaces associated to a signal interface signature are signal interfaces [9.2.11.3], and all its 5

constituent interaction signatures are signal signatures. 6
 context Signal inv SignalSignature: self.interface->forAll(oclIsTypeOf(SignalInterface)) 7
 context SignalInterface inv SignalSignature: self.specifier->forAll(oclIsTypeOf(SignalSignature)) 8

context SignalInterface inv SignalInterfaceSignature: 9
self.specifier->forAll(oclIsTypeOf(SignalInterfaceSignature)) 10

– All interfaces associated to an operation interface signature are operation interfaces [9.2.12.3], and all its 11
constituent interaction signatures are announcement, interrogation, invocation or termination signatures. 12

 context Announcement inv AnnouncementSignature: 13
 self.interface->forAll(oclIsTypeOf(OperationInterface)) 14

 context Invocation inv InvocatonSignature: self.interface->forAll(oclIsTypeOf(OperationInterface)) 15
 context Termination inv TerminationSignature: 16

 self.interface->forAll(oclIsTypeOf(OperationInterface)) 17
context OperationInterface inv OperationInterfaceSignature: 18

self.specifier->forAll(oclIsTypeOf(OperationInterfaceSignature)) 19
– All interfaces associated to a stream interface signature are stream interfaces [9.2.13.3]. 20
 context Flow inv StreamSignature: self.interface->forAll(oclIsTypeOf(StreamInterface)) 21

 context StreamInterface inv StreamInterfaceSignature: 22
 self.specifier->forAll(oclIsTypeOf(StreamInterfaceSignature)) 23

9.2 UML mappings 24

The following paragraphs describe how the ODP computational concepts described in the previous Clause are 25
represented in UML in a computational specification. A brief explanation of the UML concepts used in the 26
representation of each concept is given, together with a justification of the representation used. 27

NOTE – In this clause mappings are only defined for those concepts for which use has been demonstrated through an example, 28
included in the main body of this document or in its annexes. Where no example has been identified, the concept concern is 29
mentioned, but no mapping is offered. 30

9.2.1 Computational object template 31

A computational object template is modelled as a UML component. A UML component represents a modular part of a 32
system which encapsulates its contents, and defines its behaviour in terms of provided and required interfaces through its 33
ports. 34

The attribute isIndirectlyInstantiated of the component stereotyped «CV_ObjectTemplate» should be set to true. This 35
attribute constraints the he kind of instantiation that applies to a UML component. If false, the component is instantiated 36
as an addressable object. If true (default vuale), the component is defined at design-time, but at runtime (or execution-37
time) an object specified by the component does not exist, that is, the component is instantiated indirectly, through the 38
instantiation of its realizing classifiers or parts. 39

9.2.2 Computational object 40

A computational object is modelled as a UML InstanceSpecification of component, stereotyped as «CV_Object», since it 41
is an instantiation of a computational object template. An InstanceSpecification of component is an instance of a UML 42
classifier component. 43

9.2.3 Binding object 44

A binding object is a kind of computational object, and is modelled as a UML InstanceSpecification of component, 45
stereotyped as «CV_BindingObject». 46

The following two restrictions apply to binding objects, and therefore to components stereotyped «CV_BindingObject»: 47

─ A binding object is associated with at least two different objects. 48

Committee Draft ISO/IEC 19793:2005 (E)

36 Committee Draft ITU-T Rec. X.906 (12/2005)

─ A binding object binds two or more objects through the same type of interface (signal, announcement, 1
interrogation, or flow). 2

9.2.4 Environment contract 3

An environment contract is modelled as a UML package, stereotyped as «CV_EnvironmentContract», when representing 4
a set of structural and behavioural constraints between a computational object and its environment, including quality of 5
service and other kinds of requirements. In addition, individual UML constraints applied to UML model elements can 6
also be stereotyped «CV_EnvironmentContract» when they capture such kinds of restrictions. 7

9.2.5 Signal 8

A signal is modelled as a UML message, stereotyped as «CV_Signal», sent by an initiating object and received by a 9
responding object. 10

9.2.6 Announcement 11

An announcement is modelled as a UML message, stereotyped as «CV_Announcement», sent by a client object and 12
received by a server object with no response expected. 13

9.2.7 Invocation 14

An invocation is a part of interrogation and is modelled as a UML message, stereotyped as «CV_Invocation», sent by a 15
client object and received by a server object. 16

9.2.8 Termination 17

A termination is a part of interrogation and is modelled as a UML message, stereotyped as «CV_Termination», sent by a 18
server object and received by a client object. 19

9.2.9 Flow 20

A flow is modelled as a UML message as well as a UML interaction. It is modelled as a UML message sent by a producer 21
object and received by a consumer object, stereotyped as «CV_Flow». It is also a UML interaction between a producer 22
object and a consumer object for the message transfer, stereotyped as «CV_Flow». 23

9.2.10 Computational interface 24

An interface of a computational object is modelled as a port of a UML component instance. A port is an interaction point 25
between a UML component and its environment or between a UML component and its internal parts (UML components). 26
A port supports two types of interfaces: provided interfaces and required interfaces. 27

Computational interface templates will be mapped to UML ports, in this case of the UML components that represent the 28
computational object templates from which the objects are instantiated. Thus, ports of component instances will be 29
stereotyped «CV_Interface», whilst ports of UML component will be stereotyped «CV_InterfaceTemplates» 30

9.2.11 Signal interface 31

A signal interface is modelled as a port of a UML component instance, stereotyped as «CV_SignalInterface». Through 32
this port, a computational object can provide or require a set of signal interface signatures. 33

9.2.12 Operation interface 34

An operation interface is modelled as a port of a UML component, stereotyped as «CV_OperationInterface». Through 35
this port, a computational object can provide or require a set of operation interface signatures. 36

9.2.13 Stream interface 37

A stream interface is modelled as a port of a UML component, stereotyped as «CV_StreamInterface». Through this port, 38
a computational object can provide or require a set of stream interface signatures. 39

9.2.14 Computational interface signature 40

A computational interface signature is modelled as a UML interface. 41

9.2.15 Signal interface signature 42

A signal interface signature is modelled as a UML interface, stereotyped as «CV_SignalInterfaceSignature». 43

9.2.16 Operation interface signature 44

An operation interface signature is modelled as a UML interface, stereotyped as «CV_OperationInterfaceSignature». 45

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 37

9.2.17 Stream interface signature 1

A stream interface signature is modelled as a UML interface, stereotyped as «CV_StreamInterfaceSignature». 2

9.2.18 Computational signature 3

A Computational signature can be modelled as a UML reception, UML operation, or interface, depending on the sort of 4
signature. UML receptions will be used to specify signatures of computational interactions which are expressed as 5
individual signals (signals, announcements, invocations and terminations). UML operations can be used to map ODP 6
interrogation signatures that are composed of an invocation signature and a termination signature. Finally, UML 7
interfaces will be used for mapping flow signatures, when flows are expressed in terms of sequences of signals. 8

9.2.19 Signal signature 9

A signal signature is modelled as a UML reception, stereotyped as «CV_SignalSignature». This stereotyped UML 10
reception represents an action template which includes name for the signal, the number, names and types of its 11
parameters, and indication of initiating or responding. 12

9.2.20 Announcement signature 13

An announcement signature is a signature for announcement. An announcement signature is modelled as a UML 14
reception, stereotyped as «CV_AnnouncementSignature». This stereotyped UML interface represents an action template 15
which includes name for the invocation, the number, names and types of its parameters, and indication of client or server. 16

9.2.21 Invocation signature 17

An invocation signature is a signature for an invocation in an interrogation. An invocation signature is modelled as a 18
UML reception, stereotyped as «CV_InvocationSignature». This stereotyped UML reception represents an action template 19
which includes name for the invocation, the number, names and types of its parameters, and indication of client or server. 20

9.2.22 Termination signature 21

A termination signature is a signature for a termination for interrogation. A termination signature is modelled as a UML 22
reception, stereotyped as «CV_TerminationSignature». This stereotyped UML reception represents an action template 23
which includes name for the termination, the number, names and types of its parameters, and indication of client or 24
server. 25

9.2.23 Interrogation signature 26

An interrogation signature is a signature for an interrogation, which comprises signatures for an invocation and a 27
termination. An interrogation signature is modelled as a UML operation, stereotyped as «CV_InterrogationSignature». 28
This stereotyped UML operation represents an action template which includes name for the invocation, the number, 29
names and types of its parameters, the indication of client or server, and the number, names and types of the 30
termination’s parameters. 31

Alternatively, an interrogation signature can be specified in terms of separated invocation [9.2.21] and termination 32
signatures [9.2.22]. 33

9.2.24 Flow signature 34

A flow signature is modelled as a UML interface, stereotyped as «CV_FlowSignature». This stereotyped UML interface 35
represents an action template which includes name for the flow, the number, names and types of its signals, their 36
parameters, and indication of producer or consumer. 37

9.2.25 Summary of the UML mappings for the computational language 38

The Computational language profile (CV_Profile) specifies how the computational viewpoint modelling concepts relate 39
to and are represented in standard UML using stereotypes, tag definitions, and constraints. It represents the concepts of 40
the computational language model (see [9.1.3]). 41

The following shows diagrammatic representations of this UML profile. 42

Committee Draft ISO/IEC 19793:2005 (E)

38 Committee Draft ITU-T Rec. X.906 (12/2005)

 1

Figure 19 – Graphical representation of the Computational Language profile (using the UML 2.0 notation) 2

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 39

The following restrictions apply to the elements of the Profile shown in Figure 19: 1
– The constraint baseComponent.isIndirectlyInstantiated=true means that the component is defined at 2

design-time, but at runtime (or execution-time) an object specified by the component does not exist, that 3
is, the component is instantiated indirectly, through the instantiation of its realizing classifiers or parts. 4

– A component representing a computational object template has ports and interfaces for interaction with 5
other computational objects. 6

In addition, the elements of the computational language (shown in Figure 18) were subject to a set of restrictions, as 7
described in [9.1.21]. The constraints that implement those restrictions on the corresponding profile elements should also 8
apply. 9

9.3 Computational specification structure (in UML terms) 10

All the UML elements representing the Computational specification will be defined within a UML model, stereotyped 11
«Computational_Spec». Such a model contains UML packages that represent: 12

– a configuration of computational objects with dependencies among those objects using required and 13
provided interfaces and signatures they provide, with UML component diagram, 14

– structure of computational objects including composition and decomposition of computational objects, 15
with UML component diagram, 16

– environment contract for computational objects, with UML constraints on UML model elements, 17
– interactions between computational objects, and interactions between composed computational objects 18

within a computational object, with UML activity diagrams, state charts, and interaction diagrams. 19

9.4 Viewpoint correspondences for the computational viewpoint 20

9.4.1 Enterprise and computational viewpoint specification correspondences 21

The specifier shall provide: 22
– for each enterprise object in the enterprise specification, that configuration of computational objects (if 23

any) that realizes the required behaviour; 24
– for each interaction in the enterprise specification, a list of those computational interfaces and operations 25

or streams (if any) that correspond to the enterprise interaction, together with a statement of whether this 26
correspondence applies to all occurrences of the interaction, or is qualified by a predicate; 27

– for each role affected by a policy in the enterprise specification, a list of the computational object types (if 28
any) that exhibit choices in the computational behaviour that are modified by the policy; 29

– for each interaction between roles in the enterprise specification, a list of computational binding object 30
types (if any) that are constrained by the enterprise interaction; 31

– for each enterprise interaction type, a list of computational behaviour types (if any) capable of 32
representing (i.e. acting as a carrier for) the enterprise interaction type. 33

If a process based approach is taken, the specifier shall provide: 34
– for each step in the process, a list of participating computational objects which may fulfil one or more of 35

actor roles, artefact roles, and resource roles. 36
Temporary Note – NBs are requested to provide proposals for how to use UML to represent, and if possible, police these 37
statements. 38

9.4.2 Information and computational viewpoint specification correspondences 39

This document does not prescribe exact correspondences between information objects and computational objects. In 40
particular, not all states of a computational specification need to correspond to states of an information specification. 41
There may exist transitional computational states within pieces of computational behaviour that are abstracted as atomic 42
transitions in the information specification. 43

Where an information object corresponds to a set of computational objects, static and invariant schemata of an 44
information object correspond to possible states of the computational objects. Every change in state of an information 45
object corresponds either to some set of interactions between computational objects or to an internal action of a 46
computational object. The invariant and dynamic schemata of the information object correspond to the behaviour and 47
environment contract of the computational objects. 48

Committee Draft ISO/IEC 19793:2005 (E)

40 Committee Draft ITU-T Rec. X.906 (12/2005)

9.4.4 Computational and engineering viewpoint specification correspondences 1

Each computational object that is not a binding object corresponds to a set of one or more basic engineering objects (and 2
any channels which connect them). All the basic engineering objects in the set correspond only to that computational 3
object. 4

Except where transparencies which replicate objects are involved, each computational interface corresponds exactly to 5
one engineering interface, and that engineering interface corresponds only to that computational interface. 6

NOTE – The engineering interface is supported by one of the basic engineering objects that corresponds to the computational 7
object supporting the computational interface. 8

Where transparencies that replicate objects are involved, each computational interface of the objects being replicated 9
correspond to a set of engineering interfaces, one for each of the basic engineering objects resulting from the replication. 10
These engineering interfaces each correspond only to the original computational interface. 11

Each computational interface is identified by any member of a set of one or more computational interface identifiers. 12
Each engineering interface is identified by any member of a set of one or more engineering interface references. Thus, 13
since a computational interface corresponds to an engineering interface, an identifier for a computational interface can 14
be represented unambiguously by an engineering interface reference from the corresponding set. 15

Each computational binding (either primitive bindings or compound bindings with associated binding objects) 16
corresponds to either an engineering local binding or an engineering channel. This engineering local binding or channel 17
corresponds only to that computational binding. If the computational binding supports operations, the engineering local 18
binding or channel shall support the interchange of at least 19

– computational signature names; 20
– computational operation names; 21
– computational termination names; 22
– invocation and termination parameters (including computational interface identifiers and computational 23

interface signatures). 24

Except where transparencies that replicate objects are involved, each computational binding object control interface has 25
a corresponding engineering interface and there exists a chain of engineering interactions linking that interface to any 26
stubs, binders, protocol objects or interceptors to be controlled in support of the computational binding. 27

NOTE – The set of control interfaces involved depends on the type of the binding object. 28

Each computational interaction corresponds to some chain of engineering interactions, starting and ending with an 29
interaction involving one or more of the basic engineering objects corresponding to the interacting computational 30
objects. 31

Each computational signal corresponds either to an interaction at an engineering local binding or to a chain of 32
engineering interactions that provides the necessary consistent view of the computational interaction. 33

The transparency prescriptions in [Part 3 – 16] specify additional correspondences. 34
NOTE 1 – Basic engineering objects corresponding to different computational objects can be members of the same cluster. 35
NOTE 2 – In an entirely object-based computational language, data are represented as abstract data types (i.e., interfaces to 36
computational objects). 37
NOTE 3 – Computational interface parameters (including those for abstract data types) can be passed by reference, such 38
parameters correspond to engineering interface references. 39
NOTE 4 – Computational interface parameters (including those for abstract data types) can be passed by migrating or replicating 40
the object supporting the interface. In the case of migration such parameters correspond to cluster templates. 41
NOTE 5 – If the abstract state of a computational object supporting an interface parameter is invariant, the object can be cloned 42
rather than migrated. 43
NOTE 6 – Cluster templates can be represented as abstract data types. Thus strict correspondences between computational 44
parameters and engineering interface references are sufficient. The use of cluster templates or data are important engineering 45
optimisations and therefore not excluded. 46
Temporary Note – NBs are requested to provide proposals for how to use UML to represent, and if possible, police these 47
statements. 48

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 41

10 Engineering Specification 1

10.1 Modelling concepts 2

The modelling concepts used in an engineering specification are defined, together with the structuring rules for their use, 3
in Clause 8 of Part 3 of RM-ODP. The explanations of the concepts in the text that follows are not normative, and in case 4
of conflicts between these explanations and the text in Part 3, the latter should be followed. 5

10.1.1 Basic concepts 6

10.1.1.1 Basic engineering object 7

A basic engineering object is an engineering object that requires the support of a distributed infrastructure. 8

10.1.1.2 Cluster 9

A cluster is a configuration of basic engineering objects forming a single unit for the purposes of deactivation, 10
checkpointing, reactivation, recovery and migration. 11

10.1.1.3 Cluster manager 12

A cluster manager is an engineering object that manages the basic engineering objects in a cluster. 13

10.1.1.4 Capsule 14

A capsule is a configuration of engineering objects forming a single unit for the purpose of encapsulation of processing 15
and storage. 16

10.1.1.5 Capsule manager 17

A capsule manager is an engineering object that manages the engineering objects in a capsule. 18

10.1.1.6 Nucleus 19

A nucleus is an engineering object that coordinates processing, storage and communications functions for use by other 20
engineering objects within the node to which it belongs. 21

10.1.1.7 Node 22

A node is a configuration of engineering objects forming a single unit for the purpose of location in space, and that 23
embodies a set of processing, storage and communication functions. 24

10.1.2 Channel concepts 25

10.1.2.1 Channel 26

A channel is a configuration of stubs, binders, protocol objects and interceptors providing a binding between a set of 27
interfaces to basic engineering objects, through which interaction can occur. 28

10.1.2.2 Stub 29

A stub is an engineering object in a channel, which interprets the interactions conveyed by the channel, and performs 30
any necessary transformation or monitoring based on this interpretation. 31

10.1.2.3 Binder 32

A binder is an engineering object in a channel, which maintains a distributed binding between interacting basic 33
engineering objects. 34

10.1.2.4 <X> Interceptor 35

An <X> interceptor is an engineering object in a channel, placed at a boundary between <X> domains. An <X> 36
interceptor 37

– performs checks to enforce or monitor policies on permitted interactions between basic engineering 38
objects in different domains; 39

– performs transformations to mask differences in interpretation of data by basic engineering objects in 40
different domains. 41

Committee Draft ISO/IEC 19793:2005 (E)

42 Committee Draft ITU-T Rec. X.906 (12/2005)

10.1.2.5 Protocol object 1

A protocol object is an engineering object in a channel, which communicates with other protocol objects in the same 2
channel to achieve interaction between basic engineering objects (possibly in different clusters, possibly in different 3
capsules, possibly in different nodes). 4

10.1.2.6 Communications domain 5

A communication domain is a set of protocol objects capable of interworking. 6

10.1.2.7 Communication interface 7

A communication interface is an interface of a protocol object that can be bound to an interface of either an interceptor 8
object or another protocol object at an interworking reference point. 9

10.1.3 Identifier concepts 10

10.1.3.1 Binding endpoint identifier 11

A binding endpoint identifier is an identifier, in the naming context of a capsule, used by a basic engineering object to 12
select one of the bindings in which it is involved, for the purpose of interaction. 13

10.1.3.2 Engineering interface reference 14

An engineering interface reference is an identifier, in the context of an engineering interface reference management 15
domain, for an engineering object interface that is available for distributed binding. 16

10.1.3.3 Engineering interface reference management domain 17

An engineering interface reference management domain is a set of nodes forming a naming domain for the purpose of 18
assigning engineering interface references. 19

10.1.3.4 Engineering interface reference management policy 20

An engineering interface reference management policy is a set of permissions and prohibitions that govern the 21
federation of engineering interface reference management domains. 22

10.1.3.5 Cluster template 23

A cluster template is an object template for a configuration of objects, with any activity required to instantiate those 24
objects and establish initial bindings. 25

10.1.4 Checkpointing concepts 26

10.1.4.1 Checkpoint 27

A checkpoint is an object template derived from the state and structure of an engineering object that can be used to 28
instantiate another engineering object, consistent with the state of the original object at the time of checkpointing. 29

10.1.4.2 Checkpointing 30

Checkpointing is to create a checkpoint. Checkpoints can only be created when the engineering object involved satisfies 31
a pre-condition stated in a checkpointing policy. 32

10.1.4.3 Cluster checkpoint 33

A cluster checkpoint is a cluster template containing checkpoints of the basic engineering objects in a cluster. 34

10.1.4.4 Deactivation 35

Deactivation is to checkpoint a cluster, followed by deletion of the cluster. 36

10.1.4.5 Cloning 37

Cloning is to instantiate a cluster from a cluster checkpoint. 38

10.1.4.6 Recovery 39

Recovery is to clone a cluster after cluster failure or deletion. 40

10.1.4.7 Reactivation 41

Reactivation is to clone a cluster following its deactivation. 42

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 43

10.1.4.8 Migration 1

Migration is to move a cluster to a different capsule. 2

10.1.5 Model of the engineering language 3

10.1.5.1 Logical models and physical deployment models 4

When modelling systems, it is useful to consider the distinction between logical models and physical models. A logical 5
model describes the logical elements of a system, while a physical model describes physical artefacts and resources 6
deployed at runtime. 7

A model of the Computational Viewpoint is a logical model. The Engineering Viewpoint refines this logical model to a 8
technology-independent model, e.g. distributed component model and messaging system. These kinds of refined models 9
are technology-independent logical models, for their respective platform styles. 10

The Engineering Viewpoint diagrams may also be physical deployment models. More specifically, the Engineering 11
Viewpoint diagrams may be technology-independent physical deployment models, and the Technology Viewpoint 12
diagrams may be technology-specific physical deployment models. 13

Both of these approaches are valid and complementary. Both the Engineering and Technology Viewpoints, therefore, 14
break down into logical and deployment viewpoints, as Figure 20 illustrates. 15

Computational (Logical)

Engineering/Logical

Technology/Logical

Engineering/Deployment

Technology/Deployment

 16

Figure 20 – Logical and physical viewpoints 17

The diagrams below illustrate the concepts of the engineering language and the relationships between them. The model 18
for the Engineering Language is presented here with four partial diagrams. 19

10.1.5.2 Engineering Objects 20

 21

Figure 21 – Engineering objects 22

NOTE – In the Figure, and in the text that follows, BEO stands for Basic Engineering Object. 23

10.1.5.3 Node structure 24

The node structure is about structuring of a node with nucleus, capsule, cluster and various engineering objects. 25

Committee Draft ISO/IEC 19793:2005 (E)

44 Committee Draft ITU-T Rec. X.906 (12/2005)

 1

Figure 22 – Engineering language – basic concepts 2

The following constraints apply to the elements of the engineering language shown in Figure 22: 3
– Each Stub to which a BEO is related must be part of a Channel to which the BEO is related 4

 context BEO inv SameChannel: 5
self.stub->forAll (stub | self.channel->exists (channel | channel = stub.channel)) 6

– For each Channel to which a BEO is related, the BEO must be related to exactly one Stub that is part of 7
that Channel 8
 context BEO inv OneStubPerChannel: 9

self.channel->forAll (channel | self.stub->select (stub | stub.channel = channel)->size () = 1) 10
– In order for two BEOs to be locally bound to each other, they must reside in the same cluster 11

 context BEO inv SameCluster: 12
self.locallyBoundObject->forAll (obj | obj.cluster = self.cluster) 13

– A BEO binds to the node management interface provided by the Nucleus associated with the Node that 14
contains the Capsule that contains the Cluster that contains the BEO 15
 context BEO inv NodeManagerDerivationRule: 16

self.nodeManager = self.cluster.capsule.node.manager 17
– The engineering object’s node manager should be the same as the node manager that contains 18

 context EngineeringObject inv NodeManagerDerivationRule: 19
self.nodeManager = self.capsule.node.manager 20

– The Capsule to which a Cluster belongs is the Capsule to which the Cluster's manager belongs 21
 context Cluster inv CapsuleDerivationRule: 22

self.capsule = self.manager.capsule 23
– Derivation Rule: The CapsuleManager to which the ClusterManager is bound is the CapsuleManager of 24

the Capsule that contains the Clusters that the CapsuleManager manages 25
 context ClusterManager inv CapsuleManager: 26

self.cluster->forAll (c : capsule | c.manager = self.capsuleManager) 27

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 45

– The set of other engineering objects that the Capsule owns and the set of ClusterManagers that the 1
Capsule owns are disjoint 2
 context Capsule inv NoOtherEOisClusterManager: 3

self.otherEngObject->intersection(self.clusterManager)->isEmpty() 4
– The set of other engineering objects that the Capsule owns and the set of CapsuleManagers that the 5

Capsule owns are disjoint 6
 context Capsule inv NoOtherEOisCapsuleManager: 7

not self.otherEngObject->includes(self.manager) 8

10.1.5.4 Channels 9

This part is about communication enabling model elements around channels. 10

 11

Figure 23 – Engineering language model – Channels 12

The following constraints apply to the concepts expressed in the diagram of Figure 23: 13
- The collection of BEOs that are the end points linked by a Channel is derived by adding to the collection, 14

for each Stub in the Channel, the BEO to which the Stub is related 15
 context Channel inv EndPointDerivationRule: 16

self.endPoint->includesAll(self.stub.bEO) and self.stub.bEO->includesAll(self.endPoint) 17
- The BEOs constituting a Channel's endpoints must each reside in different Clusters 18

 context Channel inv EndPointsInDifferentClusters: 19
self.endPoint->forAll (ep1, ep2 | ep1.cluster <> ep2.cluster) 20

- The BEO and Binder to which a Stub is related are parts of the same Channel of which the Stub is a part 21
 context Stub inv SameChannelStub: 22

self.bEO.channel = self.channel and self.binder.channel = self.channel 23
- The Stub to which a Binder is related and the ProtocolObjects to which the Binder is related are all parts 24

of the same Channel of which the Binder is a part 25
 context Binder inv SameChannelBinder: 26

self.protocolObject->forAll (po | po.channel = self.channel) and self.stub.channel = self.channel 27
- The ProtocolObjects for which an Interceptor provides protocol conversion must be part of the same 28

Channel of which the Interceptor is a part 29
 context Interceptor inv SameChannelInterceptor: 30

self.protocolObject->forAll (po | po.channel = self.channel) 31
- Any Interceptor to which a ProtocolObject is related and the Binder to which the ProtocolObject is 32

related are part of the same Channel of which the ProtocolObject is a part 33
 context ProtocolObject inv SameChannelPO: 34

self.interceptor->forAll (i | i.channel = self.channel) and self.binder.channel = self.channel 35
- In order for two ProtocolObjects to be associated, they must be of the same type 36

Committee Draft ISO/IEC 19793:2005 (E)

46 Committee Draft ITU-T Rec. X.906 (12/2005)

 context ProtocolObject inv SameType: 1
self.boundProtocolObject->forAll (po | po.type = self.type) 2

10.1.5.5 Domains 3

This part is about kinds of domains and object membership of domains that make up domains. 4

 5

Figure 24 – Domains 6

The following restrictions apply to the model elements depicted in Figure 24: 7
– All members of a subdomain are members of its parent domain: 8

 context Domain inv SubDomainIsSubSet: 9
self.subDomain->forAll (subDomain | self.member->includes(subDomain.member)) 10

– controlling objects should be associated to the corresponding domains: 11
context SecurityDomain inv ControllingObject: 12

self.controllingObject.oclIsTypeOf(SecurityAuthority) 13
context ManagementDomain inv ControllingObject: 14

self.controllingObject.oclIsTypeOf(ManagementAuthority) 15
context AddressingDomain inv ControllingObject: 16

self.controllingObject.oclIsTypeOf(AddressingAuthority) 17
context NamingDomain inv ControllingObject: self.controllingObject.oclIsTypeOf(NamingAuthority) 18

10.1.5.6 Identifiers 19

This part is mainly about identity, domain and policy management, with respect to nodes and objects. 20

 21

Figure 25 – Engineering language model – Identifiers 22

10.1.5.7 Checkpoint 23

This part is about checkpoints and checkpointings. 24

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 47

 1

Figure 26 – Engineering language model – Checkpoints 2

10.1.5.8 Other functions 3

The following diagrams show the concepts related to the deactivation, cloning, recovery, reactivation and migration 4
functions. 5

 6

Figure 27 – Engineering language model – Deactivation function 7

 8

Figure 28 – Engineering language model – Cloning function 9

Committee Draft ISO/IEC 19793:2005 (E)

48 Committee Draft ITU-T Rec. X.906 (12/2005)

 1

Figure 29 – Engineering language model – Recovery function 2

 3

Figure 30 – Engineering language model – Reactivation function 4

 5

Figure 31 – Engineering language model – Migration function 6

10.2 UML mappings 7

The following paragraphs describe how the ODP engineering concepts described in the previous Clause are represented 8
in UML in a computational specification. A brief explanation of the UML concepts used in the representation of each 9
concept is given, together with a justification of the representation used. 10

NOTE – In this clause mappings are only defined for those concepts for which use has been demonstrated through an example, 11
included in the main body of this document or in its annexes. Where no example has been identified, the concept concern is 12
mentioned, but no mapping is offered. 13

10.2.1 Engineering object template 14

An engineering object template is modelled as a UML component. A UML component represents a modular part of a 15
system which encapsulates its contents, and defines its behaviour in terms of provided and required interfaces through its 16
ports. 17

The attribute isIndirectlyInstantiated of the component stereotyped «NV_ObjectTemplate» should be set to false. This 18
attribute constraints the he kind of instantiation that applies to a UML component. If false, the component is instantiated 19
as an addressable object. 20

The stereotype has the following attributes: 21
– deployedNode: String (defines a reference to a node where an engineering object is deployed). 22

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 49

– securityDomain: String (defines a reference of a security domain it may belong to). 1
– managementDomain: String (defines a reference of a management domain it may belong to). 2

10.2.1 Engineering object 3

An engineering object is modelled as a UML InstanceSpecification of component, stereotyped as «NV_Object», since it is 4
an instantiation of an engineering object template. An InstanceSpecification of component is an instance of a UML 5
classifier component. 6

Basic engineering objects are particular kinds of engineering objects. Therefore, stereotype «NV_BEO» that identify 7
such objects, inherits from «NV_Object» 8

10.2.2 Cluster 9

A cluster is modelled as a UML InstanceSpecification of component, stereotyped as «NV_Cluster». This includes a 10
configuration of basic engineering objects and has bindings to required channels for communication. 11

10.2.3 Cluster manager 12

A cluster manager is modelled as a UML InstanceSpecification of component, stereotyped as «NV_ClusterManager». 13

10.2.4 Capsule 14

A capsule is modelled as a UML InstanceSpecification of component, stereotyped as «NV_Capsule». 15

10.2.5 Capsule manager 16

A capsule manager is modelled as a UML InstanceSpecification of component, stereotyped as «NV_CapsuleManager». 17

10.2.6 Nucleus 18

A nucleus is modelled as a UML InstanceSpecification of component, stereotyped as «NV_Nucleus». 19

10.2.7 Node 20

A node is modelled as a UML InstanceSpecification of component, stereotyped as «NV_Node». 21

10.2.8 Channel 22

A channel is modelled as a UML package, stereotyped as «NV_Channel». It consists of stubs, binders, protocol objects, 23
and possibly <X> interceptors. It is also modelled with tag definition of Channel ID for a set of engineering objects (stub, 24
binder, protocol object and <X> interceptor) comprising a channel. 25

10.2.9 Stub 26

A stub is modelled as a UML InstanceSpecification of component, stereotyped as «NV_Stub». 27

10.2.10 Binder 28

A binder is modelled as a UML InstanceSpecification of component, stereotyped as «NV_Binder». 29

10.2.11 <X> Interceptor 30

An interceptor is modelled as a UML InstanceSpecification of component, stereotyped as «NV_Interceptor». 31

10.2.12 Protocol object 32

A protocol object is modelled as a UML InstanceSpecification of component, stereotyped as «NV_ProtocolObject». 33

10.2.13 Communication domain 34

A communication domain is modelled as a UML package, stereotyped as «NV_CommunicationDomain». 35

10.2.14 Communication interface 36

A communication interface is modelled as a UML Port through which protocol object is associated with other protocol 37
objects or interceptor for communication. 38

10.2.15 Binding endpoint identifier 39

A binding endpoint identifier is modelled as a UML ValueSpecification. 40

Committee Draft ISO/IEC 19793:2005 (E)

50 Committee Draft ITU-T Rec. X.906 (12/2005)

10.2.16 Engineering interface reference 1

An engineering interface reference is modelled as a UML ValueSpecification. 2

10.2.17 Engineering interface reference management domain 3

An engineering interface reference management domain is modelled as a UML package, stereotyped as 4
«NV_InterfaceReferenceManagementDomain». 5

10.2.18 Engineering interface reference management policy 6

An engineering interface reference management policy is modelled as a UML constraint, stereotyped as 7
«NV_InterfaceReferenceManagementPolicy». 8

10.2.19 Cluster template 9

A cluster template is modelled as a UML component, stereotyped as «NV_ClusterTemplate». The InstanceSpecification 10
of component represents initial states of the cluster. 11

10.2.20 Checkpoint 12

A checkpoint is modelled as a UML InstanceSpecification of component, stereotyped as «NV_Checkpoint». The 13
InstanceSpecification of component represents checkpointed object’s states at the time of checkpointing. 14

10.2.21 Checkpointing 15

A checkpointing is modelled as a UML activity, UML interface, and UML action stereotyped as «NV_Checkpointing». 16

10.2.22 Cluster checkpoint 17

A cluster checkpoint is modelled as a UML InstanceSpecification of component, stereotyped as 18
«NV_ClusterCheckpoint». The InstanceSpecification of component represents checkpointed cluster’s state at the time of 19
checkpointing. 20

10.2.23 Deactivation 21

A deactivation is modelled as a UML activity, UML interface, or an UML action stereotyped as «NV_Deactivation». 22

10.2.24 Cloning 23

A cloning is modelled as a UML activity, UML interface, or an UML action stereotyped as «NV_Cloning». 24

10.2.25 Recovery 25

A recovery is modelled as a UML activity, UML interface, or an UML action stereotyped as «NV_Recovery». 26

10.2.26 Reactivation 27

A reactivation is modelled as a UML activity, UML interface, or an UML action stereotyped as «NV_Reactivation». 28

10.2.27 Migration 29

A migration is modelled as a UML activity, UML interface, or an UML action stereotyped as «NV_Migration». 30

10.2.30 Summary of the UML mappings for the engineering language 31

The Engineering language profile (NV_Profile) specifies how the engineering viewpoint modelling concepts relate to and 32
are represented in standard UML using stereotypes, tag definitions, and constraints. It represents the concepts of the 33
engineering language model (see [10.1.28]). 34

The following shows diagrammatic representations of this UML profile. 35

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 51

 1

Figure 32 – Graphical representation of the Engineering Language profile (using the UML 2.0 notation) 2

NOTE 1 – From the diagrams above, infrastructure mechanisms are not well represented with the use of modelling language. It 3
may be necessary to introduce functional objects, like the one in ODP Trader, such as recovery manager, etc. to cover above and 4
ODP functions as well. 5
NOTE 2 – Not all management functions are shown in the above figure, e.g. thread management for Nucleus. 6

10.3 Engineering specification structure (in UML terms) 7

An engineering specification defines the infrastructure required to support functional distribution of an ODP system, by 8
– identifying the ODP functions required to manage physical distribution, communication, processing and 9

storage; 10

Committee Draft ISO/IEC 19793:2005 (E)

52 Committee Draft ITU-T Rec. X.906 (12/2005)

– identifying the roles of different engineering objects supporting the ODP functions (for example the 1
nucleus). 2

Temporary note – How can we refer ODP functions from within our Engineering UML model? And which part (e.g. 3
engineering part only) of ODP functions should we refer. E.g. Trading function standard has enterprise, information, 4
and computational specifications within it. 5

An engineering specification is expressed in terms of 6
– a configuration of engineering objects, structured as clusters, capsule and nodes (that will be expressed 7

with UML component diagrams, including InstanceSpecification of Component for capsule, clusters basic 8
engineering objects, capsule manager, cluster manager, and nucleus); 9

– the activities that occur within those engineering objects (that will be expressed with UML Activity 10
diagrams); 11

– the interactions of those engineering objects (that will be expressed with UML Sequence diagrams). 12

An engineering specification is constrained by the rules of the engineering language. These comprise 13
– channel rules [Part 3 – 8.2.1], interface reference rules [Part 3 – 8.2.2], distributed binding rules [Part 3 – 14

8.2.3] and relocation rules [Part 3 – 8.2.4] for the provision of distribution transparent interaction among 15
engineering objects; 16

– cluster rules [Part 3 – 8.2.5], capsule rules [Part 3 – 8.2.6] and node rules [Part 3 – 8.2.7] governing the 17
configuration of engineering objects; 18

– failure rules [Part 3 – 8.2.9]. 19

Those rules will be expressed with UML or OCL constraints for relevant UML model elements. 20

All the UML elements representing the Engineering specification will be defined within a UML model, stereotyped 21
«Engineering_Spec». Such a model contains UML packages that represent: 22

– structure of a node, including nucleus, capsules, capsule managers, clusters, cluster managers, stub, 23
binder, protocol objects, interceptors, and basic engineering objects, with UML component diagram, 24

– channels, with UML component diagram and package, 25
– domains, with UML package 26
– interactions among those engineering objects, with UML activity diagrams, state charts and interaction 27

diagrams. 28

10.4 Viewpoint correspondences for the engineering viewpoint specifications 29

10.4.1 Engineering and computational viewpoint specification correspondences 30
NOTE – The correspondence between engineering viewpoint specification and computational viewpoint specification can be 31
derived from [9.4.4] 32

10.4.2 Engineering and technology viewpoint specification correspondences 33

Each engineering object corresponds to a set of one or more technology objects. The correspondence and implementable 34
standards for each technology object is dependent on the choice of technology. 35

The engineering viewpoint specification does not have any correspondence to implementation. 36

Engineering objects and their interfaces correspond to technology objects and their interfaces, and thus will become 37
basic information source for testing in the technology viewpoint. 38

11 Technology Specification 39

11.1 Modelling concepts 40

The modelling concepts used in a technology specification are defined, together with the structuring rules for their use, in 41
Clause 9 of Part 3 of RM-ODP. The explanations of the concepts in the text that follows are not normative, and in case of 42
conflicts between these explanations and the text of Part 3, the latter should be followed. 43

11.1.1 Implementable standard 44

A template for a technology object. 45

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 53

11.1.2 Implementation 1

A process of instantiation whose validity can be subject to test. 2

11.1.3 IXIT 3

Implementation eXtra Information for Test. 4

11.1.4 Model of the technology language 5

The diagram below illustrates the concepts of the technology language and the relationships between them. 6

 7

Figure 33 – Model of the technology language 8

11.2 UML mappings 9

The following paragraphs describe how the ODP technology concepts described in the previous clause are represented in 10
UML in a technology specification. A brief explanation of the UML concepts used in the representation of each concept 11
is given, together with a justification of the representation used. 12

NOTE – In this clause mappings are only defined for those concepts for which use has been demonstrated through an example, 13
included in the main body of this document or in its annexes. Where no example has been identified, the concept concern is 14
mentioned, but no mapping is offered. 15

11.2.1 Technology object 16

A technology object is modelled as a UML InstanceSpecification of artifact or node, stereotyped as «TV_Object». A UML 17
InstanceSpecification of artifact represents implementation or realization of functionality identified in its engineering 18
viewpoint specification. A UML InstanceSpecification of node represents a run-time computational resource, such as 19
computer, including execution environment for deployed artifacts. 20

11.2.2 Technology object type 21

Technology object types can be used to characterize the different kinds of technology objects that are used in a 22
technology specification (such as PCs, application servers, LANs, WANs, etc.). A technology object type is modelled as 23
UML artifact or node, stereotyped as «TV_ObjectType». They will act as valid classifiers for the UML 24
InstanceSpecifications of artifact or node, stereotyped as «TV_Object», that model the corresponding technology objects 25
that conform to such types. 26

11.2.3 Implementable standard 27

An implementation standard is modelled as a UML component, stereotyped as «TV_ImplementationStandard». 28

11.2.4 Implementation 29

An implementation is modelled as a UML activity, stereotyped as «TV_Implementation». 30

11.2.5 IXIT 31

An IXIT is modelled as a UML comment, stereotyped as «TV_IXIT». 32

11.2.6 Summary of the UML mappings for the technology language 33

The Technology language profile (TV_Profile) specifies how the engineering viewpoint modelling concepts relate to and 34
are represented in standard UML using stereotypes, tag definitions, and constraints. It represents the concepts of the 35
technology language model (see [11.1.4]). 36

The following shows diagrammatic representations of this UML profile. See Clause [A.5] for a detailed specification of 37
the stereotypes described here. 38

Committee Draft ISO/IEC 19793:2005 (E)

54 Committee Draft ITU-T Rec. X.906 (12/2005)

 1

Figure 34 – Graphical representation of the Technology Language profile (using the UML 2.0 notation) 2

The following restrictions apply to the elements depicted in Figure 34. They are derived from the corresponding 3
constraints on the elements shown in Figure 33 and on their relationships: 4

– Every technology object type is associated with at least one implementable standard. 5
– Every implementation standard is associated with (or is implemented as) one or more technology objects. 6
– Every implementation is associated with (or produces) one or more technology objects. 7

11.3 Technology specification structure (in UML terms) 8

A technology specification defines the choice of technology for an ODP system in terms of 9
– a configuration of technology objects, and 10
– interfaces between the technology objects. 11

NOTE 1 – Links between deployment boxes may be used to represent physical communication lines (e.g. to express multiple lines 12
for redundancies). 13
NOTE 2 – Network (e.g. the Internet) may be expressed with a deployment box connected with other deployment boxes. 14

A technology specification states: 15
– How the specifications for an ODP system are implemented, which may be expressed with component 16

instances and the relationships between them with text explanation. 17
– Taxonomy of such specifications, which may be provided with name(s) of implementable standards 18

described in stereotyped notes attached to deployment diagram including component instance diagram. 19
– Information required from implementers to support testing, which may be specified with stereotyped note 20

describing IXIT. 21
NOTE – Software architecture styles, such as SOA, MVC and N-tier, are considered mainly in the engineering viewpoint, since 22
they are closely related to distribution strategy. See Annex D. 23

All the UML elements representing the technology specification will be defined within a UML model, stereotyped 24
«Technology_Spec». Such a model contains UML packages that represent: 25

– structure of a node instance, including node instances within a node instance, artifacts, and networks, with 26
deployment diagram, and 27

– communication links among nodes, with deployment diagram. 28

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 55

11.4 Viewpoint correspondences for the technology viewpoint 1

A set of one or more technology objects correspond to an engineering object, and they implement specified functionality 2
in corresponding engineering object in technology specific way. 3

Note that a choice of specific technology in technology viewpoint may have constraint effect on the possible 4
architecture/platform styles/patterns and deployment patterns in engineering viewpoint specifications. 5

Temporary Note – In a WG19-J meeting, several points were made as possible requirements on Technology viewpoint. 6
– One participant made the following statements. Within a large-scale procurement process, it is often the case that 7

Technology viewpoint specification (i.e. hardware, network, operating systems, middleware, database etc.) comes 8
first, or comes earlier than Computational or Engineering viewpoint specification. In these circumstances, this early 9
Technology viewpoint specification plays a role of constraints to the choice of architecture for Computational and 10
Engineering viewpoint specifications. This possibility (reverse-direction influencing) may be noted somewhere in 11
the standards. 12

– A capability of specifying 1) number of instances (e.g. number of client systems like 10 thousand clients 13
communicating with 2 web servers), and 2) location of instances (e.g. one server in Tokyo and the other in Geneva) 14
should also be a candidate target for UML for technology viewpoint. If we were to specify or describe the mapping 15
of non-functional requirements (e.g. performance) on Computational, Engineering, and Technology viewpoint 16
specifications, the capability of specifying number of instances may be an important aspect of the mapping 17
architecture and mapping specification. 18

12 Correspondences specification 19
Temporary Note – Following discussion in Bari, and in the WODPEC 2005 workshop, the WG concluded at Bari that a further 20
profile is required, which addresses correspondences between model elements in different viewpoints. NBs are requested to 21
provide contributions on how ODP correspondences can be mapped to UML 2.0. 22

13 Conformance and compliance 23

13.1 Conformance 24

Levels of conformance may vary. At the least, implementations of tools claiming conformance to this document must 25
support: 26

– one or more of the UML profiles for viewpoint languages defined in Clauses 7 to 11; further conformance 27
may be claimed if the tool concerned supports policing or enforcing of the constraints specified for the 28
stereotypes defined in the relative profiles. 29

– tracing mechanisms to enable specification of the correspondences between ODP modelling elements in 30
the various viewpoint models supported by the tool, as defined in Clauses 7.4, 8.4, 9.4, 10.4, and 11.4; 31

– the structuring style for ODP system specifications defined in Clause 6.5. 32

13.2 Compliance 33

Specifications claiming compliance with this document shall: 34
– use the structuring style defined in Clause 6.5: 35
– be expressed using the UML profiles for the viewpoint languages defined in Clauses 7 to 11 of this 36

document; 37
– specify the correspondences between ODP modelling elements in different viewpoint models using the 38

tracing mechanisms defined in Clause s 7.4, 8.4, 9.4, 10.4, and 11.4. 39
Temporary Note – New standards/specifications may deploy other concepts not defined here as profile elements such as 40
stereotypes. Some concepts are not treated as extensions of UML elements (e.g. "scope" in enterprise language), and also Part 2 41
and Part 3 concepts may be used in the standards/specifications. NBs are requested to comment on whether it might be better to 42
extend the coverage of this clause to include such issues. 43

 44

Committee Draft ISO/IEC 19793:2005 (E)

56 Committee Draft ITU-T Rec. X.906 (12/2005)

Annex A Summary of UML profiles of ODP languages using ITU-T guidelines for UML 1
profile design 2

(This annex forms an integral part of this Recommendation | International Standard) 3

This annex contains the description of the UML Profiles for the five ODP viewpoint languages, written according to the 4
ITU-T guidelines for UML Profile Design (ITU T Rec. Z.119, Specification and Description Language (SDL). 5
Guidelines for UML Profile Design). 6

This annex is normative. 7

A.1 Enterprise viewpoint 8

A.1.1 ODP System 9

A.1.1.1 «EV_ODPSystem» 10

The stereotype «EV_ODPSystem» extends the metaclass class with multiplicity [0..1]. It is intended to capture the 11
semantics of an ODP System in the RM-ODP enterprise language. 12

A.1.1.2 Attributes 13

No tag definitions are defined for this stereotype 14

A.1.1.3 Constraints 15

May only be applied to a class also stereotyped as «EV_EnterpriseObject». 16

A.1.1.4 Semantics 17

See [7.1.1] and [7.2.1]. 18

A.1.1.5 Notation 19

UML standard syntax for UMLODP System with stereotype is used. 20

NOTE – The following icon may be used. 21
 22

«EV_ODPSystem»

A.1.1.6 References 23

RM-ODP: ODP System [Part 2 – 3.2.4] 24

UML: class [UML – 7.3.7] 25

A.1.2 Field of Application 26

A.1.2.1 «FieldOfApplication» 27

The stereotype «FieldOfApplication» extends the metaclass Comment with multiplicity [0..1]. It is intended to capture 28
the semantics of a Field of Application in the RM-ODP enterprise language. 29

A.1.2.2 Attributes 30

No tag definitions are defined for this stereotype 31

A.1.2.3 Constraints 32

May only be applied to a UML model stereotyped as «EnterpriseSpec». 33

A.1.2.4 Semantics 34

See [7.1.1] and [7.2.3]. 35

A.1.2.5 Notation 36

UML standard syntax for Comment with stereotype is used. 37

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 57

A.1.2.6 References 1

RM-ODP: Field of Application [E/L – 6.1.2] 2

UML: Comment [UML – 7.3.9] 3

A.1.3 Community 4

A.1.3.1 «EV_Community» 5

The stereotype «EV_Community» extends the metaclass Component with multiplicity [0..1]. It is intended to capture 6
the semantics of a Community in the RM-ODP enterprise language. 7

A.1.3.2 Attributes 8

No tag definitions are defined for this stereotype. 9

A.1.3.3 Constraints 10

None specified. 11

A.1.3.3 Semantics 12

See [7.1.2] and [7.2.4]. 13

A.1.3.5 Notation 14

UML standard syntax for Component with stereotype is used. 15

NOTE – The following icon may be used. 16
 17

«EV_Community»

A.1.3.6 References 18

RM-ODP: Community [Part 3 – 5.1.1], [E/L – 7.1] 19

UML: Component [UML – 8.3.1] 20

A.1.4 Community behaviour 21

A.1.4.1 «EV_CommunityBehaviour» 22

The stereotype «EV_CommunityBehaviour» extends the metaclass Realization with multiplicity [0..1]. It is intended to 23
capture the semantics of a relatiohship between a community and the behaviour defined in its specification in the RM-24
ODP enterprise language. 25

A.1.4.2 Attributes 26

No tag definitions are defined for this stereotype. 27

A.1.4.3 Constraints 28

May only exist between a component, stereotyped as «EV_Community». 29

A.1.4.4 Semantics 30

See [7.1.2] and [7.2.4] 31

A.1.4.5 Notation 32

UML standard syntax for Realization with stereotype is used. 33

A.1.4.6 References 34

RM-ODP: Community [Part 3 – 5.1.1], [E/L – 7.1] 35

UML: Realization [UML – 8.3.4] 36

Committee Draft ISO/IEC 19793:2005 (E)

58 Committee Draft ITU-T Rec. X.906 (12/2005)

A.1.5 Enterprise Object 1

A.1.5.1 «EV_EnterpriseObject» 2

The stereotype «EV_EnterpriseObject» extends the metaclass Class with multiplicity [0..1]. It is intended to capture the 3
semantics of an Enterprise Object in the RM-ODP enterprise language. 4

A.1.5.2 Attributes 5

No tag definitions are defined for this stereotype 6

A.1.5.3 Constraints 7

None. 8

A.1.5.4 Semantics 9

See [7.1.2] and [7.2.5]. 10

A.1.5.5 Notation 11

UML standard syntax for Class with stereotype is used. 12

NOTE – The following icon may be used. 13
 14

«EV_EnterpriseObject»

A.1.5.6 References 15

RM-ODP: Object [Part 2 – 8.1], Enterprise Object [E/L – 7.4] 16

UML: Class [UML – 7.3.7] 17

A.1.6 Community Object 18

A.1.6.1 «EV_CommunityObject» 19

The stereotype «EV_CommunityObject» extends the metaclass Class with multiplicity [0..1]. It is intended to capture 20
the semantics of a Community Object in the RM-ODP enterprise language. 21

A.1.6.2 Attributes 22

No tag definitions are defined for this stereotype 23

A.1.6.3 Constraints 24

1. May only be applied to a class also stereotyped as «EV_EnterpriseObject». 25

2. Within a well-formed complete model there must be a component, stereotyped as «EV_Community», 26
expressing the refinement of the Community Object. 27

A.1.6.4 Semantics 28

See [7.1.2] and [7.2.6]. 29

A.1.6.5 Notation 30

UML standard syntax for Class with stereotype is used. 31

NOTE – The following icon may be used. 32
 33

«EV_CommunityObject»

A.1.6.6 References 34

RM-ODP: Object [Part 2 – 8.1], Community Object [E/L – 6.2.2] 35

UML: Class [UML – 7.3.7] 36

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 59

A.1.7 Refines as Community 1

A.1.7.1 «EV_RefinesAsCommunity» 2

The stereotype «EV_RefinesAsCommunity» extends the metaclass Dependency with multiplicity [0..1]. It is intended to 3
capture the semantics of refinement of a Community Object as a Community in the RM-ODP enterprise language. 4

A.1.7.2 Attributes 5

No tag definitions are defined for this stereotype 6

A.1.7.3 Constraints 7

May only exist from a class, stereotyped as «EV_CommunityObject», to a component, stereotyped as «EV_Community» 8

A.1.7.4 Semantics 9

See [7.1.2] and [7.2.6]. 10

A.1.7.5 Notation 11

UML standard syntax for UML dependency with stereotype is used. 12

A.1.7.6 References 13

RM-ODP: Object [Part 2 – 8.1], Community Object [E/L – 6.2.2] 14

UML: Dependency [UML – 7.3.12] 15

A.1.8 Objective 16

A.1.8.1 «EV_Objective» 17

The stereotype «EV_Objective» extends the metaclass Class with multiplicity [0..1]. It is intended to capture the 18
semantics of an Objective in the RM-ODP enterprise language. 19

A.1.8.2 Attributes 20

No tag definitions are defined for this stereotype 21

A.1.8.3 Constraints 22

None 23

A.1.8.4 Semantics 24

See [7.1.2] and [7.2.7] 25

A.1.8.5 Notation 26

UML standard syntax for Class with stereotype is used. 27

NOTE – The following icon may be used. 28
 29

«EV_Objective»

A.1.8.6 References 30

RM-ODP: Objective [E/L – 6.2.1] 31

UML: Class [UML – 7.3.7] 32

A.1.9 Objective (of a Community) 33

A.1.9.1 «EV_ObjectiveOf» 34

The stereotype «EV_ObjectiveOf» extends the metaclass Association with multiplicity [0..1]. It is intended to capture 35
the semantics of an Objective (of a Community) in the RM-ODP enterprise language. 36

A.1.9.2 Attributes 37

No tag definitions are defined for this stereotype 38

Committee Draft ISO/IEC 19793:2005 (E)

60 Committee Draft ITU-T Rec. X.906 (12/2005)

A.1.9.3 Constraints 1

May only occur between a class stereotyped as «EV_Objective» and a component stereotyped as «EV_Community» 2

A.1.9.4 Semantics 3

See [7.1.2] and [7.2.7] 4

A.1.9.5 Notation 5

UML standard syntax for Association with stereotype is used. 6

A.1.9.6 References 7

RM-ODP: Objective [E/L – 6.2.1] 8

UML: Association [UML – 7.3.3] 9

A.1.10 Contract 10

A.1.10.1 «EV_CommunityContract» 11

The stereotype «EV_CommunityContract» extends the metaclass Package with multiplicity [0..1]. It is intended to 12
capture the semantics of a Contract in the RM-ODP enterprise language. 13

A.1.10.2 Attributes 14

No tag definitions are defined for this stereotype 15

A.1.10.3 Constraints 16

In a well-formed complete model there must be a component, stereotyped as «EV_Community», expressing the 17
specification of the Community within the namespace of the package expressing the Community Contract. 18

A.1.10.4 Semantics 19

See [7.1.2] and [7.2.8]. 20

A.1.10.5 Notation 21

UML standard syntax for Package with stereotype is used. 22

NOTE – The following icon may be used. 23
 24

«EV_CommunityContract»

A.1.10.6 References 25

RM-ODP: contract [Part 2 – 11.2.1], [E/L – 7.3] 26

UML: Package [UML – 7.3.37] 27

A.1.11 Role 28

A.1.11.1 «EV_Role» 29

The stereotype «EV_Role» extends the metaclass Class and ActivityPartition with multiplicity [0..1]. It is intended to 30
capture the semantics of a Role in the RM-ODP enterprise language. 31

A.1.11.2 Attributes 32

No tag definitions are defined for this stereotype 33

A.1.11.3 Constraints 34

None 35

A.1.11.4 Semantics 36

See [7.1.2], [7.2.9.2] and [7.2.9.3] 37

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 61

A.1.11.5 Notation 1

UML standard syntax for Class or ActivityPartition with stereotype is used. 2

NOTE – The following icon may be used. 3
 4

«EV_Role»

A.1.11.6 References 5

RM-ODP: Role [Part 2 – 9.14] 6

UML: Class [UML – 7.3.7]; ActivityPartition [UML – 12.3.10]. 7

A.1.12 Role fulfilment 8

A.1.12.1 «EV_FulfilsRole» 9

The stereotype «EV_FulfilsRole» extends the metaclass Association with multiplicity [0..1]. It is intended to capture the 10
semantics of a Role fulfilment in the RM-ODP enterprise language. 11

A.1.12.2 Attributes 12

No tag definitions are defined for this stereotype. 13

A.1.12.3 Constraints 14

May only be between a class, stereotyped as «EV_EnterpriseObject» and a class, stereotyped as «EV_Role». 15

A.1.12.4 Semantics 16

See [7.1.2] and [7.2.5]. 17

A.1.12.5 Notation 18

UML standard syntax for Association with stereotype is used. 19

A.1.12.6 References 20

RM-ODP: Role [Part 2 – 9.14] 21

UML: Association [UML – 7.3.3] 22

A.1.13 Interaction 23

A.1.13.1 «EV_Interaction» 24

The stereotype «EV_Interaction» extends the metaclass Class with multiplicity [0..1]. It is intended to capture the 25
semantics of an interaction in the RM-ODP enterprise language. 26

A.1.13.2 Attributes 27

No tag definitions are defined for this stereotype 28

A.1.13.3 Constraints 29

None. 30

A.1.13.4 Semantics 31

See [7.1.2] and [7.2.9.2]. 32

A.1.13.5 Notation 33

UML standard syntax for Class with stereotype is used. 34

NOTE – The following icon may be used. 35
 36

«EV_Interaction»

Committee Draft ISO/IEC 19793:2005 (E)

62 Committee Draft ITU-T Rec. X.906 (12/2005)

A.1.13.6 References 1

RM-ODP: Interaction [Part 2 – 8.3] 2

UML: Class [UML – 7.3.7] 3

A.1.14 Interaction Initiator 4

A.1.14.1 «EV_InteractionInitiator» 5

The stereotype «EV_InteractionInitiator» extends the metaclass Association with multiplicity [0..1]. It is intended to 6
capture the semantics of a Interaction Initiator in the RM-ODP enterprise language. 7

A.1.14.2 Attributes 8

No tag definitions are defined for this stereotype 9

A.1.14.3 Constraints 10

May only occur between a class stereotyped as «EV_Interation» and a class stereotyped as «EV_Role» 11

A.1.14.4 Semantics 12

See [7.2.9.2] 13

A.1.14.5 Notation 14

UML standard syntax for Association with stereotype is used. 15

A.1.14.6 References 16

RM-ODP: Initiating object [Part 2 – 13.3.1] 17

UML: Association [UML – 7.3.3] 18

A.1.15 Interaction Responder 19

A.1.15.1 «EV_InteractionResponder» 20

The stereotype «EV_InteractionResponder» extends the metaclass Association with multiplicity [0..1]. It is intended to 21
capture the semantics of a Interaction Responder in the RM-ODP enterprise language. 22

A.1.15.2 Attributes 23

No tag definitions are defined for this stereotype. 24

A.1.15.3 Constraints 25

May only occur between a class stereotyped as «EV_Interation» and a class stereotyped as «EV_Role» 26

A.1.15.4 Semantics 27

See [7.2.9.2]. 28

A.1.15.5 Notation 29

UML standard syntax for Association with stereotype is used. 30

A.1.15.6 References 31

RM-ODP: Responding object [Part 2 – 13.3.1] 32

UML: Association [UML – 7.3.3] 33

A.1.16 Artefact 34

A.1.16.1 «EV_Artefact» 35

The stereotype «EV_Artefact» extends the metaclasses Signal and ObjectNode with multiplicity [0..1]. It is intended to 36
capture the semantics of a artefact in the RM-ODP enterprise language. 37

A.1.16.2 Attributes 38

No tag definitions are defined for this stereotype. 39

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 63

A.1.16.3 Constraints 1

None. 2

A.1.16.4 Semantics 3

See [7.1.2], [7.2.9.2] (use with Signal) and [7.2.9.3] (use with ObjectNode). 4

A.1.16.5 Notation 5

UML standard syntax for Signal and ObjectNode with stereotype is used. 6

NOTE – The following icon may be used. 7
 8

«EV_Artefact»

A.1.16.6 References 9

RM-ODP: Object [Part 2 – 8.1], Artefact [E/L – 6.3.2] 10

UML: Signal [UML – 13.2.23]; ObjectNode [UML – 13.3.38]. 11

A.1.17 Artefact role 12

A.1.17.1 «EV_ArtefactRole» 13

The stereotype «EV_ArtefactRole» extends the metaclass Association with multiplicity [0..1]. It is intended to capture 14
the semantics of an artefact role of an enterprise object when it is referenced in an action, in the RM-ODP enterprise 15
language. 16

A.1.17.2 Attributes 17

No tag definitions are defined for this stereotype. 18

A.1.17.3 Constraints 19

May only be between a class, stereotyped as «EV_EnterpriseObject» and a signal, stereotyped as «EV_Artefact». 20

A.1.17.4 Semantics 21

See [7.1.2] and [7.2.11]. 22

A.1.17.5 Notation 23

UML standard syntax for Association with stereotype is used. 24

A.1.17.6 References 25

RM-ODP: Object [Part 2 – 8.1], Artefact [E/L – 6.3.2] 26

UML: Association [UML – 7.3.3] 27

A.1.18 Artefact reference 28

A.1.18.1 «EV_ArtefactReference» 29

The stereotype «EV_ArtefactReference» extends the metaclass Association with multiplicity [0..1]. It is intended to 30
capture the semantics of a reference to an artefact in an action, in the RM-ODP enterprise language. 31

A.1.18.2 Attributes 32

No tag definitions are defined for this stereotype 33

A.1.18.3 Constraints 34

May only be between a class, stereotyped as «EV_Interaction» and a signal, stereotyped as «EV_Artefact». 35

A.1.18.4 Semantics 36

See [7.1.2] and [7.2.11]. 37

Committee Draft ISO/IEC 19793:2005 (E)

64 Committee Draft ITU-T Rec. X.906 (12/2005)

A.1.18.5 Notation 1

UML standard syntax for Association with stereotype is used. 2

A.1.18.6 References 3

RM-ODP: Object [Part 2 – 8.1], Artefact [E/L – 6.3.2]. 4

UML: Association [UML – 7.3.3]. 5

A.1.19 Process 6

A.1.19.1 «EV_Process» 7

The stereotype «EV_Process» extends the metaclass Activity with multiplicity [0..1]. It is intended to capture the 8
semantics of a Process in the RM-ODP enterprise language. 9

A.1.19.2 Attributes 10

No tag definitions are defined for this stereotype. 11

A.1.19.3 Constraints 12

None. 13

A.1.19.4 Semantics 14

See [7.1.2] and [7.2.9.3]. 15

A.1.19.5 Notation 16

UML standard syntax for Activity with stereotype is used. 17

NOTE – The following icon may be used. 18
 19

«EV_Process»

A.1.19.6 References 20

RM-ODP: Process [E/L – 6.3.5] 21

UML: Activity [UML – 12.3.4] 22

A.1.20 Step 23

A.1.20.1 «EV_Step» 24

The stereotype «EV_Step» extends the metaclass Action with multiplicity [0..1]. It is intended to capture the semantics 25
of a Step in the RM-ODP enterprise language. 26

A.1.20.2 Attributes 27

No tag definitions are defined for this stereotype. 28

A.1.20.3 Constraints 29

None. 30

A.1.20.4 Semantics 31

See [7.1.2] and [7.2.9.3]. 32

A.1.20.5 Notation 33

UML standard syntax for Action with stereotype is used. 34

NOTE – The following icon may be used. 35
 36

«EV_Step»

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 65

A.1.20.6 References 1

RM-ODP: Action [Part 2 – 8.3], Step [E/L – 6.3.6]. 2

UML: Action [UML – 12.3.2]. 3

A.1.21 Policy envelope 4

A.1.21.1 «EV_PolicyEnvelope» 5

The stereotype «EV_PolicyEnvelope» extends the metaclass Class with multiplicity [0..1]. It is intended to capture the 6
semantics of a Policy envelope in the RM-ODP enterprise language. 7

A.1.21.2 Attributes 8

No tag definitions are defined for this stereotype. 9

A.1.21.3 Constraints 10

None. 11

A.1.21.4 Semantics 12

See [7.1.3] and [7.2.13] 13

A.1.21.5 Notation 14

UML standard syntax for Class with stereotype is used. 15

A.1.21.6 References 16

RM-ODP: Policy [Part 2 – 11.2.4], [E/L – 6.4.1, 7.9]. 17

UML: Class [UML – 7.3.7]. 18

A.1.22 Policy value 19

A.1.22.1 «EV_PolicyValue» 20

The stereotype «EV_PolicyValue» extends the metaclass Class with multiplicity [0..1]. It is intended to capture the 21
semantics of a Policy value in the RM-ODP enterprise language. 22

A.1.22.2 Attributes 23

No tag definitions are defined for this stereotype. 24

A.1.22.3 Constraints 25

None. 26

A.1.22.4 Semantics 27

See [7.1.3] and [7.2.13]. 28

A.1.22.5 Notation 29

UML standard syntax for Class with stereotype is used. 30

A.1.22.6 References 31

RM-ODP: Policy [Part 2 – 11.2.4], [E/L – 6.4.1, 7.9]. 32

UML: Class [UML – 7.3.7]. 33

A.1.23 Controlling Authority 34

A.1.23.1 «EV_ControllingAuthority» 35

The stereotype «EV_ControllingAuthority» extends the metaclass Association with multiplicity [0..1]. It is intended to 36
capture the semantics of a Controlling Authority in the RM-ODP enterprise language. 37

A.1.23.2 Attributes 38

No tag definitions are defined for this stereotype 39

Committee Draft ISO/IEC 19793:2005 (E)

66 Committee Draft ITU-T Rec. X.906 (12/2005)

A.1.23.3 Constraints 1

May only occur between a class stereotyped as «EV_PolicyValue» and a class stereotyped either as «EV_Process» or 2
«EV_Interaction». 3

A.1.23.4 Semantics 4

See [7.1.3] and [7.2.13]. 5

A.1.23.5 Notation 6

UML standard syntax for Association with stereotype is used. 7

A.1.23.6 References 8

RM-ODP: Policy [Part 2 – 11.2.4], [E/L – 6.4.1, 7.9]. 9

UML: Association [UML – 7.3.3]. 10

A.1.24 Policy Envelope Rule 11

A.1.24.1 «EV_PolicyEnvelopeRule» 12

The stereotype «EV_PolicyEnvelopeRule» extends the metaclass Constraint with multiplicity [0..1]. It is intended to 13
capture the semantics of a Policy envelope rule in the RM-ODP enterprise language. 14

A.1.24.2 Attributes 15

No tag definitions are defined for this stereotype. 16

A.1.24.3 Constraints 17

May only apply to a Class stereotyped as «EV_PolicyEnvelope». 18

A.1.24.4 Semantics 19

See [7.1.3] and [7.2.13]. 20

A.1.24.5 Notation 21

UML standard syntax for Constraint with stereotype is used. 22

A.1.24.6 References 23

RM-ODP: Policy [Part 2 – 11.2.4], [E/L – 6.4.1, 7.9]. 24

UML: Constraint [UML – 7.3.10]. 25

A.1.25 Policy Value Rule 26

A.1.25.1 «EV_PolicyValueRule» 27

The stereotype «EV_PolicyValueRule» extends the metaclass Constraint with multiplicity [0..1]. It is intended to 28
capture the semantics of a Policy value rule in the RM-ODP enterprise language. 29

A.1.25.2 Attributes 30

No tag definitions are defined for this stereotype. 31

A.1.25.3 Constraints 32

May only apply to a Class stereotyped as «EV_PolicyValue». 33

A.1.25.4 Semantics 34

See [7.1.3] and [7.2.13]. 35

A.1.25.5 Notation 36

UML standard syntax for Constraint with stereotype is used. 37

A.1.25.6 References 38

RM-ODP: Policy [Part 2 – 11.2.4], [E/L – 6.4.1, 7.9]. 39

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 67

UML: Constraint [UML – 7.3.10]. 1

A.1.26 Affected behaviour 2

A.1.26.1 «EV_AffectedBehaviour» 3

The stereotype «EV_AffectedBehaviour» extends the metaclass Dependency with multiplicity [0..1]. It is intended to 4
capture the semantics of constraint on behaviour by a policy in the RM-ODP enterprise language. 5

A.1.26.2 Attributes 6

No tag definitions are defined for this stereotype. 7

A.1.26.3 Constraints 8

May only exist from a class, stereotyped as «EV_Role» or «EV_Interaction», or an activity, stereotyped as «EVProcess» 9
to a class, stereotyped as «EV_PolicyEnvelope». 10

A.1.26.4 Semantics 11

See [7.1.3] and [7.2.13]. 12

A.1.26.5 Notation 13

UML standard syntax for Dependency with stereotype is used. 14

A.1.26.6 References 15

RM-ODP: Policy [Part 2 – 11.2.4], [E/L – 6.4.1, 7.9]. 16

UML: Dependency [UML – 7.3.12]. 17

A.1.27 Party 18

A.1.27.1 EV_Party 19

The stereotype «EV_Party» extends the metaclass Class with multiplicity [0..1]. It is intended to capture the semantics 20
of a Party in the RM-ODP enterprise language. 21

A.1.27.2 Attributes 22

No tag definitions are defined for this stereotype. 23

A.1.27.3 Constraints 24

May only be applied to a class that is also stereotyped as «EV_EnterpriseObject». 25

A.1.27.4 Semantics 26

See [7.1.4] and [7.2.20]. 27

A.1.27.5 Notation 28

UML standard syntax for Class with stereotype is used. 29

A.1.27.6 References 30

RM-ODP: Object [Part 2 – 8.1], Enterprise Object [E/L – 7.4], Party [E/L – 6.5.1]. 31

UML: Class [UML – 7.3.1]. 32

A.1.28 Accountable action 33

A.1.28.1 «EV_Accountable» 34

The stereotype «EV_Accountable» extends the metaclass Association with multiplicity [0..1]. It is intended to capture 35
the semantics of an Accountable action in the RM-ODP enterprise language. 36

A.1.28.2 Attributes 37

No tag definitions are defined for this stereotype. 38

Committee Draft ISO/IEC 19793:2005 (E)

68 Committee Draft ITU-T Rec. X.906 (12/2005)

A.1.28.3 Constraints 1

May only exist between a class, stereotyped as «EV_Role», that has an association, stereotyped as «EV_FulfilsRole», 2
with a class, stereotyped as «EV_Party», and either a class, stereotyped as «EV_Interaction» or an activity, stereotyped 3
as «EV_Process». 4

A.1.28.4 Semantics 5

See [7.1.4] and [7.2.21]. 6

A.1.28.5 Notation 7

UML standard syntax for Association with stereotype is used. 8

A.1.28.6 References 9

RM-ODP: Accountability concepts [E/L – 6.5]. 10

UML: Association [UML – 7.3.3]. 11

A.1.29 Delegation 12

A.1.29.1 «EV_Delegation» 13

The stereotype «EV_Delegation» extends the metaclass Association with multiplicity [0..1]. It is intended to capture the 14
semantics of a Delegation in the RM-ODP enterprise language. 15

A.1.29.2 Attributes 16

No tag definitions are defined for this stereotype. 17

A.1.29.3 Constraints 18

May only be applied to associations between a class, stereotyped as «EV_Role», which as an association, stereotyped as 19
«EV_FulfilsRole», with a class stereotyped as «EV_Party», and a class stereotyped as «EV_Role». 20

A.1.29.4 Semantics 21

See [7.2.22]. 22

A.1.29.5 Notation 23

UML standard syntax for Association with stereotype is used. 24

A.1.29.6 References 25

RM-ODP: Delegation [E/L – 6.5.4]. 26

UML: Association [UML – 7.3.3]. 27

A.2 Information viewpoint 28

A.2.1 Information object 29

A.2.1.1 «IV_Object» 30

The stereotype «IV_Object» extends the metaclass InstanceSpecification with multiplicity [0..1]. It is intended to capture 31
the semantics of an information object in RM-ODP information language. 32

A.2.1.2 Attributes 33

No tag definitions are defined for this stereotype. 34

A.2.1.3 Constraints 35

An information object is modelled as an instance of a class: 36

context IV_Object inv: self.baseInstanceSpecification.classifier->includes(Class) 37

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 69

A.2.1.4 Semantics 1

An information object is modelled as a UML object, which is an instance of a class, and therefore it is mapped to an 2
«IV_Object» InstanceSpecification. 3

An InstanceSpecification is a UML model element that represents an instance in a modelled system. It specifies existence 4
of an entity in a modelled system and completely or partially describes the entity. The description includes the 5
classification of the entity by one or more classifiers of which the entity is an instance. 6

In UML, an object is an entity with a well-defined boundary and identity that encapsulates state and behaviour. State is 7
represented by attributes and relationships. The behaviour of UML object mapping to ODP information objects is 8
represented by state machines. 9

A.2.1.5 Notation 10

UML standard syntax for InstanceSpecification with stereotype is used. 11
NOTE – The following icon may be used. 12
 13

«IV_Object»

A.2.1.6 References 14

RM-ODP: Object [Part 2 – 8.1], Information language [Part 3 – 6] 15

UML: InstanceSpecification (from Kernel) [UML – 7.3.2] 16

A.2.2 Information object template 17

A.2.2.1 «IV_ObjectTemplate» 18

The stereotype «IV_ObjectTemplate» extends the metaclass Class with multiplicity [0..1]. It is intended to capture the 19
semantics of template for information objects in the RM-ODP information language. 20

A.2.2.2 Attributes 21

No tag definitions are defined for this stereotype 22

A.2.2.3 Constraints 23

According to the semantics of ODP, an object template should contain all the information required to instantiate it 24

context IV_ObjectTemplate inv: self.baseClass.isAbstract = false 25

A.2.2.4 Semantics 26

An «IV_ObjectTemplate» Class is mapped to an Information object template. The isAbstract attribute is set to false. 27

A.2.2.5 Notation 28

UML standard syntax for Class with stereotype is used. 29

A.2.2.6 References 30

RM-ODP: Object [Part 2 – 8.1], <X> Template [Part 2 – 9.1.1], Information language [Part 3 – 6]. 31

UML: Class (from Kernel) [UML – 7.3.7] 32

A.2.3 Information object type 33

A.2.3.1 «IV_ObjectType» 34

The stereotype «IV_ObjectType» extends the metaclass Class with multiplicity [0..1]. It is intended to capture the 35
semantics of an object type in the RM-ODP information language. 36

A.2.3.2 Attributes 37

No tag definitions are defined for this stereotype 38

A.2.3.3 Constraints 39

No constraints are defined for this stereotype 40

Committee Draft ISO/IEC 19793:2005 (E)

70 Committee Draft ITU-T Rec. X.906 (12/2005)

A.2.3.4 Semantics 1

A «IV_ObjectType» Class is mapped to an Information object type. In UML, a class describes a set of objects that share 2
the same specifications of features, constraints, and semantics. 3

NOTE – The UML concept of class is different to the ODP concept of class. A UML class is a “description” of a set of objects, 4
while an ODP class is the set of objects itself. Therefore, the UML concept of class is closer to the ODP concept of type, and there 5
is no UML concept corresponding to the ODP concept of class. Therefore, no mapping for the ODP concept of class is provided. 6

A.2.3.5 Notation 7

UML standard syntax for Class with stereotype is used. 8
NOTE – The following icon may be used. 9
 10

«IV_ObjectType»

A.2.2.6 References 11

RM-ODP: Object [Part 2 – 8.1]; Type (of an <X>) [Part 2 – 9.7]; Information language [Part 3 – 6]. 12

UML: Class (from Kernel) [UML – 7.3.7] 13

A.2.4 Information action type 14

A.2.4.1 «IV_ActionType» 15

The stereotype «IV_ActionType» extends the metaclass Signal with multiplicity [0..1]. It is intended to capture the 16
semantics of an action type in the RM-ODP information language. 17

A.2.4.2 Attributes 18

No tag definitions are defined for this stereotype 19

A.2.4.3 Constraints 20

No constraints are defined for this stereotype 21

A.2.4.4 Semantics 22

An «IV_ActionType» Signal is mapped to an Information action type. 23

In the information viewpoint, actions are mainly used for describing events that cause state changes, or for implementing 24
communications between objects, i.e., flows of information. 25

In an information specification, an internal action is mapped to an internal transition of a state of the state machine for 26
the information object concerned. 27

An interaction is mapped to a signal sent or received by the state machines of the information objects concerned. 28

A.2.4.5 Notation 29

UML standard syntax for Signal with stereotype is used. 30
NOTE – The following icon may be used. 31
 32

«IV_ActionType»

A.2.4.6 References 33

RM-ODP: Action [Part 2 – 8.3]; Type (of an <X>) [Part 2 – 9.7]; Information language [Part 3 – 6] 34

UML: Signal (from Communications) [UML – 13.3.23] 35

A.2.5 Dynamic Schema 36

A.2.5.1 «IV_Dynamic Schema» 37

The stereotype «IV_DynamicSchema» extends the metaclass StateMachine with multiplicity [0..1]. It is intended to 38
capture the semantics of a dynamic schema in the RM-ODP information language. 39

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 71

A.2.5.2 Attributes 1

No tag definitions are defined for this stereotype. 2

A.2.5.3 Constraints 3

No constraints are defined for this stereotype. 4

A.2.5.4 Semantics 5

A dynamic schema is expressed in terms of state machines for the information objects in the information specification. 6
The actions that relate to the state changes are mapped to signals that are sent and received on transitions of the state 7
machines. Then, an «IV_DynamicSchema» StateMachine is mapped to a dynamic schema. 8

A.2.5.5 Notation 9

UML standard syntax for StateMachine with stereotype is used. 10
NOTE – The following icon may be used. 11
 12

«IV_DynamicSchema»

A.2.5.6 References 13

RM-ODP: Dynamic Schema [Part 3 – 6.1.3]; Information language [Part 3 – 6] 14

UML: StateMachine (from BehaviorStateMachines) [UML – 15.3.12] 15

A.2.6 Static Schema 16

A.2.6.1 «IV_StaticSchema» 17

The stereotype «IV_StaticSchema» extends the metaclass Package with multiplicity [0..1]. It is intended to capture the 18
semantics of a static schema in the RM-ODP information language. 19

A.2.6.2 Attributes 20

 locationInTime : date This attribute specifies the location in time of the static schemata 21

A.2.6.3 Constraints 22

No constraints are defined for this stereotype 23

A.2.6.4 Semantics 24

An ODP static schema is represented as a UML package of UML objects, their attribute links, their UML link ends which 25
have an associated target link end which is navigable, and their UML classifiers. 26

NOTE – The possible associations of the information objects described in a static schema with other objects not contemplated in 27
the schema need not be included in the UML package, since they are not part of the specification provided by the schema. 28
Therefore, whenever the absence of an association instance (i.e., a link) needs to be expressed, it should be explicitly stated (by, 29
e.g., using constraints attached to the appropriate objects). 30

A.2.6.5 Notation 31

UML standard syntax for StateMachine with stereotype is used. 32
NOTE – The following icon may be used. 33
 34

« IV_StaticSchema»

A.2.6.6 References 35

RM-ODP: Static Schema [Part 3 – 6.1.2]; Information language [Part 3 – 6] 36

UML: Package (from Kernel) [UML – 7.3.37] 37

Committee Draft ISO/IEC 19793:2005 (E)

72 Committee Draft ITU-T Rec. X.906 (12/2005)

A.2.7 Invariant Schema 1

A.2.7.1 «IV_InvariantSchema» 2

The stereotype «IV_InvariantSchema» extends the metaclasses Package and Constraint with multiplicity [0..1]. It is 3
intended to capture the semantics of an invariant schema in the RM-ODP information language. 4

A.2.7.2 Attributes 5

No tag definitions are defined for this stereotype. 6

A.2.7.3 Constraints 7

No constraints are defined for this stereotype. 8

A.2.7.4 Semantics 9

Invariant schemata may impose different kinds of constraints in an information specification. 10

First, invariant schemata might provide the specification of the types of one or more information objects, that will 11
always be satisfied by whatever behaviour the objects might exhibit. 12

This kind of invariant schema may be represented in a UML Package, and drawn in a class diagram, which specifies a 13
set of information object types (in terms of the set of UML classes that represent such object types), their possible 14
relationships (represented as UML associations), and constraints on those object types, on their relationships, and 15
possibly on their behaviours (represented by the specification of the corresponding UML objects’ state machines). The 16
association multiplicities and the UML constraints on the different modelling elements will constrain the possible states 17
and state changes of the UML elements to which they apply. 18

NOTE – OCL is the recommended notation for expressing the constraints on the modelling elements that form part of the UML 19
representation of an invariant schema. However, other notations can be used when OCL does not provide enough expressive 20
power, or is not appropriate due to the kind of expected user of the specification. For example, a temporal logic formula or an 21
English text can be used for expressing a constraint that imposes some kind of fairness requirement on the behaviour of the system 22
(e.g., “Objects of class X will produce requests to objects of class Y, no later than a given time T after condition A on objects of 23
classes X, Y and Z is satisfied”). 24

As noted in ODP there are cases, however, in which an invariant schema in an information viewpoint specification is 25
defined over a set of concrete information objects. Such kind of invariant schema may be represented as a UML package 26
of UML objects. The UML constraints on these objects, together with the specifications of the UML classifiers of these 27
objects, constrain the possible states and state changes of the UML objects. 28

NOTE – The UML classifiers of the objects will constrain the possible states and state changes of the UML objects to which they 29
apply (through the UML associations, state machines, and constraints of these classifiers). 30

Finally, individual UML constraints can also be used to capture invariant schemata. 31

Thus, both a «IV_InvariantSchema» Package and a «IV_InvariantSchema» Constraint can be mapped to invariant 32
schemata. 33

A.2.7.5 Notation 34

UML standard syntax for Package or Constraint with stereotype is used. 35
NOTE – The following icon may be used. 36
 37

«IV_InvariantSchema»

A.2.7.6 References 38

RM-ODP: Invariant Schema [Part 3 – 6.1.1]; Information language [Part 3 – 6]. 39

UML: Package (from Kernel) [UML – 7.3.37]; Constraint (from Kernel) [UML – 7.3.10]. 40

A.2.8 Information specification 41

A.2.8.1 «Information_Spec» 42

The stereotype Information_Spec extends the metaclass Model with multiplicity [0..1]. It is intended to capture the 43
semantics of a static schema in the RM-ODP information language. 44

A.2.8.2 Attributes 45

No tag definitions are defined for this stereotype. 46

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 73

A.2.8.3 Constraints 1

No constraints are defined for this stereotype. 2

A.2.8.4 Semantics 3

All the UML elements representing the information specification will be defined within a UML model, stereotyped 4
«Information_Spec». Such a model contains the UML packages that represent the invariant, static and dynamic 5
schemata of the system. The structure of the «Information_Spec» model is detailed in clause 8.3. 6

A.2.8.5 Notation 7

UML standard syntax for Model with stereotype is used. 8
NOTE – The following icon may be used. 9
 10

«Information_Spec»

A.2.8.6 References 11

RM-ODP: Information language [Part 3 – 6] 12

UML: Model (from Models) [UML – 17.3.1] 13

A.3 Computational viewpoint 14

A.3.1 Computational object template 15

A.3.1.1 «CV_ObjectTemplate» 16

The stereotype «CV_ObjectTemplate» extends the metaclass Component with multiplicity [0..1]. It is intended to 17
capture the semantics of template for computational object in the RM-ODP computational language. 18

A.3.1.2 Attributes 19

No tag definitions are defined for this stereotype 20

A.3.1.3 Constraints 21
– The isIndirectlyInstantiated attribute is set to true. 22
– A Component representing a computational object template has Ports and Interfaces for interaction with 23

other computational objects. 24

A.3.1.4 Semantics 25

A «CV_ObjectTemplate» Component is mapped to a Computational object template. A UML component represents a 26
modular part of a system which encapsulates its contents, and defines its behaviour in terms of provided and required 27
interfaces through its ports. 28

The attribute isIndirectlyInstantiated of the component stereotyped «IV_ObjectTemplate» constraints the he kind of 29
instantiation that applies to a UML component. If false, the component is instantiated as an addressable object. If true 30
(default vuale), the component is defined at design-time, but at runtime (or execution-time) an object specified by the 31
component does not exist, that is, the component is instantiated indirectly, through the instantiation of its realizing 32
classifiers or parts. 33

A.3.1.5 Notation 34

UML standard syntax for Component with stereotype is used. 35

A.3.1.6 References 36

RM-ODP: Object [Part 2 – 8.1]; <X> Template [Part 2 – 9.1.1]; Computational language [Part 3 – 7] 37

UML: Component (from BasicComponents and PackagingComponents) [UML – 8.3.1] 38

Committee Draft ISO/IEC 19793:2005 (E)

74 Committee Draft ITU-T Rec. X.906 (12/2005)

A.3.2 Computational object 1

A.3.2.1 «CV_Object» 2

The stereotype «CV_Object» extends the metaclass InstanceSpecification with multiplicity [0..1]. It is intended to 3
capture the semantics of computational object in the RM-ODP computational language. 4

A.3.2.2 Attributes 5

No tag definitions are defined for this stereotype 6

A.3.2.3 Constraints 7

The InstanceSpecification is an instance of Component: 8

context CV_Object inv ComponentInstance: 9
 self.baseInstanceSpecification.classifier->includes(Component) 10

A.3.2.4 Semantics 11

A «CV_Object» InstanceSpecification is mapped to a Computational object. 12

A.3.2.5 Notation 13

UML standard syntax for InstanceSpecification with stereotype is used. 14

A.3.2.6 References 15

RM-ODP: Object [Part 2 – 8.1]; Computational language [Part 3 – 7] 16

UML: InstanceSpecification (from Kernel) [UML – 7.3.2] 17

A.3.3 Binding object 18

A.3.3.1 «CV_BindingObject» 19

The stereotype «CV_BindingObject» extends the metaclass InstanceSpecification with multiplicity [0..1]. It is intended 20
to capture the semantics of binding object in the RM-ODP computational language. Since a binding object is a particular 21
kind of computational object, stereotype «CV_BindingObject» inherits from «CV_Object». 22

A.3.3.2 Attributes 23

No tag definitions are defined for this stereotype 24

A.3.3.3 Constraints 25

A binding object is associated with at least two different objects. 26

A binding object binds two or more objects through the same type of interface (signal, announcement, interrogation, or 27
flow). 28

A.3.3.4 Semantics 29

A «CV_BindingObject» InstanceSpecification is mapped to a Binding object. 30

A.3.3.5 Notation 31

UML standard syntax for InstanceSpecification with stereotype is used. 32

A.3.3.6 References 33

RM-ODP: Object [Part 2 – 8.1]; Binding object [Part 3 – 7.1.14] 34

UML: InstanceSpecification (from Kernel) [UML – 7.3.2] 35

A.3.4 Environment contract 36

A.3.4.1 «CV_EnvironmentContract» 37

The stereotype «CV_EnvironmentContract» extends metaclasses Constraint and Package with multiplicity [0..1]. It is 38
intended to capture the semantics of environment contract in the RM-ODP computational language. 39

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 75

A.3.4.2 Attributes 1

No tag definitions are defined for this stereotype 2

A.3.4.3 Constraints 3

No constraints are defined for this stereotype 4

A.3.4.4 Semantics 5

An environment contract is modelled as a UML package stereotyped «CV_EnvironmentContract» when representing a 6
set of structural and behavioural constraints between a computational object and its environment, including quality of 7
service or other kinds of requirements. In addition, individual constraints applied to UML model elements can also be 8
stereotyped as «CV_EnvironmentContract» when they capture such kinds of restrictions. Thus, a 9
«CV_EnvironmentContract» Package or a «CV_EnvironmentContract» Constraint is mapped to an Environment 10
contract. 11

A.3.4.5 Notation 12

UML standard syntax for Package or Constraint with stereotype is used. 13

A.3.4.6 References 14

RM-ODP: Environment contract [Part 2 – A.5.3] 15

UML: Package (from Kernel) [UML – 7.3.37]; Constraint (from Kernel) [UML – 7.3.10] 16

A.3.5 Signal 17

A.3.5.1 «CV_Signal» 18

The stereotype «CV_Signal» extends the metaclass Message with multiplicity [0..1]. It is intended to capture the 19
semantics of signal in the RM-ODP computational language. 20

A.3.5.2 Attributes 21

No tag definitions are defined for this stereotype 22

A.3.5.3 Constraints 23

No constraints are defined for this stereotype 24

A.3.5.4 Semantics 25

A «CV_Signal» Message is mapped to a Signal, which is sent by initiating object and received by a responding object. 26
Any signal should be associated with a Signal Interface 27

A.3.5.5 Notation 28

UML standard syntax for Message with stereotype is used. 29

A.3.5.6 References 30

RM-ODP: Signal [Part 3 – 7.1.1] 31

UML: Message (from BasicInteractions) [UML – 14.3.20] 32

A.3.6 Announcement 33

A.3.6.1 «CV_Announcement» 34

The stereotype «CV_Announcement»extends the metaclass Message with multiplicity [0..1]. It is intended to capture 35
the semantics of announcement in the RM-ODP computational language. 36

A.3.6.2 Attributes 37

No tag definitions are defined for this stereotype 38

A.3.6.3 Constraints 39

No constraints are defined for this stereotype 40

Committee Draft ISO/IEC 19793:2005 (E)

76 Committee Draft ITU-T Rec. X.906 (12/2005)

A.3.6.4 Semantics 1

A «CV_Annoucement» Message is mapped to an Announcement, which is sent by a client object and received by a 2
server object with no response expected. Any announcement should be associated with an operation interface. 3

A.3.6.5 Notation 4

UML standard syntax for Message with stereotype is used. 5

A.3.6.6 References 6

RM-ODP: Announcement [Part 3 – 7.1.3] 7

UML: Message (from BasicInteractions) [UML – 14.3.20] 8

A.3.7 Invocation 9

A.3.7.1 «CV_Invocation» 10

The stereotype «CV_Invocation» extends the metaclass Message with multiplicity [0..1]. It is intended to capture the 11
semantics of Invocation in the RM-ODP computational language. 12

A.3.7.2 Attributes 13

No tag definitions are defined for this stereotype 14

A.3.7.3 Constraints 15

No constraints are defined for this stereotype 16

A.3.7.4 Semantics 17

A «CV_Invocation» Message is mapped to an Invocation. An invocation should be associated with an Operation 18
interface. 19

A.3.7.5 Notation 20

UML standard syntax for Message with stereotype is used. 21

A.3.7.6 References 22

RM-ODP: Announcement [Part 3 – 7.1.3]; Interrogation [Part 3 – 7.1.4] 23

UML: Message (from BasicInteractions) [UML – 14.3.20] 24

A.3.8 Termination 25

A.3.8.1 «CV_Termination» 26

The stereotype «CV_Termination» extends the metaclass Message with multiplicity [0..1]. It is intended to capture the 27
semantics of Termination in the RM-ODP computational language. 28

A.3.8.2 Attributes 29

No tag definitions are defined for this stereotype 30

A.3.8.3 Constraints 31

No constraints are defined for this stereotype 32

A.3.8.4 Semantics 33

A «CV_Termination» Message is mapped to a Termination. A termination should be associated with an Operation 34
Interface. 35

A.3.8.5 Notation 36

UML standard syntax for Message with stereotype is used. 37

A.3.8.6 References 38

RM-ODP: Interrogation [Part 3 – 7.1.4] 39

UML: Message (from BasicInteractions) [UML – 14.3.20] 40

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 77

A.3.9 Flow 1

A.3.9.1 «CV_Flow» 2

The stereotype «CV_Flow» extends metaclasses Message and Interaction with multiplicity [0..1]. It is intended to 3
capture the semantics of Flow in the RM-ODP computational language. 4

A.3.9.2 Attributes 5

No tag definitions are defined for this stereotype 6

A.3.9.3 Constraints 7

No constraints are defined for this stereotype 8

A.3.9.4 Semantics 9

A «CV_Flow» Message is mapped to a Flow. The UML message representing the flow is sent by producer object and 10
received by consumer object. Also, a «CV_Flow» Interaction is mapped to a Flow. The interaction is between between 11
the producer and the consumer objects. 12

A.3.9.5 Notation 13

UML standard syntax for Message or Interaction with stereotype is used. 14

A.3.9.6 References 15

RM-ODP: Flow [Part 3 – 7.1.5] 16

UML: Message (from BasicInteractions) [UML – 14.3.20]; Interaction (from BasicInteraction, Fragments) [UML – 17
14.3.13] 18

A.3.10 Computational interface 19

A.3.10.1 «CV_Interface» and «CV_InterfaceTemplate» 20

Stereotype «CV_InterfaceTemplate» extends the metaclass Port with multiplicity [0..1]. It is intended to capture the 21
semantics of Computational interface template in the RM-ODP computational language. 22

Stereotype «CV_Interface» extends the metaclass Port with multiplicity [0..1]. It is intended to capture the semantics of 23
a computational interface in the RM-ODP computational language. 24

A.3.10.2 Attributes 25

No tag definitions are defined for this stereotype 26

A.3.10.3 Constraints 27

Computational interface will be mapped to«CV_Interface» ports of UML components instances only. 28

Computational interface templates will be mapped to «CV_InterfaceTemplate» ports of UML components. 29

A.3.10.4 Semantics 30

A «CV_InterfaceTemplate» Port is mapped to a Computational interface template. The isService attribute is set to true, 31
and the isBehaviour attribute is set to false. 32

A computational interface template is a specification, and therefore «CV_InterfaceTemplate» ports are used with UML 33
components, not with component instances. «CV_Interface» ports of those component instances will represent the 34
computational interfaces instantiated from the corresponding interface templates. 35

A.3.10.5 Notation 36

UML standard syntax for Port with stereotype is used. 37

A.3.10.6 References 38

RM-ODP: Interface [Part 2 – 8.4]; Computational language [Part 3 – 7] 39

UML: Port (from Ports) [UML – 9.3.11] 40

Committee Draft ISO/IEC 19793:2005 (E)

78 Committee Draft ITU-T Rec. X.906 (12/2005)

A.3.11 Signal interface 1

A.3.11.1 «CV_SignalInterfaceTemplate» and «CV_SignalInterface» 2

The stereotype «CV_SignalInterfaceTemplate» extends the metaclass Port with multiplicity [0..1]. It is intended to 3
capture the semantics of Signal interface template in the RM-ODP computational language. 4

The stereotype «CV_SignalInterface» extends the metaclass Port with multiplicity [0..1]. It is intended to capture the 5
semantics of Signal interface in the RM-ODP computational language. 6

A.3.11.2 Attributes 7

No tag definitions are defined for this stereotype 8

A.3.11.3 Constraints 9

Signal interfaces will be mapped to«CV_SignalInterface» ports of UML components instances. 10

Signal interface templates will be mapped to «CV_SignalInterfaceTemplate» ports of UML components. 11

A.3.11.4 Semantics 12

A «CV_SignalInterfaceTemplate» Port is mapped to a Signal interface template. The isService attribute is set to true, and 13
the isBehaviour attribute is set to false. 14

A signal interface template is a specification, and therefore «CV_SignalInterfaceTemplate» ports are used with UML 15
components, not with component instances. «CV_SignalInterface» ports of those component instances will represent the 16
signal interfaces instantiated from the corresponding interface templates. 17

A.3.11.5 Notation 18

UML standard syntax for Port with stereotype is used. 19

A.3.11.6 References 20

RM-ODP: Signal interface [Part 3– 7.1.6] 21

UML: Port (from Ports) [UML – 9.3.11] 22

A.3.12 Operation interface 23

A.3.12.1 «CV_OperationInterface» and «CV_OperationTemplate» 24

The stereotype «CV_OperationInterfaceTemplate» extends the metaclass Port with multiplicity [0..1]. It is intended to 25
capture the semantics of Operation interface template in the RM-ODP computational language. 26

The stereotype «CV_OperationInterface» extends the metaclass Port with multiplicity [0..1]. It is intended to capture the 27
semantics of Operation interface in the RM-ODP computational language. 28

A.3.12.2 Attributes 29

No tag definitions are defined for this stereotype 30

A.3.12.3 Constraints 31

Operation interfaces will be mapped to«CV_OperationInterface» ports of UML components instances. 32

Operation interface templates will be mapped to «CV_OperationInterfaceTemplate» ports of UML components. 33

A.3.12.4 Semantics 34

A «CV_OperationInterface» Port is mapped to an Operation interface. The isService attribute is set to true, and the 35
isBehaviour attribute is set to false. 36

An operation interface template is a specification, and therefore «CV_OperationInterfaceTemplate» ports are used with 37
UML components, not with component instances. «CV_OperationInterface» ports of those component instances will 38
represent the operation interfaces instantiated from the corresponding interface templates. 39

A.3.12.5 Notation 40

UML standard syntax for Port with stereotype is used. 41

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 79

A.3.12.6 References 1

RM-ODP: Operation interface [Part 3– 7.1.7] 2

UML: Port (from Ports) [UML – 9.3.11] 3

A.3.13 Stream interface 4

A.3.13.1 «CV_StreamInterface» and «CV_StreamInterfaceTemplate» 5

The stereotype «CV_StreamInterfaceTemplate» extends the metaclass Port with multiplicity [0..1]. It is intended to 6
capture the semantics of Stream interface template in the RM-ODP computational language. 7

The stereotype «CV_StreamInterface» extends the metaclass Port with multiplicity [0..1]. It is intended to capture the 8
semantics of Stream interface in the RM-ODP computational language. 9

A.3.13.2 Attributes 10

No tag definitions are defined for this stereotype 11

A.3.13.3 Constraints 12

Stream interfaces will be mapped to«CV_ StreamInterface» ports of UML components instances. 13

Stream interface templates will be mapped to «CV_ StreamInterfaceTemplate» ports of UML components. 14

A.3.13.4 Semantics 15

A «CV_StreamInterface» Port is mapped to an Stream interface. The isService attribute is set to true, and the isBehaviour 16
attribute is set to false. 17

A stream interface template is a specification, and therefore «CV_StreamInterfaceTemplate» ports are used with UML 18
components, not with component instances. «CV_StreamInterface» ports of those component instances will represent 19
the stream interfaces instantiated from the corresponding interface templates. 20

A.3.13.5 Notation 21

UML standard syntax for Port with stereotype is used. 22

A.3.13.6 References 23

RM-ODP: Stream interface [Part 3– 7.1.8] 24

UML: Port (from Ports) [UML – 9.3.11] 25

A.3.14 Computational interface signature 26

A.3.14.1 «CV_InterfaceSignature» 27

The stereotype «CV_Signature» extends the metaclass Interface with multiplicity [0..1]. It is intended to capture the 28
semantics of Computational interface signature in the RM-ODP computational language. 29

A.3.14.2 Attributes 30

No tag definitions are defined for this stereotype 31

A.3.14.3 Constraints 32

No constraints are defined for this stereotype 33

A.3.14.4 Semantics 34

A «CV_InterfaceSignature» Interface is mapped to a Computational interface signature. 35

A.3.14.5 Notation 36

UML standard syntax for Interface with stereotype is used. 37

A.3.14.6 References 38

RM-ODP: Interface signature [Part 2 – 9.12] 39

UML: Interface (from Interfaces) [UML – 7.3.24] 40

Committee Draft ISO/IEC 19793:2005 (E)

80 Committee Draft ITU-T Rec. X.906 (12/2005)

A.3.15 Signal interface signature 1

A.3.15.1 «CV_SignalInterfaceSignature» 2

The stereotype «CV_SignalInterfaceSignature» extends the metaclass Interface with multiplicity [0..1]. It is intended to 3
capture the semantics of Signal interface signature in the RM-ODP computational language. 4

A.3.15.2 Attributes 5

No tag definitions are defined for this stereotype 6

A.3.15.3 Constraints 7

Associated Interfaces are Signal Interfaces (see A.3.11.3) 8

A.3.15.4 Semantics 9

A «CV_SignalInterfaceSignature» Interface is mapped to a Signal interface signature. 10

A.3.15.5 Notation 11

UML standard syntax for Interface with stereotype is used. 12

A.3.15.6 References 13

RM-ODP: Signal interface signature [Part 3 – 7.1.11] 14

UML: Interface (from Interfaces) [UML – 7.3.24] 15

A.3.16 Operation interface signature 16

A.3.16.1 «CV_OperationInterfaceSignature» 17

The stereotype «CV_OperationInterfaceSignature» extends the metaclass Interface with multiplicity [0..1]. It is intended 18
to capture the semantics of Operation interface signature in the RM-ODP computational language. 19

A.3.16.2 Attributes 20

No tag definitions are defined for this stereotype 21

A.3.16.3 Constraints 22

Associated Interfaces are Operation Interfaces (see A.3.12.3) 23

A.3.16.4 Semantics 24

A «CV_OperationInterfaceSignature» Interface is mapped to an Operation interface signature. 25

A.3.16.5 Notation 26

UML standard syntax for Interface with stereotype is used. 27

A.3.16.6 References 28

RM-ODP: Operation interface signature [Part 3 – 7.1.12] 29

UML: Interface (from Interfaces) [UML – 7.3.24] 30

A.3.17 Stream interface signature 31

A.3.17.1 «CV_StreamInterfaceSignature» 32

The stereotype «CV_StreamInterfaceSignature» extends the metaclass Interface with multiplicity [0..1]. It is intended to 33
capture the semantics of Stream interface signature in the RM-ODP computational language. 34

A.3.17.2 Attributes 35

No tag definitions are defined for this stereotype 36

A.3.17.3 Constraints 37

No constraints are defined for this stereotype 38

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 81

A.3.17.4 Semantics 1

A «CV_StreamInterfaceSignature» Interface is mapped to a Stream interface signature. 2

A.3.17.5 Notation 3

UML standard syntax for Interface with stereotype is used. 4

A.3.17.6 References 5

RM-ODP: Stream interface signature [Part 3 – 7.1.13] 6

UML: Interface (from Interfaces) [UML – 7.3.24] 7

A.3.18 Computational signature 8

Computational signatures can be modelled as UML receptions, UML operations, or interfaces. UML receptions will be 9
used to specify signatures of computational interactions which are expressed as individual signals (signals, 10
announcements, invocations and terminations). UML operations can be used to map ODP interrogation signatures that 11
are composed of an invocation signature and a termination signature. Finally, UML interfaces will be used for mapping 12
flow signatures, when flows are expressed in terms of sequences of signals. 13

A.3.19 Signal signature 14

A.3.19.1 «CV_SignalSignature» 15

The stereotype «CV_SignalSignature» extends the metaclass Reception with multiplicity [0..1]. It is intended to capture 16
the semantics of Signal signature in the RM-ODP computational language. 17

A.3.19.2 Attributes 18

No tag definitions are defined for this stereotype 19

A.3.19.3 Constraints 20

No constraints are defined for this stereotype 21

A.3.19.4 Semantics 22

A «CV_SignalSignature» Reception is mapped to a Signal signature. 23

A.3.19.5 Notation 24

UML standard syntax for Reception with stereotype is used. 25

A.3.19.6 References 26

RM-ODP: Signal signature [Part 3 – 7.1.11] 27

UML: Reception (from Communications) [UML – 13.3.22] 28

A.3.20 Announcement signature 29

A.3.20.1 «CV_AnnouncementSignature» 30

The stereotype «CV_AnnouncementSignature» extends the metaclass Reception ith multiplicity [0..1]. It is intended to 31
capture the semantics of Announcement signature in the RM-ODP computational language. 32

A.3.20.2 Attributes 33

No tag definitions are defined for this stereotype 34

A.3.20.3 Constraints 35

No constraints are defined for this stereotype 36

A.3.20.4 Semantics 37

A «CV_AnnouncementSignature» Reception is mapped to an Announcement signature. 38

A.3.20.5 Notation 39

UML standard syntax for Reception with stereotype is used. 40

Committee Draft ISO/IEC 19793:2005 (E)

82 Committee Draft ITU-T Rec. X.906 (12/2005)

A.3.20.6 References 1

RM-ODP: Operation interface signature [Part 3 – 7.1.12] 2

UML: Reception (from Communications) [UML – 13.3.22] 3

A.3.21 Invocation signature 4

A.3.21.1 «CV_InvocationSignature» 5

The stereotype «CV_InvocationSignature» extends the metaclass Reception with multiplicity [0..1]. It is intended to 6
capture the semantics of Invocation signature in the RM-ODP computational language. 7

A.3.21.2 Attributes 8

No tag definitions are defined for this stereotype 9

A.3.21.3 Constraints 10

No constraints are defined for this stereotype 11

A.3.21.4 Semantics 12

A «CV_InvocationSignature» Reception is mapped to an Interrogation signature. 13

A.3.21.5 Notation 14

UML standard syntax for Reception with stereotype is used. 15

A.3.21.6 References 16

RM-ODP: Operation interface signature [Part 3 – 7.1.12] 17

UML: Reception (from Communications) [UML – 13.3.22] 18

A.3.22 Termination signature 19

A.3.22.1 «CV_TerminationSignature» 20

The stereotype «CV_TerminationSignature» extends the metaclass Reception with multiplicity [0..1]. It is intended to 21
capture the semantics of Termination signature in the RM-ODP computational language. 22

A.3.22.2 Attributes 23

No tag definitions are defined for this stereotype 24

A.3.22.3 Constraints 25

No constraints are defined for this stereotype 26

A.3.22.4 Semantics 27

A «CV_TerminationSignature» Reception is mapped to a Termination signature. 28

A.3.22.5 Notation 29

UML standard syntax for Reception with stereotype is used. 30

A.3.22.6 References 31

RM-ODP: Operation interface signature [Part 3 – 7.1.12] 32

UML: Reception (from Communications) [UML – 13.3.22] 33

A.3.23 Interrogation signature 34

A.3.23.1 «CV_InterrogationSignature» 35

The stereotype «CV_InterrogationSignature» extends the metaclass Operation with multiplicity [0..1]. It is intended to 36
capture the semantics of an interrogation signature in the RM-ODP computational language. 37

A.3.23.2 Attributes 38

No tag definitions are defined for this stereotype 39

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 83

A.3.23.3 Constraints 1

No constraints are defined for this stereotype 2

A.3.23.4 Semantics 3

An interrogation signature is a signature for an interrogation, when it is composed of an invocation and a termination. A 4
«CV_ InterrogationSignature» Operation is mapped to an Interrogation signature. This stereotyped UML operation 5
represents an action template which includes name for the invocation, the number, names and types of its parameters, the 6
indication of client or server, and the number, names and types of the termination’s parameters. 7

A.3.23.5 Notation 8

UML standard syntax for Operation with stereotype is used. 9

A.3.23.6 References 10

RM-ODP: Operation interface signature [Part 3 – 7.1.12] 11

UML: Operation (from Communications) [UML – 13.3.21] 12

A.3.24 Flow signature 13

A.3.24.1 «CV_FlowSignature» 14

The stereotype «CV_FlowSignature» extends the metaclass Interface with multiplicity [0..1]. It is intended to capture the 15
semantics of Flow signature in the RM-ODP computational language. 16

A.3.24.2 Attributes 17

No tag definitions are defined for this stereotype 18

A.3.24.3 Constraints 19

No constraints are defined for this stereotype 20

A.3.24.4 Semantics 21

A «CV_FlowSignature» Interface is mapped to a Flow signature. This stereotyped UML interface represents an action 22
template which includes name for the flow, the number, names and types of its associated signals and their parameters, 23
and an indication of producer or consumer. 24

A.3.24.5 Notation 25

UML standard syntax for Interface with stereotype is used. 26

A.3.24.6 References 27

RM-ODP: Stream interface signature [Part 3 – 7.1.13] 28

UML: Interface (from Interfaces) [UML – 7.3.24] 29

A.4 Engineering viewpoint 30

A.4.1 Engineering object template 31

A.4.1.1 «NV_ObjectTemplate» 32

The stereotype «NV_ObjectTemplate» extends the metaclass Component with multiplicity [0..1]. It is intended to 33
capture the semantics of template for engineering object in the RM-ODP engineering language. 34

A.4.1.2 Attributes 35

deployedNode: String Defines a reference to a node where an engineering object is deployed. 36

securityDomain: String Defines a reference of a security domain it may belong. 37

managementDomain: String Defines a reference of a management domain it may belong. 38

A.4.1.3 Constraints 39

The isIndirectlyInstantiated attribute is set to false. 40

Committee Draft ISO/IEC 19793:2005 (E)

84 Committee Draft ITU-T Rec. X.906 (12/2005)

 context NV_ObjectTemplate inv: 1
 self.baseComponent.isIndirectlyInstantiated = false 2

A.4.1.4 Semantics 3

A «NV_ObjectTemplate» Component is mapped to a Component. The isIndirectlyInstantiated attribute is set to false. This 4
attribute constraints the he kind of instantiation that applies to a UML component. If false, the component is instantiated 5
as an addressable object. 6

A.4.1.5 Notation 7

UML standard syntax for Component with stereotype is used. 8

A.4.1.6 References 9

RM-ODP: Object [Part 2 – 8.1], <X> Template [Part 2 – 9.1.1], Engineering language [Part 3 – 8] 10

UML: Component (from BasicComponents and PackagingComponents) [UML – 8.3.1] 11

A.4.2 Engineering object 12

A.4.2.1 «NV_Object» 13

The stereotype «NV_Object» extends the metaclass InstanceSpecification with multiplicity [0..1]. It is intended to 14
capture the semantics of engineering object in the RM-ODP engineering language. 15

A.4.2.2 Attributes 16

No tag definitions are defined for this stereotype 17

A.4.2.3 Constraints 18

The InstanceSpecification is an instance of Component. 19

self.baseInstanceSpecification.classifier->includes(Component) 20

A.4.2.4 Semantics 21

An «NV_Object» InstanceSpecification is mapped to an engineering object. 22

A.4.2.5 Notation 23

UML standard syntax for InstanceSpecification with stereotype is used. 24

A.4.2.6 References 25

RM-ODP: Object [Part 2 – 8.1], Engineering language [Part 3 – 8] 26

UML: InstanceSpecification (from Kernel) [UML – 7.3.2] 27

A.4.3 Basic engineering object 28

A.4.3.1 «NV_BEO» 29

The stereotype «NV_BEO» extends the metaclass InstanceSpecification with multiplicity [0..1]. It is intended to capture 30
the semantics of basic engineering object in the RM-ODP engineering language. 31

A.4.3.2 Attributes 32

No tag definitions are defined for this stereotype 33

A.4.3.3 Constraints 34

The InstanceSpecification is an instance of Component. 35

self.baseInstanceSpecification.classifier->includes(Component) 36

A.4.3.4 Semantics 37

An «NV_BEO» InstanceSpecification is mapped to a Basic engineering object. 38

A.4.3.5 Notation 39

UML standard syntax for InstanceSpecification with stereotype is used. 40

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 85

A.4.3.6 References 1

RM-ODP: Basic engineering object [Part 3 – 8.1.1] 2

UML: InstanceSpecification (from Kernel) [UML – 7.3.2] 3

A.4.4 Cluster 4

A.4.4.1 «NV_Cluster» 5

The stereotype «NV_Cluster» extends the metaclass InstanceSpecification with multiplicity [0..1]. It is intended to 6
capture the semantics of Cluster in the RM-ODP engineering language. 7

A.4.4.2 Attributes 8

No tag definitions are defined for this stereotype. 9

A.4.4.3 Constraints 10

The InstanceSpecification is an instance of Component. 11

self.baseInstanceSpecification.classifier->includes(Component) 12

A.4.4.4 Semantics 13

An «NV_Cluster» InstanceSpecification is mapped to a Cluster. 14

A.4.4.5 Notation 15

UML standard syntax for InstanceSpecification with stereotype is used. 16

A.4.4.6 References 17

RM-ODP: Cluster [Part 3 – 8.1.3] 18

UML: InstanceSpecification (from Kernel) [UML – 7.3.2] 19

A.4.5 Cluster manager 20

A.4.5.1 «NV_ClusterManager» 21

The stereotype «NV_ClusterManager» extends the metaclass InstanceSpecification with multiplicity [0..1]. It is intended 22
to capture the semantics of Cluster manager in the RM-ODP engineering language. 23

A.4.5.2 Attributes 24

No tag definitions are defined for this stereotype 25

A.4.5.3 Constraints 26

The InstanceSpecification is an instance of Component. 27

self.baseInstanceSpecification.classifier->includes(Component) 28

A.4.5.4 Semantics 29

An «NV_ClusterManager» InstanceSpecification is mapped to a Cluster manager. 30

A.4.5.5 Notation 31

UML standard syntax for InstanceSpecification with stereotype is used. 32

A.4.5.6 References 33

RM-ODP: Cluster manager [Part 3 – 8.1.3] 34

UML: InstanceSpecification (from Kernel) [UML – 7.3.2] 35

A.4.6 Capsule 36

A.4.6.1 «NV_Capsule» 37

The stereotype «NV_Capsule» extends the metaclass InstanceSpecification with multiplicity [0..1]. It is intended to 38
capture the semantics of Capsule in the RM-ODP engineering language. 39

Committee Draft ISO/IEC 19793:2005 (E)

86 Committee Draft ITU-T Rec. X.906 (12/2005)

A.4.6.2 Attributes 1

No tag definitions are defined for this stereotype 2

A.4.6.3 Constraints 3

The InstanceSpecification is an instance of Component. 4

self.baseInstanceSpecification.classifier->includes(Component) 5

A.4.6.4 Semantics 6

An «NV_Capsule» InstanceSpecification is mapped to a Capsule. 7

A.4.6.5 Notation 8

UML standard syntax for InstanceSpecification with stereotype is used. 9

A.4.6.6 References 10

RM-ODP: Capsule [Part 3 – 8.1.4] 11

UML: InstanceSpecification (from Kernel) [UML – 7.3.2] 12

A.4.7 Capsule manager 13

A.4.7.1 «NV_CapsuleManager» 14

The stereotype «NV_CapsuleManager» extends the metaclass InstanceSpecification with multiplicity [0..1]. It is 15
intended to capture the semantics of Capsule manager in the RM-ODP engineering language. 16

A.4.7.2 Attributes 17

No tag definitions are defined for this stereotype 18

A.4.7.3 Constraints 19

The InstanceSpecification is an instance of Component. 20

self.baseInstanceSpecification.classifier->includes(Component) 21

A.4.7.4 Semantics 22

An «NV_CapsuleManager» InstanceSpecification is mapped to a Capsule manager. 23

A.4.7.5 Notation 24

UML standard syntax for InstanceSpecification with stereotype is used. 25

A.4.7.6 References 26

RM-ODP: Capsule manager [Part 3 – 8.1.5] 27

UML: InstanceSpecification (from Kernel) [UML – 7.3.2] 28

A.4.8 Nucleus 29

A.4.8.1 «NV_Nucleus» 30

The stereotype «NV_Nucleus» extends the metaclass InstanceSpecification with multiplicity [0..1]. It is intended to 31
capture the semantics of Nucleus in the RM-ODP engineering language. 32

A.4.8.2 Attributes 33

No tag definitions are defined for this stereotype 34

A.4.8.3 Constraints 35

The InstanceSpecification is an instance of Component. 36

self.baseInstanceSpecification.classifier->includes(Component) 37

A.4.8.4 Semantics 38

An «NV_Nucleus» InstanceSpecification is mapped to a Nucleus. 39

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 87

A.4.8.5 Notation 1

UML standard syntax for InstanceSpecification with stereotype is used. 2

A.4.8.6 References 3

RM-ODP: Nucleus [Part 3 – 8.1.6] 4

UML: InstanceSpecification (from Kernel) [UML – 7.3.2] 5

A.4.9 Node 6

A.4.9.1 «NV_Node» 7

The stereotype «NV_Node» extends the metaclass InstanceSpecification with multiplicity [0..1]. It is intended to capture 8
the semantics of Node in the RM-ODP engineering language. 9

A.4.9.2 Attributes 10

No tag definitions are defined for this stereotype 11

A.4.9.3 Constraints 12

The InstanceSpecification is an instance of Component. 13

self.baseInstanceSpecification.classifier->includes(Component) 14

A.4.9.4 Semantics 15

An «NV_Node» InstanceSpecification is mapped to a Node. 16

A.4.9.5 Notation 17

UML standard syntax for InstanceSpecification with stereotype is used. 18

A.4.9.6 References 19

RM-ODP: Node [Part 3 – 8.1.7] 20

UML: InstanceSpecification (from Kernel) [UML – 7.3.2] 21

A.4.10 Channel 22

A.4.10.1 «NV_Channel» 23

The stereotype «NV_Channel» extends the metaclass Package with multiplicity [0..1]. It is intended to capture the 24
semantics of Channel in the RM-ODP engineering language. 25

A.4.10.2 Attributes 26

A.4.10.3 Constraints 27

The only elements that a channel may contain are binders, stubs, protocol objects and interceptors. 28

A.4.10.4 Semantics 29

An «NV_Channel» Package is mapped to a Channel. 30

A.4.10.5 Notation 31

UML standard syntax for Package with stereotype is used. 32

A.4.10.6 References 33

RM-ODP: 3-8.1.8 Channel [Part 3 – 8.1.8] 34

UML: Package (from Kernel) [UML – 7.3.37] 35

A.4.11 Stub 36

A.4.11.1 «NV_Stub» 37

The stereotype «NV_Stub» extends the metaclass InstanceSpecification with multiplicity [0..1]. It is intended to capture 38
the semantics of Stub in the RM-ODP engineering language. 39

Committee Draft ISO/IEC 19793:2005 (E)

88 Committee Draft ITU-T Rec. X.906 (12/2005)

A.4.11.2 Attributes 1

No tag definitions are defined for this stereotype 2

A.4.11.3 Constraints 3

The InstanceSpecification is an instance of Component. 4

self.baseInstanceSpecification.classifier->includes(Component) 5

A.4.11.4 Semantics 6

An «NV_Stub» InstanceSpecification is mapped to a Stub. 7

A.4.11.5 Notation 8

UML standard syntax for InstanceSpecification with stereotype is used. 9

A.4.11.6 References 10

RM-ODP: Stub [Part 3 – 8.1.9] 11

UML: InstanceSpecification (from Kernel) [UML – 7.3.2] 12

A.4.12 Binder 13

A.4.12.1 «NV_Binder» 14

The stereotype «NV_Binder» extends the metaclass InstanceSpecification with multiplicity [0..1]. It is intended to 15
capture the semantics of Binder in the RM-ODP engineering language. 16

A.4.12.2 Attributes 17

No tag definitions are defined for this stereotype 18

A.4.12.3 Constraints 19

The InstanceSpecification is an instance of Component. 20

self.baseInstanceSpecification.classifier->includes(Component) 21

A.4.12.4 Semantics 22

An «NV_Binder» InstanceSpecification is mapped to a Binder. 23

A.4.12.5 Notation 24

UML standard syntax for InstanceSpecification with stereotype is used. 25

A.4.12.6 References 26

RM-ODP: Binder [Part 3 – 8.1.10] 27

UML: InstanceSpecification (from Kernel) [UML – 7.3.2] 28

A.4.13 <X> Interceptor 29

A.4.13.1 «NV_Interceptor» 30

The stereotype «NV_Interceptor» extends the metaclass InstanceSpecification with multiplicity [0..1]. It is intended to 31
capture the semantics of Interceptor in the RM-ODP engineering language. 32

A.4.13.2 Attributes 33

No tag definitions are defined for this stereotype 34

A.4.13.3 Constraints 35

The InstanceSpecification is an instance of Component. 36

self.baseInstanceSpecification.classifier->includes(Component) 37

A.4.13.4 Semantics 38

An «NV_Interceptor» InstanceSpecification is mapped to an Interceptor. 39

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 89

A.4.13.5 Notation 1

UML standard syntax for InstanceSpecification with stereotype is used. 2

A.4.13.6 References 3

RM-ODP: <X> Interceptor [Part 3 – 8.1.11] 4

UML: InstanceSpecification (from Kernel) [UML – 7.3.2] 5

A.4.14 Protocol object 6

A.4.14.1 «NV_ProtocolObject» 7

The stereotype «NV_ProtocolObject» extends the metaclass InstanceSpecification with multiplicity [0..1]. It is intended 8
to capture the semantics of Protocol object in the RM-ODP engineering language. 9

A.4.14.2 Attributes 10

No tag definitions are defined for this stereotype 11

A.4.14.3 Constraints 12

The InstanceSpecification is an instance of Component. 13

self.baseInstanceSpecification.classifier->includes(Component) 14

A.4.14.4 Semantics 15

An «NV_ProtocolObject» InstanceSpecification is mapped to a Protocol object. 16

A.4.14.5 Notation 17

UML standard syntax for InstanceSpecification with stereotype is used. 18

A.4.14.6 References 19

RM-ODP: Protocol object [Part 3 – 8.1.12] 20

UML: InstanceSpecification (from Kernel) [UML – 7.3.2] 21

A.4.15 CommunicationDomain 22

A.4.15.1 «NV_CommunicationDomain» 23

The stereotype «NV_CommunicationDomain» extends the metaclass Package with multiplicity [0..1]. It is intended to 24
capture the semantics of Communication domain in the RM-ODP engineering language. 25

A.4.15.2 Attributes 26

No tag definitions are defined for this stereotype 27

A.4.15.3 Constraints 28

No constraints are defined for this stereotype 29

A.4.15.4 Semantics 30

An «NV_CommunicationDomain» Package is mapped to a Communication domain. 31

A.4.15.5 Notation 32

UML standard syntax for Package with stereotype is used. 33

A.4.15.6 References 34

RM-ODP: Communication domain [Part 3 – 8.1.13] 35

UML: Package (from Kernel) [UML – 7.3.37] 36

Committee Draft ISO/IEC 19793:2005 (E)

90 Committee Draft ITU-T Rec. X.906 (12/2005)

A.4.16 Communication interface 1

A.4.16.1 «NV_ CommunicationInterface» 2

The stereotype «NV_CommunicationInterface» extends the metaclass Port with multiplicity [0..1]. It is intended to 3
capture the semantics of Communication interface in the RM-ODP engineering language. 4

A.4.16.2 Attributes 5

No tag definitions are defined for this stereotype 6

A.4.16.3 Constraints 7

No constraints are defined for this stereotype 8

A.4.16.4 Semantics 9

An «NV_CommunicationInterface» Port is mapped to a Communication interface. The isService attribute is set to true, 10
and the isBehaviour attribute is set to false. 11

A.4.16.5 Notation 12

UML standard syntax for Port with stereotype is used. 13

A.4.16.6 References 14

RM-ODP: Communication interface [Part 3 – 8.1.14] 15

UML: Port (from Ports) [UML – 9.3.11] 16

A.4.17 Binding endpoint identifier 17

A.4.17.1 «NV_ BindingEndpointIdentifier» 18

The stereotype «NV_BindingEndpointIdentifier» extends the metaclass ValueSpecification with multiplicity [0..1]. It is 19
intended to capture the semantics of Binding endpoint identifier in the RM-ODP engineering language. 20

A.4.17.2 Attributes 21

No tag definitions are defined for this stereotype 22

A.4.17.3 Constraints 23

No constraints are defined for this stereotype 24

A.4.17.4 Semantics 25

An «NV_BindingEndpointIdentifier» ValueSpecification is mapped to a Binding endpoint identifier. 26

A.4.17.5 Notation 27

UML standard syntax for ValueSpecification with stereotype is used. 28

A.4.17.6 References 29

RM-ODP: Binding endpoint identifier [Part 3 – 8.1.15] 30

UML: ValueSpecification (from Kernel) [UML – 7.3.54] 31

A.4.18 Engineering interface reference 32

A.4.18.1 «NV_ InterfaceReference» 33

The stereotype «NV_InterfaceReference» extends the metaclass ValueSpecification with multiplicity [0..1]. It is intended 34
to capture the semantics of Engineering interface reference in the RM-ODP engineering language. 35

A.4.18.2 Attributes 36

No tag definitions are defined for this stereotype 37

A.4.18.3 Constraints 38

No constraints are defined for this stereotype 39

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 91

A.4.18.4 Semantics 1

An «NV_InterfaceReference» ValueSpecification is mapped to an Engineering interface reference. 2

A.4.18.5 Notation 3

UML standard syntax for ValueSpecification with stereotype is used. 4

A.4.18.6 References 5

RM-ODP: Engineering interface reference, Interface References Standard [Part 3 – 8.1.16] 6

UML: ValueSpecification (from Kernel) [UML – 7.3.54] 7

A.4.19 Engineering interface reference management domain 8

A.4.19.1 «NV_ InterfaceReferenceManagementDomain» 9

The stereotype «NV_InterfaceReferenceManagementDomain» extends the metaclass Package with multiplicity [0..1]. It 10
is intended to capture the semantics of Engineering interface reference management domain in the RM-ODP engineering 11
language. 12

A.4.19.2 Attributes 13

No tag definitions are defined for this stereotype 14

A.4.19.3 Constraints 15

No constraints are defined for this stereotype 16

A.4.19.4 Semantics 17

An «NV_InterfaceReferenceManagementDomain» Package is mapped to an Engineering interface reference 18
management domain. 19

A.4.19.5 Notation 20

UML standard syntax for Package with stereotype is used. 21

A.4.19.6 References 22

RM-ODP: Engineering interface reference management domain, Interface Reference Standard [Part 3 – 8.1.17] 23

UML: Package (from Kernel) [UML – 7.3.37] 24

A.4.20 Engineering interface reference management policy 25

A.4.20.1 «NV_ InterfaceReferenceManagementPolicy» 26

The stereotype «NV_InterfaceReferenceManagementPolicy» extends the metaclass Constraint with multiplicity [0..1]. It 27
is intended to capture the semantics of Engineering interface reference management policy in the RM-ODP engineering 28
language. 29

A.4.20.2 Attributes 30

No tag definitions are defined for this stereotype 31

A.4.20.3 Constraints 32

No constraints are defined for this stereotype 33

A.4.20.4 Semantics 34

An «NV_ InterfaceReferenceManagementPolicy» Constraint is mapped to an Engineering interface reference 35
management policy. 36

A.4.20.5 Notation 37

UML standard syntax for Constraint with stereotype is used. 38

A.4.20.6 References 39

RM-ODP: Engineering interface reference management policy, Interface Reference Standard [Part 3 – 8.1.18] 40

Committee Draft ISO/IEC 19793:2005 (E)

92 Committee Draft ITU-T Rec. X.906 (12/2005)

UML: Constraint (from Kernel) [UML – 7.3.10] 1

A.4.21 Cluster template 2

A.4.21.1 «NV_ClusterTemplate» 3

The stereotype «NV_ClusterTemplate» extends the metaclass Component with multiplicity [0..1]. It is intended to 4
capture the semantics of Cluster template in the RM-ODP engineering language. 5

A.4.21.2 Attributes 6

No tag definitions are defined for this stereotype 7

A.4.21.3 Constraints 8

No constraints are defined for this stereotype 9

A.4.21.4 Semantics 10

An «NV_ClusterTemplate» Component is mapped to a Cluster template. 11

A.4.21.5 Notation 12

UML standard syntax for Component with stereotype is used. 13

A.4.21.6 References 14

RM-ODP: Cluster template [Part 3 – 8.1.19] 15

UML: Component (from BasicComponents and PackagingComponents) [UML – 8.3.1] 16

A.4.22 Checkpoint 17

A.4.22.1 «NV_Checkpoint» 18

The stereotype «NV_Checkpoint» extends the metaclass InstanceSpecification with multiplicity [0..1]. It is intended to 19
capture the semantics of Checkpoint in the RM-ODP engineering language. 20

A.4.22.2 Attributes 21

No tag definitions are defined for this stereotype 22

A.4.22.3 Constraints 23

The InstanceSpecification is an instance of Component. 24

self.baseInstanceSpecification.classifier->includes(Component) 25

A.4.22.4 Semantics 26

An «NV_Checkpoint» InstanceSpecification is mapped to a Checkpoint. 27

A.4.22.5 Notation 28

UML standard syntax for InstanceSpecification with stereotype is used. 29

A.4.22.6 References 30

RM-ODP: Checkpoint [Part 3 – 8.1.20] 31

UML: InstanceSpecification (from Kernel) [UML – 7.3.2] 32

A.4.23 Checkpointing 33

A.4.23.1 «NV_Checkpointing» 34

The stereotype «NV_Checkpointing» extends the metaclass Activity with multiplicity [0..1]. It is intended to capture the 35
semantics of Checkpointing in the RM-ODP engineering language. 36

A.4.23.2 Attributes 37

No tag definitions are defined for this stereotype 38

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 93

A.4.23.3 Constraints 1

No constraints are defined for this stereotype 2

A.4.23.4 Semantics 3

An «NV_Checkpointing» Activity is mapped to a Checkpointing. The isReadOnly attribute is set to false, and the 4
isSingleExecution attribute is set to false. 5

A.4.23.5 Notation 6

UML standard syntax for Activity with stereotype is used. 7

A.4.23.6 References 8

RM-ODP: Checkpointing [Part 3 – 8.1.21] 9

UML: Activity (from BasicActivities, CompleteActivities, FundamentalActivities, StructuredActivities) [UML – 12.3.4] 10

A.4.24 Cluster checkpoint 11

A.4.24.1 «NV_ ClusterCheckpoint» 12

The stereotype «NV_ClusterCheckpoint» extends the metaclass InstanceSpecification with multiplicity [0..1]. It is 13
intended to capture the semantics of Cluster checkpoint in the RM-ODP engineering language. 14

A.4.24.2 Attributes 15

No tag definitions are defined for this stereotype 16

A.4.24.3 Constraints 17

The InstanceSpecification is an instance of Component. 18

self.baseInstanceSpecification.classifier->includes(Component) 19

A.4.24.4 Semantics 20

An «NV_ClusterCheckpoint» InstanceSpecification is mapped to a Cluster checkpoint. 21

A.4.24.5 Notation 22

UML standard syntax for InstanceSpecification with stereotype is used. 23

A.4.24.6 References 24

RM-ODP: Cluster checkpoint [Part 3 – 8.1.22] 25

UML: InstanceSpecification (from Kernel) [UML – 7.3.2] 26

A.4.25 Deactivation 27

A.4.25.1 «NV_ Deactivation» 28

The stereotype «NV_Deactivation» extends the metaclasses Activity, Interface and Action with multiplicity [0..1]. It is 29
intended to capture the semantics of Deactivation in the RM-ODP engineering language. 30

A.4.25.2 Attributes 31

No tag definitions are defined for this stereotype 32

A.4.25.3 Constraints 33

No constraints are defined for this stereotype 34

A.4.25.4 Semantics 35

When a «NV_Deactivation» Activity is mapped to a Deactivation, the isReadOnly attribute is set to false, and the 36
isSingleExecution attribute is set to false. 37

A.4.25.5 Notation 38

UML standard syntax for Activity with stereotype is used. 39

Committee Draft ISO/IEC 19793:2005 (E)

94 Committee Draft ITU-T Rec. X.906 (12/2005)

A.4.25.6 References 1

RM-ODP: Deactivation [Part 3 – 8.1.23] 2

UML: Activity (from BasicActivities, CompleteActivities, FundamentalActivities, StructuredActivities) [UML – 12.3.4]; 3
Interface (from Interfaces) [UML – 7.3.24]; Action [UML – 12.3.2]. 4

A.4.26 Cloning 5

A.4.26.1 «NV_Cloning» 6

The stereotype «NV_Cloning» extends the metaclasses Activity, Interface and Action with multiplicity [0..1]. It is 7
intended to capture the semantics of Cloning in the RM-ODP engineering language. 8

A.4.26.2 Attributes 9

No tag definitions are defined for this stereotype 10

A.4.26.3 Constraints 11

No constraints are defined for this stereotype 12

A.4.26.4 Semantics 13

When a «NV_Cloning» Activity is mapped to a Cloning, the isReadOnly attribute is set to false, and the isSingleExecution 14
attribute is set to false. 15

A.4.26.5 Notation 16

UML standard syntax for Activity with stereotype is used. 17

A.4.26.6 References 18

RM-ODP: Cloning [Part 3 – 8.1.24] 19

UML: Activity (from BasicActivities, CompleteActivities, FundamentalActivities, StructuredActivities) [UML – 12.3.4]; 20
Interface (from Interfaces) [UML – 7.3.24]; Action [UML – 12.3.2]. 21

A.4.27 Recovery 22

A.4.27.1 «NV_Recovery» 23

The stereotype «NV_Recovery» extends the metaclasses Activity, Interface and Action with multiplicity [0..1]. It is 24
intended to capture the semantics of Recovery in the RM-ODP engineering language. 25

A.4.27.2 Attributes 26

No tag definitions are defined for this stereotype 27

A.4.27.3 Constraints 28

No constraints are defined for this stereotype 29

A.4.27.4 Semantics 30

When a «NV_Recovery» Activity is mapped to a Recovery, the isReadOnly attribute is set to false, and the 31
isSingleExecution attribute is set to false. 32

A.4.27.5 Notation 33

UML standard syntax for Activity with stereotype is used. 34

A.4.27.6 References 35

RM-ODP: Recovery [Part 3 – 8.1.25] 36

UML: Activity (from BasicActivities, CompleteActivities, FundamentalActivities, StructuredActivities) [UML – 12.3.4]; 37
Interface (from Interfaces) [UML – 7.3.24]; Action [UML – 12.3.2] 38

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 95

A.4.28 Reactivation 1

A.4.28.1 «NV_Reactivation» 2

The stereotype «NV_Reactivation» extends the metaclasses Activity, Interface and Action with multiplicity [0..1]. It is 3
intended to capture the semantics of Reactivation in the RM-ODP engineering language. 4

A.4.28.2 Attributes 5

No tag definitions are defined for this stereotype 6

A.4.28.3 Constraints 7

No constraints are defined for this stereotype 8

A.4.28.4 Semantics 9

When a «NV_Reactivation» Activity is mapped to a Reactivation, the isReadOnly attribute is set to false, and the 10
isSingleExecution attribute is set to false. 11

A.4.28.5 Notation 12

UML standard syntax for Activity with stereotype is used. 13

A.4.28.6 References 14

RM-ODP: Reactivation [Part 3 – 8.1.26] 15

UML: Activity (from BasicActivities, CompleteActivities, FundamentalActivities, StructuredActivities) [UML – 12.3.4]; 16
Interface (from Interfaces) [UML – 7.3.24]; Action [UML – 12.3.2] 17

A.4.29 Migration 18

A.4.29.1 «NV_Migration» 19

The stereotype «NV_Migration» extends the metaclasses Activity, Interface and Action with multiplicity [0..1]. It is 20
intended to capture the semantics of Migration in the RM-ODP engineering language. 21

A.4.29.2 Attributes 22

No tag definitions are defined for this stereotype 23

A.4.29.3 Constraints 24

No constraints are defined for this stereotype 25

A.4.29.4 Semantics 26

When a «NV_Migration» Activity is mapped to a Migration, the isReadOnly attribute is set to false, and the 27
isSingleExecution attribute is set to false. 28

A.4.29.5 Notation 29

UML standard syntax for Activity with stereotype is used. 30

A.4.29.6 References 31

RM-ODP: Migration [Part 3 – 8.1.27] 32

UML: Activity (from BasicActivities, CompleteActivities, FundamentalActivities, StructuredActivities) [UML – 12.3.4]; 33
Interface (from Interfaces) [UML – 7.3.24]; Action [UML – 12.3.2] 34

A.5 Technology viewpoint 35

A.5.1 Technology object 36

A.5.1.1 «TV_Object» 37

The stereotype «TV_Object» extends the metaclass InstanceSpecification with multiplicity [0..1]. It is intended to 38
capture the semantics of technology object in the RM-ODP technology language. 39

Committee Draft ISO/IEC 19793:2005 (E)

96 Committee Draft ITU-T Rec. X.906 (12/2005)

A.5.1.2 Attributes 1

No tag definitions are defined for this stereotype. 2

A.5.1.3 Constraints 3

A technology object is an instance of a Node or of an Artefact: 4

context IV_Object inv: 5
 self.baseInstanceSpecification.classifier->includes(Node) or 6
 self.baseInstanceSpecification.classifier->includes(Artefact) 7

A.5.1.4 Semantics 8

A «TV_Object» InstanceSpecification of a Node or an Artefact is mapped to a Technology object. A UML Artefact 9
represents implementation or realization of functionality identified in its engineering viewpoint specification. 10

A «TV_Object» InstanceSpecification of a Node can also be mapped to a technology object. 11

A.5.1.5 Notation 12

UML standard syntax for InstanceSpecification with stereotype is used. 13

A.5.1.6 References 14

RM-ODP: Object [Part 2 – 8.1], technology language [Part 3 – 9] 15

UML: InstanceSpecification (from Kernel) [UML – 7.3.2] 16

A.5.2 Technology object type 17

A.5.2.1 «TV_ObjectType» 18

The stereotype «TV_ObjectType» extends the metaclass Artefact with multiplicity [0..1]. Also, the stereotype 19
«TV_ObjectType» extends the metaclass Node with multiplicity [0..1]. It is intended to represent the semantics of 20
technology object types in RM-ODP technology language, which characterize the different kinds of technology objects 21
used in the technology specifications. 22

A.5.2.2 Attributes 23

No tag definitions are defined for this stereotype 24

A.5.2.3 Constraints 25

Every technology object type is associated with at least one implementable standard (to which it conforms). 26

A.5.2.4 Semantics 27

An «TV_ObjectType» Artefact is mapped to a technology object type. A UML artifact represents implementation or 28
realization of functionality identified in its engineering viewpoint specification. 29

A «TV_ObjectType» Node can also be mapped to a technology object type. The filename attribute is used to refer to its 30
name. A UML Node represents a run-time computational resource, such as computer, including execution environment 31
for deployed artifacts. 32

«TV_ObjectType» Artefacts or Nodes are valid classifiers for the InstanceSpecifications stereotyped «TV_Object» that 33
model the technology objects of the technology specifications. 34

A.5.2.5 Notation 35

UML standard syntax for Artefact or Node with stereotype is used. 36

A.5.2.6 References 37

RM-ODP: Object [Part 2 – 8.1], technology language [Part 3 – 9] 38

UML: 10.3.1 Artifact (from Artifacts, Nodes) [UML – 10.3.1], Node (from Nodes) [UML – 10.3.11] 39

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 97

A.5.3 Implementation standard 1

A.5.3.1 «TV_ ImplementationStandard» 2

The stereotype «TV_ImplementationStandard» extends the metaclass Componentt with multiplicity [0..1]. It is intended 3
to capture the semantics of Implementation standard in the RM-ODP technology language. 4

A.5.3.2 Attributes 5

No tag definitions are defined for this stereotype 6

A.5.3.3 Constraints 7

Every implementation standard is associated with (or is implemented as) one or more technology objects. 8

A.5.3.4 Semantics 9

A «TV_ImplementationStandard» Component is mapped to an Implementation standard. 10

A.5.3.5 Notation 11

UML standard syntax for Component with stereotype is used. 12

A.5.3.6 References 13

RM-ODP: Implementable standard [Part 3 – 9.1.1] 14

UML: Component (from BasicComponents and PackagingComponents) [UML – 8.3.1] 15

A.5.4 Implementation 16

A.5.4.1 «TV_ Implementation» 17

The stereotype «TV_Implementation» extends the metaclass Activity with multiplicity [0..1]. It is intended to capture the 18
semantics of Implementation in the RM-ODP technology language. 19

A.5.4.2 Attributes 20

No tag definitions are defined for this stereotype 21

A.5.4.3 Constraints 22

Every implementation is associated with (or produces) one or more technology objects. 23

A.5.4.4 Semantics 24

A «TV_Implementation» Activity is mapped to an Implementation. The isReadOnly attribute is set to false, and the 25
isSingleExecution attribute is set to false. 26

A.5.4.5 Notation 27

UML standard syntax for Activity with stereotype is used. 28

A.5.4.6 References 29

RM-ODP: Implementation [Part 3 – 9.1.2] 30

UML: Activity (from BasicActivities, CompleteActivities, FundamentalActivities, StructuredActivities) [UML – 12.3.4] 31

A.5.5 IXIT 32

A.5.5.1 «TV_IXIT» 33

The stereotype «TV_IXIT» extends the metaclass Comment with multiplicity [0..1]. It is intended to capture the 34
semantics of IXIT in the RM-ODP technology language. 35

A.5.5.2 Attributes 36

No tag definitions are defined for this stereotype 37

A.5.5.3 Constraints 38

No constraints are defined for this stereotype 39

Committee Draft ISO/IEC 19793:2005 (E)

98 Committee Draft ITU-T Rec. X.906 (12/2005)

A.5.5.4 Semantics 1

An «TV_IXIT» Comment is mapped to an IXIT. 2

A.5.5.5 Notation 3

UML standard syntax for Comment with stereotype is used. 4

A.5.5.6 References 5

RM-ODP: IXIT [Part 3 – 9.1.3] 6

UML: Comment (from Kernel) [UML – 7.3.9] 7

A.6 Conformace profile 8

Conformance relates an implementation to a specification. Any proposition that is true in the specification must be true 9
in its implementation (see [6.6]). 10

 11

Figure A.1 – UML 2.0 profile for conformance 12

A.6.1 Reference point 13

A.6.1.1 «ODP_ReferencePoint» 14

The stereotype «ODP_ReferencePoint» extends metaclass Element with multiplicity [0..1]. It is intended to capture the 15
semantics of a reference point in RM-ODP. 16

A.6.1.2 Attributes 17

No tag definitions are defined for this stereotype. 18

A.6.1.3 Constraints 19

No constraints are defined for this stereotype. 20

A.6.1.4 Semantics 21

An «ODP_ReferencePoint» UML element is mapped to a Reference point. A reference point is a point at which 22
conformance may be tested and which will, therefore, needs to be accessible for test. 23

A.6.1.5 Notation 24

UML standard syntax for Element with stereotype is used. 25

A.6.1.6 References 26

RM-ODP: Reference point [Part 2 – 10.6] 27

UML: Element (from Kernel) [UML – 7.3.14] 28

A.6.2 Conformance statement 29

A.6.2.1 «ODP_ ConformanceStatement» 30

The stereotype «ODP_ConformanceStament» extends the metaclass Comment with multiplicity [0..1]. It is intended to 31
capture the semantics of conformance statement in RM-ODP. 32

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 99

A.6.2.2 Attributes 1

No tag definitions are defined for this stereotype 2

A.6.2.3 Constraints 3

Every «ODP_ConformanceStament» comment should be attached to a reference point, that is, a UML element 4
stereotyped «ODP_ReferencePoint». 5

A.6.2.4 Semantics 6

An «ODP_ConformanceStament» comment is mapped to a conformance statement. A conformance statement is a 7
statement that identifies conformance points of a specification and the behaviour which must be satisfied at these points. 8

Conformance statements will be mapped to UML comments stereotyped «ODP_ConformanceStatement», attached to the 9
UML model elements (stereotyped «ODP_ReferencePoint») that map to the corresponding reference points. These 10
comments will describe the conformance criteria that should be satisfied at the reference point. Therefore, conformance 11
criteria are those model elements stereotyped «ODP_ReferencePoint», which have also attached a 12
«ODP_ConformanceStatement» comment. It is possible to attach multiple «ODP_ConformanceStatement» comments to 13
one model element stereotyped «ODP_ReferencePoint», thus declaring several conformance criteria at the same 14
reference point. 15

A.6.2.5 Notation 16

UML standard syntax for Comment with stereotype is used. 17

A.6.2.6 References 18

RM-ODP: Conformance statement [Part 2 – 15.1] 19

UML: Comment (from Kernel) [UML – 7.3.9] 20

A.7 Structuring the specifications 21

 22

Figure A.2 – Stereotypes for structuring the specifications 23

A.7.1 ODP system and viewpoint specifications 24

A.7.1.1 «ODP_SystemSpec», «Enterprise_Spec», «Information_Spec», «Computational_Spec», 25
«Engineering_Spec», «Technology_Spec» 26

The stereotypes «ODP_SystemSpec», «Enterprise_Spec», «Information_Spec», «Computational_Spec». 27
«Engineering_Spec» and «Technology_Spec »extend metaclass Model with multiplicity [0..1]. 28

A.7.1.2 Attributes 29

No tag definitions are defined for these stereotypes. 30

A.7.1.3 Constraints 31

No constraints are defined for these stereotypes. 32

Committee Draft ISO/IEC 19793:2005 (E)

100 Committee Draft ITU-T Rec. X.906 (12/2005)

A.7.1.4 Semantics 1

The UML specifications of the ODP system will consist of one top-level UML model stereotyped «ODP_SystemSpec» 2
that contains a set of UML models, one for each viewpoint specification, each stereotyped as «<X>_Spec», where <X> 3
is the viewpoint concerned (see [6.5]). 4

A.7.1.5 Notation 5

UML standard syntax for Model with stereotype is used. 6

A.7.1.6 References 7

RM-ODP: Framework [Part 3 – 4] 8

UML: Model (from Models) [UML – 17.3.1] 9

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 101

Annex B An example of ODP specifications using UML 1
(This annex forms an integral part of this Recommendation | International Standard) 2

The following example illustrates the results of use of UML for representing ODP system specifications. 3

This annex is not normative. 4
Temporary Note 1 – The example included in this document is a proposal for discussion purposes only. Its purpose is twofold: to 5
assist with development and proving of the main text, and to act as tutorial material when the text is published. 6
Temporary Note 2 – It was agreed at the Brisbane meeting that, although one example will be finally included in this Annex, 7
limited examples to illustrate or explore particular issues are also possible. 8

B.1 The Templeman Library System 9
Temporary Note – The following specifications of the Library system are rather long because they are presented to the WG mainly 10
for discussion purposes, and therefore they include many details that could be omitted in the final version. Besides, they also 11
present many justifications on the representation mappings used. 12

B.1.1 Introduction 13

This is an example of an ODP specification of a Library system, using UML. The example is about the computerized 14
system that supports the operations of a University Library, in particular those related to the borrowing process of the 15
Library items. The system should keep track of the items of the University Library, its borrowers, and their outstanding 16
loans. The library system will be used by the library staff (librarian and assistants) to help them record loans, returns, etc. 17
The borrowers will not interact directly with the library system. 18

NOTE – In the following, the library system (or the system, for short) will refer to the computerized system that supports the 19
library operations, while the library will refer to the business itself, i.e., the environment of the system. 20

Instead of a general and abstract library, this example is based on the regulations that rule the borrowing process defined 21
at the Templeman Library at the University of Kent at Canterbury, a library that has been previously used by different 22
authors for illustrating some of the ODP concepts. 23

B.1.2 Rules of operation of the Library 24

The basic rules that govern the borrowing process of that Library are as follows: 25
(1) Borrowing rights are given to all academic staff, and to postgraduate and undergraduate students of the 26

University. 27
(2) Library books and periodicals can be borrowed. 28
(3) The librarian may temporarily withhold the circulation of Library items, or dispose them when they are no 29

longer appropriate for loan. 30
(4) For requesting a loan, the borrower must hand the books or periodicals to a Library assistant. 31
(5) There are prescribed periods of loan and limits on the number of items allowed on loan to a borrower at 32

any one time. These rules may vary from time to time, the Librarian being responsible for setting the 33
chosen policy. Typical limits are detailed below: 34
– Undergraduates may borrow eight books. They may not borrow periodicals. Books may be borrowed 35

for four weeks. 36
– Postgraduates may borrow 16 books or periodicals. Periodicals may be borrowed for one week. 37

Books may be borrowed for one month. 38
– Teaching staff may borrow 24 books or periodicals. Periodicals may be borrowed for one week. 39

Books may be borrowed for up to one year. 40
(6) Items borrowed must be returned by the due day and time which is specified when the item is borrowed. 41
(7) Borrowers who fail to return an item when it is due will become liable to a charge at the rates prescribed 42

until the book or periodical is returned to the Library, and may have borrowing rights suspended. 43
(8) Borrowers returning items must hand them in to an assistant at the Main Loan Desk. Any charges due on 44

overdue items must be paid at this time. 45
(9) Failure to pay charges may result in suspension by the Librarian of borrowing facilities. 46

In the following, we will refer to these rules as the “textual regulations” of the Library system. They will be the starting 47
point for the ODP specifications below. 48

Committee Draft ISO/IEC 19793:2005 (E)

102 Committee Draft ITU-T Rec. X.906 (12/2005)

It is important to note that the textual regulations above leave many details of the system unspecified, such as when or 1
how a borrower suspension is lifted by the librarian, or the precise information that needs to be kept in the system for 2
each user and Library item. The specification process followed here will help uncover such missing details progressively, 3
so the appropriate stakeholders of the system can determine them by making the corresponding decisions. 4

B.1.3 Expressing the Library System Specification in UML 5

This Annex describes a specification of the different ODP viewpoints of such a system, using UML. For each of the 6
viewpoints, this specification uses the corresponding languages defined in RM-ODP and, where appropriate, interprets 7
the languages in terms of the UML notation. 8

The UML specifications of the ODP system will consist of one top-level UML model stereotyped «ODP_SystemSpec» 9
composed of five UML models with the specifications of the five ODP viewpoints (Figure B.1). These models will be 10
described in the following clauses. 11

 12

Figure B.1 – UML specification of the ODP system 13

B.2 Enterprise specification in UML 14

B.2.1 Basic enterprise concepts 15

The enterprise viewpoint is an abstraction of the system that focuses on the purpose (i.e., objective), scope and policies 16
for that system and its environment. It describes the business requirements and how to meet them, but without having to 17
worry about other system considerations, such as particular details of its software architecture, its computational 18
processes, or the technology used to implement it. 19

Four key concepts of enterprise language are: system, scope, enterprise specification, and field of application. In the first 20
place, the system to be specified is a computerized system that supports the operations of a University Library, in 21
particular those related to the borrowing process of the Library items. This system has a name “The Templeman Library 22
System” (or “TLS” for short). 23

The scope of the TLS system describes its expected behaviour, i.e., the way it is supposed to work and interact with its 24
environment in the business context. In the enterprise language, the scope of the system is expressed as the set of roles it 25
fulfils. 26

In UML, the enterprise specification of the TLS system is represented by one UML model, stereotyped 27
«Enterprise_Spec», which is shown in Figure B.1. 28

NOTE – In the figures that follow, to improve the clarity of the diagrams, the icons shown in Figure B.2 have been used to 29
represent instances of the corresponding stereotypes. 30

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 103

 1

Figure B.2 – Enterprise Language Icons 2

The ODP Enterprise Language specification does not prescribe any particular method for building the enterprise 3
specification of a system, as the approach taken will depend very much on the system being specified, the business that it 4
will support, and the constraints that arise from the environment in which the system will operate. For this example, the 5
following process has been followed: 6

1. Identify the communities, with which the system is involved, and their objectives. 7
2. Define the behaviour required to fulfil the objectives of the communities. This may be in the form of 8

processes, their corresponding actions, and the participant roles in them. Objects may participate in 9
actions as actors, artefacts (if they are just referenced in the action), and resources (artefacts essential to 10
the action that may become unavailable or used up). 11

3. Alternatively, or at the same time, depending on the modelling objectives, behaviour may be expressed in 12
the form of interactions between objects fulfilling roles. 13

4. Identify the enterprise objects in each community, and how they fill the roles. 14
5. Identify the policies that govern the actions (permissions, obligations, authorizations, prohibitions), and 15

the effects of the possible violations of those policies. 16
6. Identify any behaviour that may change the structure or the members of each community during its 17

lifetime, and the policies that govern such behaviour. 18
6 Identify any behaviours that may change the rules that govern the system, and the policies that govern 19

such behaviours (changes in the structure, behaviour or policies of a community can occur only if the 20
specification includes the behaviour that can cause those changes). 21

7 Identify the actions that involve accountability of the different parties, and the possible delegations. 22

Of course, the order of these activities needs not necessarily be linear, and nor will all activities be appropriate for all 23
modelling situations. 24

B.2.2 Communities 25

As shown in Figure B.2, the enterprise specification of the library example contains two communities (the Library 26
Community and the Academic Community). Each of these is specified in a package, stereotyped as 27
«EV_CommunityContract», containing a component, stereotyped as «EV_Community» (as well as other model elements 28
specifying other aspects of the community), which has a dependency, stereotyped as «EV_RefinesAsCommunity», from 29
a community object (Library and Academic Community) which maps to the community object that specifies the 30
community when considered as a single object. (Note, the Academic Community is included only to illustrate the 31

Committee Draft ISO/IEC 19793:2005 (E)

104 Committee Draft ITU-T Rec. X.906 (12/2005)

principle that, at the top level, there may be more than one community. The Academic Community is not further 1
detailed in this example.) 2

The field of application of the enterprise specification describes the properties that the environment of the ODP system 3
must have for such specification to be used. It is described in a comment, stereotyped as «EV_FieldOfApplication» 4
attached to the top level UML model, stereotyped «EV_FieldOfApplication», containing the enterprise specification of 5
the system (see Figure B.2). 6

 7

Figure B.3 – UML Enterprise specification of the Library System 8

A community is a configuration of objects modelling a collection of entities (e.g. human beings, information processing 9
systems, resources of various kinds, and collections of these) that are subject to some implicit or explicit contract 10
governing their collective behaviour, and that has been formed for a particular objective. 11

 12

Figure B.4 – UML specification of the Library system community 13

The UML package representing the community is stereotyped «EV_Community», and contains three UML packages 14
with the description of the structure, behaviour, and policies for the community, respectively, and one class (stereotyped 15
«EV_Objective») with the description of the community objective. That class (called Library Objective) describes the 16
community objective as follows: “To allow the use, by authorised borrowers, of the varying collection of Library items, 17
as fairly and efficiently as possible”. 18

The structure of the community is described in the Enterprise Objects package; see B.2.5. 19

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 105

B.2.3 Behaviour 1

The Behaviour package describes the behaviour required of the community to meet its objective. There are three 2
packages, Roles, Process and Interactions. 3

— The Roles package contains the classes representing the Library roles (see Figures B.5 and B.6). 4
— The Processes package contains the specification of the community processes. In general, the processes of 5

a community can be organized into sub-packages attending to their particular characteristics: business 6
processes, administrative processes, security processes, etc. In this example, for simplicity, the Processes 7
package contains three sub-packages, Borrowing Processes, Fining Processes and Administrative 8
Processes, which describe all the Library processes (see Figure B.7). 9

— The Interactions package specifies the interaction types of the community interactions among their roles 10
(Figure B.10). 11

B.2.4 Processes 12

Processes describe behaviour in terms of (partially ordered) sets of steps, which are related to achieving some particular 13
sub-objective within the community. Steps are abstractions of actions, which may hide some of the objects participating 14
in the actions. 15

In general, the processes of a community can be organized into sub-packages attending to their particular characteristics: 16
business processes, administrative processes, security processes, etc. In this example, for simplicity, the Processes 17
package contains three sub-packages, namely Borrowing Processes, Fining Processes and Administrative Processes, 18
which describe all the Library processes (Figure B.5). 19

 20

Figure B.5 – Processes package structure 21

Each process is represented by a UML activity, stereotyped «EV_Process», as shown in Figure B.4. Each of these 22
activities has associated with it an Activity Diagram that describes the steps of the process, and the roles involved in these 23
steps (either as actor or as artefact roles). Actor roles are mapped to the Activity Partitions (stereotyped «EV_Role»), and 24
artefact roles are mapped to ObjectNodes (stereotyped «EV_Artefact»). For instance, Figure B.6 shows the Activity 25
Diagram that specifies the Borrow Item process. 26

Committee Draft ISO/IEC 19793:2005 (E)

106 Committee Draft ITU-T Rec. X.906 (12/2005)

 1

Figure B.6 – Borrow item Process 2

B.2.3 Roles 3

From the textual description of the Library (and, in real life more importantly, from discussions, interviews and 4
workshops with stakeholders) we can identify several roles in the Library community, in particular borrowers with 5
various privileges, librarians, library assistants, and the computerized system that supports the Library operations 6
(Library System). Figure B.5 shows these Library roles within the package that specifies the community, each with a 7
realization link to the component that maps to the community. 8

An community may also be expressed as a composite object when considered at a more abstract level of detail and, 9
similarly, any enterprise object may itself be refined as a community at a more detailed level. Thus, there is also a 10
Library community object that represents the community when considered as a composite object and this has a 11
dependency, stereotyped as «EV_RefinesAsCommunit», onto the component that maps to the community. 12

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 107

 1

Figure B.7 – Structure of the Library community described by the specification of its enterprise roles 2

B.2.4 Enterprise Objects 3

Roles are fulfilled by enterprise objects. The fulfilment of actor roles in a community by enterprise objects is governed 4
by assignment rules. Using UML, fact that an actor role may be fulfilled by an enterprise object is expressed by an 5
association, stereotyped as «EV_FulfilsRole», between the classes that express the objects and the roles concerned. 6
Assignment rules can be constrained by the policies of the system, in which case there would be model links between the 7
roles and model elements expressing the policies. Figure B.8 shows the UML expression of the basic (i.e. unconstrained 8
by any policies) assignment rules of the Library community. 9

 10

Figure B.8 – Actor Role fulfilment and assignment rules 11

Enterprise objects may also participate in actions by fulfilling artefact roles. In this example, Loans are enterprise 12
objects that represent the relationship that is established between a borrower and an item that is established when she 13

Committee Draft ISO/IEC 19793:2005 (E)

108 Committee Draft ITU-T Rec. X.906 (12/2005)

requests the item, and continues for a period from either the loan being refused or the item, having been loaned, being 1
returned. Loans fulfil artefact roles in several actions (from interaction model, see B2.5), as shown in Figure B.9. 2

 3

Figure B.9 – Loan as an Artefact 4

In summary, the enterprise objects, and the relationships between them, that have roles (either actor or artefact) in the 5
Library community are shown in Figure B.10. 6

 7

Figure B.10 – Enterprise objects 8

B.2.5 Interactions 9

Behaviour can also be expressed in terms of interactions between roles in a community. Thus, using the roles described 10
for the Library community above, we can now specify the behaviour of the enterprise objects of the community, 11
assigning actions to one or more roles. 12

Interactions are described in the Interactions package, which is organized into sub-packages reflecting the basic 13
purpose behind each interaction set, and therefore structured similarly to the Processes package (See Figure B.5). This is 14
shown in Figure B.11. The contents of one of these sub-packages are also shown, and we can see that there are two 15
interactions associated with Borrow Item: Request Item and Process Loan. 16

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 109

 1

Figure B.11 – Interactions package structure 2

The relationships between the classes expressing the interactions involved in the behaviour of requesting a loan, and 3
those classes expressing the roles involved in such interactions is shown in Figure B.12. There are two interactions in 4
this case: Request Item in which Borrower and Assistant are involved, and Process Loan in which Assistant and 5
Library System are involved. In each case the relationship is expressed with an association, stereotyped as 6
«EV_InteractionInitiator» or «EVInteractionResponder» as appropriate. 7

 8

Figure B.12 – Roles and behaviour – class diagram for Borrow Item behaviour 9

Interactions can be refined into sets of more detailed interactions. Thus, Figure B.13 shows Request Item (an 10
interaction initiated by the object fulfilling the role Borrower and responded to by the object fulfilling the role 11
Assistant) as composed of three interactions, Request, Issue and Refuse each of which has an association, stereotyped 12
as «EV_ArtefactReference» with an artefact role, loan: request by borrower, loan: item loaned and loan: refused 13
respectively. The artefact roles are expressed by signals each stereotyped as «EV_Artefact», and are defined as fulfilled 14
by the enterprise object, Loan. 15

Committee Draft ISO/IEC 19793:2005 (E)

110 Committee Draft ITU-T Rec. X.906 (12/2005)

 1

Figure B.13 – Roles and behaviour: class diagram for Request Item 2

Similarly, Figure B.14 defines Process Loan (initiated by the role Assistant and responded to by the role Library 3
System) as an interaction composed of three interactions, Request, Authorize and Disqualify. Each of these has an 4
association, stereotyped as «EV_ArtefactReference» to a signal, stereotyped as «EV_Artefact», expressing an artefact 5
role of the Loan enterprise object: loan: request by assistant, loan: authorised and loan: disqualification respectively. 6

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 111

 1

Figure B.14 – Roles and behaviour – class diagram for Process Loan 2

 3

Figure B.15 – Roles and behaviour – state diagram for Borrower role 4

Figure B.15 shows the state machine for the behaviour defined for the role of Borrower. In the Loan requirement state 5
a Loan in the Requested by borrower state is generated and there is a transition to the Awaiting response state with 6
the sending of a loan: requested by borrower signal, expressing an artefact role of the enterprise object Loan in the 7
Request interaction in the Request Item interaction. There is a transition from the Awaiting response state on the 8
receipt of either a loan: item loaned signal or a loan: refused signal. The loan: item loaned signal expresses an artefact 9
role of the enterprise object Loan in the Issue interaction in the Request Item interaction; the loan: refused signal 10
expresses an artefact role of the enterprise object Loan in the Refuse interaction in the Request Item interaction. There 11
is an automatic transition from either the has loan state or the loan refused state to the final state. 12

Committee Draft ISO/IEC 19793:2005 (E)

112 Committee Draft ITU-T Rec. X.906 (12/2005)

Figure B.16 shows the state machine for the behaviour defined for the role of Assistant. On receipt of a loan: request 1
by borrower signal, expressing an artefact role of the enterprise object Loan in the Request interaction in the Request 2
Item interaction, there is a transition from the starting state to the initiating loan processing state. In this state a Loan 3
in the Requested by assistant state is generated and there is a transition to the awaiting response state with the sending 4
of a loan: requested by assistant signal expressing an artefact role of the enterprise object Loan in the Request 5
interaction in the Process Loan interaction. There is a transition from the awaiting response state on the receipt of 6
either a loan: authorised signal or a loan: disqualification signal. The loan: authorised signal expresses an artefact 7
role of the enterprise object Loan in the Authorize interaction in the Process Loan interaction; the loan: 8
disqualification signal expresses an artefact role of the enterprise object Loan in the Disqualify interaction in the 9
Process Loan interaction. In the preparing item for loan state the item is prepared for loan and there is a transition to 10
behaviour completion with the sending of a loan: item loaned signal expressing an artefact role of the enterprise object 11
Loan in the Issue interaction in the Request Item interaction; in the preparing loan refusal state a refusal is prepared 12
and there is a transition to behaviour completion with the sending of a loan: refused signal expressing an artefact role of 13
the enterprise object Loan in the Refuse interaction in the Request Item interaction. 14

 15

Figure B.16 – Roles and behaviour – state diagram for Assistant role 16

 17

Figure B.17 – Roles and behaviour – state diagram for Library System role 18

Figure B.17 shows the state machine for the behaviour defined for the role of Library System. On receipt of a loan: 19
request by assistant signal expressing an artefact role of the enterprise object Loan in the Request interaction in the 20
Process Loan interaction, there is a transition from the starting state to the validating loan request state. In the 21
validating loan request state the system decides whether the loan request is valid or invalid. If the loan request is valid 22
there is a transition to the preparing loan authorization state where the authorization is prepared and there is a 23
transition to behaviour completion with the sending of a loan: authorised signal expressing an artefact role of the 24

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 113

enterprise object Loan in the Authorize interaction in the Process Loan interaction. If the loan request is invalid there 1
is a transition to the preparing loan refusal state where a refusal is prepared and there is a transition to behaviour 2
completion with the sending of a loan: disqualification signal expressing an artefact role of the enterprise object Loan 3
in the Disqualify interaction in the Process Loan interaction. 4

 5

Figure B.18 – Roles and behaviour – States of the Loan enterprise object 6

Figure B.18 defines the top-level state machine for the Loan enterprise object. 7

The transition from the initial state to the Requested by borrower state represents the creation of the Loan enterprise 8
object as a result of an event that is the receipt of a loan: request by borrower signal: this signal expresses an artefact 9
role of the enterprise object Loan in the Request Item interaction, and corresponds to the Request interaction in the 10
Request Item interaction (see Figure B.13). 11

There is a transition from the Requested by borrower state to the Requested by assistant state as a result of an event 12
that is the receipt of the loan: request signal; this signal expresses an artefact role of the enterprise object Loan in the 13
Process Loan interaction, and corresponds to the Request interaction in the Process Loan interaction (see Figure 14
B.14). 15

There is a transition from the Requested by assistant state to the Authorized state as a result of an event that is the 16
receipt of the loan: authorised signal; this signal expresses an artefact role of the enterprise object Loan in the Process 17
Loan interaction, and corresponds to the Authorize interaction in the Process Loan interaction (see Figure B.14). 18

There is a transition from the Requested by assistant state to the Disqualified state as a result of an event that is the 19
receipt of the loan: disqualification signal; this signal expresses an artefact role of the enterprise object Loan in the 20
Process Loan interaction, and corresponds to the Disqualify interaction in the Process Loan interaction (see Figure 21
B.14). 22

There is a transition from the Authorized state to a composite state, Loan extant, as a result of an event that is the 23
receipt of the loan: item loaned signal; this signal expresses an artefact role of the enterprise object Loan in the 24
Request Item interaction, and corresponds to the Issue interaction in the Request Item interaction (see Figure B.13). 25
The Loan extant composite state represents the behaviour of the Loan enterprise object during the period of the Loan. 26

There is a transition from the Disqualified state to the Refused state as a result of an event that is the receipt of the loan: 27
disqualification signal. This signal expresses an artefact role of the enterprise object Loan in the Request Item 28
interaction, and corresponds to the Refuse interaction in the Request Item interaction (see Figure B.13). 29

The transitions from the Loan extant composite state and the Disqualified state occur after a pre-determined time (set 30
by an appropriate policy) and represent the termination of the Loan enterprise object. 31

Committee Draft ISO/IEC 19793:2005 (E)

114 Committee Draft ITU-T Rec. X.906 (12/2005)

B.2.7 Policies 1

B.2.7.1 General 2

In an enterprise specification the concept, policy, is intended to be used where the desired behaviour of the system may 3
be changed to meet particular circumstances. 4

The Policies package specifies the community policies, which constrain the structure and/or the behaviour of the 5
community. Therefore, the elements of that package will constrain the elements of the other two UML packages in the 6
Library Community package (Behaviour and Library Enterprise Objects). 7

Providing an independent and modular specification of policies will enable the definition and implementation of some 8
traceability mechanisms, both intra- and inter-viewpoints. Within the UML expression of the enterprise specification of a 9
system, we need to be able to list all the model elements affected by a given policy, and all the policies that constrain a 10
given model element, in case there is a change in the specification’s elements or policies. But such independent 11
expression of enterprise policies may also allow the definition of correspondences between these policies and other 12
related elements from different ODP viewpoints (such as information invariant schemata). We expect UML modelling 13
tools to exploit such traceability mechanisms, checking for absences of policies for some of the modelling elements, and 14
also for policy conflicts and inconsistencies at various levels 15

In this relatively simple example, the aspects of the system that are most appropriate for use of this concept is in the rules 16
regarding borrowing permissions (see B.1.2 rule (5)). 17

According to the considerations above, in order to be properly specified, policies need to identify the relevant enterprise 18
elements to which they apply: roles, objects, actions, processes, communities, as well as their relationships. Such 19
elements are precisely those described in the two other UML packages that form part of the enterprise specification of 20
the system: Enterprise Objects and Behaviour. 21

B.2.7.2 Representing ODP policies in UML 22

In this example we will represent policies using the pattern shown in Clause 7.1.3, Figure 10, which corresponds to the 23
elements that comprise the specification of an enterprise policy in the Enterprise Language [E/L – 7.9.2]: 24

— description: text with the description of the policy in natural language; 25
— controllingAuthority: an authority that controls the policy (in this case, a role); 26
— relatedBehaviour: an identified behaviour (i.e., role) that is subject to that authority; 27
— relatedObjects: optionally, an object or objects that may fulfil the roles involved; 28
— specificationConstraint: set of constraints on the modelling elements involved. 29
— affectedBehaviour: the subset of the related behaviour that is required, permitted, forbidden, or 30

authorized. 31

The behaviours, roles and objects related to a policy specification in UML refer, of course, to the UML elements 32
representing these behaviours, roles and objects, respectively. Such elements will normally be used as contexts in the 33
constraints that specify the policy. Note that all policy statements are made in a context, that defines the elements in the 34
specification to which the policy applies, and have a condition that specifies when the policy can be used. In this sense, 35
OCL can be of real help. Each OCL constraint is expressed in a particular context, related to some element in the UML 36
model. OCL statements can be directly associated to some model elements in a diagram, establishing an implicit context 37
by attachment, or they can form part of a separate piece of specification in which the context of each statement is 38
explicitly established by naming. Rules are represented as Constraints, expressed in a given notation (such as “OCL”, or a 39
specific policy language). 40

B.2.7.3 Expressing Loan policies in the Templeman Library 41

Figure B-19 shows the structure of the Policies package. 42

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 115

 1

Figure B.19 – Structure of the Policies package 2

Details of the Lending Policies are shown in Figure B-20, which for illustrative purposes offers both behavioural 3
modelling styles (i.e. with processes and interactions). From this it can be seen that the Lending Limit Policy is set by a 4
process Set lending limit policy (located in the Administrative Processes package), and impacts on the role Library 5
System, when taking part in the process Borrow Item, or the interaction of the same name. 6

Similarly the Loan Duration policy is set by the interaction Set loan duration policy (located in the Administrative 7
Interactions package), and impacts on the role Library System, when taking part in the process Fine Borrower, or the 8
interaction of the same name. 9

 10

Figure B.20 – Examples of policy expressions 11

B.2.8 Accountability 12

An enterprise specification should also identify those actions that involve accountability of a party, where a party 13
represents a natural person or any other entity considered to have some of the rights, powers and duties of a natural 14
person. Principal parties are responsible for the acts of any parties acting as their delegated agents, including their 15
possible commitments, prescriptions, evaluations, declarations, and further delegations. 16

Accountable parties in a given process or action are represented in the UML diagram that defines such process or action. 17
Stereotype «EV_Accountable» in an association between an actor and an action indicates the actor that is accountable 18
for the action. Figure B.21 shows an example of the use of such a stereotype, indicating that the Borrower is the 19
accountable party for the Request Item action, and the Assistant is accountable for the Process Loan action. 20

Committee Draft ISO/IEC 19793:2005 (E)

116 Committee Draft ITU-T Rec. X.906 (12/2005)

Delegations are represented in UML by associations between roles in activity diagrams stereotyped «EV_Delegation», 1
showing the principal and agent parties of each delegation. Such associations allow delegated parties to initiate or 2
participate in actions on behalf of their principals. In particular, Figure B.22 specifies that the Assistant can delegate his 3
actions to a Librarian (i.e., the Librarian can act as an Assistant in these cases). As previously mentioned, the 4
delegation may convey some information about its duration, conditions, further delegations allowed, etc. Attributes of the 5
«EV_Delegation» stereotype may be used to represent such kind information. 6

 7

Figure B.21 – Example of delegation 8

B.2.9 Interactions between Communities 9
Temporary Note: Text to illustrate the modelling of interactions between communities will be developed for the next draft of this 10
Annex. This will illustrate the following scenarios: 11
- an interaction between the Library System and an Academic System to update information on members of the University; 12
– some interaction of a member of the Library staff with the Academic Community that involves the Library staff member 13

interacting with the Library System. 14

B.3 Information specification in UML 15

B.3.1 Overview 16

The information viewpoint is concerned with information modelling. An information specification defines the semantics 17
of information and the semantics of information processing in an ODP system, without having to worry about other 18
system considerations, such as particular details of its implementation, the computational process, or the nature of the 19
distributed architecture to be used. The information specification in this clause defines both the basic concepts for 20
information used in this specification, and the invariant, static and dynamic schemata. 21

NOTE – In the figures that follow, to improve the clarity of the diagrams, the following icons have been used to represent the 22
corresponding stereotypes: 23
 24

«Information_Spec»

«IV_Object»

«IV_ObjectType»

«IV_ActionType»

«IV_InvariantSchema»

« IV_StaticSchema»

« IV_DynamicSchema»

 25

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 117

According to [8.4], the UML information specification of the Library system is given by one UML model, stereotyped 1
«Information_Spec», that contains a set of UML packages that model the invariant, dynamic, and static schemata of the 2
ODP information specification in UML (see Figure B.24). The following sub-clauses define these UML packages and 3
their contents. 4

 5

 6

Figure B.24 – Structure of the Information Viewpoint Specification of the Library system (excerpt) 7

B.3.2 Basic elements 8

From the textual regulations of the Library we can identify several main information object types, namely Borrowers, 9
library Items, Librarians, and Library Assistants. In addition, a Calendar object should be in charge of representing 10
the passage of time, and loan objects will represent the relationships between borrowers and items. Figure B.25 shows a 11
UML class diagram with all the basic object types used in this information specification. UML class 12
PersonalParticulars contains the personal information about the library users, librarians and assistants. 13

The attributes of each UML class define the information captured by this specification. Please notice that this 14
information specification is built considering the elements of the enterprise specification described in clause B.2. The 15
RM-ODP does not impose any methodology for the definition and use of the five viewpoints. However, for building the 16
UML information viewpoint specifications of this particular example we have used its enterprise specifications. This 17
approach greatly facilitates the definition of the ODP correspondences between the related entities that appear in the 18
different viewpoints, and also simplifies the treatment of the consistency among viewpoints. Viewpoint consistency tries 19
to detect and resolve the possibility that different viewpoints may impose contradictory requirements on the same system. 20

In particular, this information specification incorporates the information kept in the system for each user and library staff 21
(name, address, faculty, etc.), and for each Library item: title, author, ISBN or ISSN, its physical location, and its 22
current status: on-loan, free, withheld (if the circulation of the item has been temporarily withheld), disposed (if the 23
item has been sold, donated, recycled, or discarded), missing (if the item is missing), or other (in case the item is in a 24
status not contemplated by any of the previous options). 25

Some general and common parameters about the library are represented by another information object (Library), with 26
details about the daily rates to be charged to late-returners, the credit obtained by collecting the payment of the fines, 27
whether the library is open or not to the public, and the current loan limits and periods for the different kinds of users. 28
This is a composite information object that also includes information about the current Library Users, Items and 29
outstanding Loans in the system. This information is represented in terms of UML composition associations between 30
this object and the Librarian, Assistants and Calendar objects. 31

The UML classes in Figure B.25 map to the ODP information object types of the library system. Since these classes 32
represent the information managed by the computerized system about such object types, there is no need to define a 33
LibrarySystem class that represents such a computerized system. 34

A UML class model expresses constraints on the kinds of objects and the kinds of links that can appear in a valid object 35
configuration. Restrictions on the classes, their attributes, and the multiplicity of the associations can also be used to 36
impose further constraints on the system objects — in the information viewpoint, such constraints correspond to the 37
invariant schemata, and will be described in Clause B.3.3. 38

Committee Draft ISO/IEC 19793:2005 (E)

118 Committee Draft ITU-T Rec. X.906 (12/2005)

 1

Figure B.25 – Object types of the information viewpoint specification of the Library system 2

Figure B.26 shows another UML package with the action types supported by the information objects of the system. 3

 4

 5

Figure B.26 – Action types of the information viewpoint specification of the Library system 6

According to the library textual regulations, and the processes and actions defined in the enterprise viewpoint of the 7
system, the following action types can be identified: 8

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 119

– a user requests a library assistant to borrow a book (bookLoanRequest) or a periodical 1
(periodicalLoanRequest). Such request can be accepted or denied; 2

– an assistant checks out a Library item before giving it on loan to a borrower (checkItemOut); 3
– a borrower returns a borrowed item (returnItem); 4
– an assistant checks in a Library item when it is returned (checkItemIn); 5
– an assistant fines a borrower (fineUser); 6
– a borrower pay charges (payMyPendingCharges); 7
– a librarian suspends a borrower (suspendUser); 8
– a librarian lifts the suspension to a borrower (releaseUser); 9
– a librarian restricts the circulation of an item (withholdItem); 10
– a librarian restores the circulation of an item (releaseItem); 11
– a librarian disposes of an item (disposeItem); 12
– a librarian adds a copy of a book or a periodical to the Library collection (addBookCopy or 13

addPeriodicalCopy, respectively); 14
– a librarian adds a borrower to the system (addUser). 15

As information action types, they all will be represented in this example by UML signals, which will trigger the state 16
changes in the state machines of the objects. These state machines will specify the dynamic schemata that will describe 17
the state changes caused in the system by such information actions. Those dynamic schemata will be described later in 18
Clause B.3.5. Attributes of the UML signals model the information conveyed by the ODP interactions represented by 19
such signals. 20

Once we have defined the main information object types of the system, and the possible actions that may take place, the 21
way the library system works (from the perspective of the information viewpoint) needs to be defined in terms of how 22
information is processed. Invariant, static and dynamic schemata are the mechanisms defined for that purpose. 23

B.3.3 Invariant Schemata 24

In ODP, an invariant schema is the specification of the types of one or more information objects that will always be 25
satisfied by whatever behaviour the objects may exhibit. The following are examples of invariants that can be defined 26
for the Library system: 27

1. Undergraduate students cannot borrow more than eight books. 28
2. Undergraduate students can borrow books for up to four weeks. 29
3. Undergraduate students cannot borrow periodicals. 30
4. Postgraduate students cannot borrow more than 16 items (books or periodicals). 31
5. Postgraduate students can borrow books for one month. 32
6. Postgraduate students can borrow periodicals for one week. 33
7. Academic staff cannot borrow more than 24 items (books or periodicals). 34
8. Academic staff can borrow books for one year. 35
9. Academic staff can borrow periodicals for one week. 36
10. Library users have unique identifiers in the system. 37
11. Library items should have unique identifiers in the system. 38
12. No item can be simultaneously referenced by two loans in the system. 39
13. There should be exactly one Calendar object and one Librarian in the system while the library is open. 40
14. The number of pending loans in the system should be consistent with the sum of the values of attribute 41

borrowedItems of all the Borrower objects. 42
15. Borrowers who do not pay their fines will be eventually suspended. 43
16. Suspended borrowers who settle their debts will eventually be released, and thier borrowing rights 44

restored. 45

Please note how some of these invariants have been incorporated into the UML class diagram that describes the system 46
structure (shown in Figure B.25) in terms of the multiplicity of the association ends. This is the case, for instance, of 47
invariant 12 (which is represented by a multiplicity “1” in the corresponding association end). 48

Committee Draft ISO/IEC 19793:2005 (E)

120 Committee Draft ITU-T Rec. X.906 (12/2005)

Other invariants can be naturally represented in UML by associating OCL constraints to some of the UML elements of 1
the specification. For example, UML constraints can be added to objects to the Library class to represent the maximum 2
number of loans and periods of loans permitted for every kind of borrower (hence representing invariants 1 to 9): 3

-- Invariants 1 to 9 4
context Library inv: 5
(undergradMaxLoans = 8) and (undergradBookLoanPeriod = 28) and (UndergradPeriodicalLoanPeriod = 0) and 6
(postgradMaxLoans = 16) and (postgradBookLoanPeriod = 30) and (postgradPeriodicalLoanPeriod = 7) and 7
(academicMaxLoans = 24) and (academicBookLoanPeriod = 365) and (academicPeriodicalLoanPeriod = 7) 8

Invariants 10 and 11 impose that the identifiers of users and Library items should be unique in the system. Both 9
invariants can be expressed in terms of OCL constraints on the Library class: 10

 -- Invariant 10 11
 context Library 12
 inv: self.items->forAll(itm1,itm2 | itm1.id <> itm2.id) 13
-- Invariant 11 14
 context Library 15
 inv: self.users->forAll(usr1,usr2 | usr1.id <> usr2.id) 16

Invariant 12 imposes that no item can be simultaneously referenced by two loans in the system. As mentioned before, 17
this invariant has been implemented by a multiplicity “1” in the corresponding association end. 18

Invariant 13 states that there should be exactly one Calendar object and one Librarian in the system while the library is 19
open. 20

-- Invariant 13 21
 context Library 22
 inv: isOpen implies (self.Librarian->size() = 1) and (self.Calendar->size() = 1) 23

Invariant 14, which imposes a consistency check on the system, can be also expressed as an OCL constraint on the 24
Library class: 25

 -- The number of pending loans should be consistent with the sum of the number of pending loans of each user. 26
 context Library 27
 inv: self.users.borrowedItems->sum() = self.loans->size() 28

Other invariants may need to be expressed differently. In fact, invariants 15 and 16 can be considered as predicates in a 29
given discrete linear temporal logic that imposes some fairness constraints. OCL is not expressive enough to specify 30
them, although we can always either use a textual description of such predicates, or use any other notation (in this case 31
we will consider an extension of OCL with the temporal logic operators “always” and “eventually”): 32

-- Invariant 17: Borrowers who do not pay their fines will eventually be suspended. 33
 context Borrower 34
 inv: eventually always (fines = 0) or always eventually (suspended = true) 35
 -- Invariant 18: Suspended borrowers who have paid their fines will eventually be released 36
 context Borrower 37
 inv: eventually always (fines > 0) or always eventually (suspended = false) 38

Finally, other OCL constraints may represent invariants that express well-formedness rules of the model. For instance, 39
the following constraint restricts the valid values of Loan objects: 40

context Loan 41
 inv: issueDate <= dueDate 42

Similarly, other OCL expressions can help determining the value of some of the system attributes, e.g., when the library 43
is open: 44

context Library 45
inv: (hour(self.Calendar.now) >= 8) and (hour(self.Calendar.now) <5) implies self.isOpen = true 46

B.3.4 Static Schemata 47

Static schemata provide instantaneous views of information, for example at system initialisation, or at any other specific 48
moment in time that is relevant to any of the system stakeholders. This specification of the instantaneous state of the 49
objects is precisely the one provided by UML object diagrams (also known as snapshots in some UML dialects). 50

For instance, the UML object diagram shown in Figure B.28 represents a static schema that models the state of the 51
system at a moment in time (namely, day 95 after its creation), in which there are only two Borrowers (John and Mary), 52
one Librarian (Emerald), two Assistants (Eve and Pete), three Books (one copy of Ulysses and two copies of 53

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 121

Dubliners), and one Periodical (yesterday's edition of The Times). There is only one Loan (Mary borrowed Ulysses one 1
month ago). 2

 3

 4

Figure B.28 – Static schema with the configuration of the Library system at day 95 5

Similarly, the following UML package represents the initial state of the system, when there are no items, borrowers, 6
and loans. There are, however, one clock, one assistant, and one librarian at that moment in time. At least one 7
Assistant should be present in order for such a configuration of objects to respect the invariant schemata specified by the 8
multiplicity of the UML associations in the UML class diagram shown in Figure B.25. 9

 10

Figure B.29 – Static schema with the initial state of the Library system 11

Committee Draft ISO/IEC 19793:2005 (E)

122 Committee Draft ITU-T Rec. X.906 (12/2005)

Please note as well how the constraints on the Library object explicitly specify the cardinality of the links. 1

B.3.5 Dynamic Schemata: Description of the system behaviour 2

The way the system evolves is dictated by the behaviour of the objects of the system, which in the information viewpoint 3
is expressed in terms of a set of dynamic schemata. They describe the allowed state changes of the system or of any 4
subset of its constituent information objects. 5

This subclause presents dynamic information schemata that describe changes of state associated with the action types 6
identified in B.3.2. In this case, such action types have been represented by UML signals. 7

NOTE – It is worth noting here that some authors have proposed the use of UML operations for representing action types. 8
However, this approach presents some limitations. For example, it forces actions to be owned by one object (i.e., the object to 9
which the operation is assigned to). In general, it may be the case that more than one ODP object might be related to a single 10
action, because ODP interactions are pieces of shared behaviour, with no necessarily single owner or initiator. However, the 11
interaction model of the UML is based on message exchange between objects, which forces all UML operations to be assigned to 12
only one object. Thus, if ODP information actions are represented by UML operations, the system designer has to decide, for 13
every action, the object to which an UML operation representing the ODP information action type is assigned. This is in general a 14
difficult decision, and therefore more practical applications are required in order to identify a set of guidelines or patterns to 15
support the practising modeller assign ODP action types to UML object types. 16

A dynamic schema can be expressed in UML as a UML state machine or a UML package of the state machines of 17
several UML objects (those modelling the information objects specified in the dynamic schema). In this case, the 18
dynamic schema of the library is composed of the state machines of the objects that support the operations defined in 19
clause B.3.2, namely the Librarian, Assistant, Borrower, and Item. Figures B.30 and B.31 show the state machines of 20
some of these objects, for illustration purposes. 21

 22

Figure B.30 – State machine of a Borrower information object 23

 24

Figure B.31 – State machine of an Item information object 25

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 123

Thus, the behaviour of every information object is specified by a UML state machine, which describes its state changes 1
as consequence of the occurrence of the signals that represent the possible information actions previously specified. 2
These state machines model the dynamic schemata of the ODP information specifications. Please notice how a signal 3
causes changes in all state machines that define a transition for it. In this way we can model, in a natural manner, the fact 4
that an ODP interaction may cause a state change in all objects related to that interaction, i.e., an ODP interaction is a 5
piece of shared behaviour. This would be very difficult to express if ODP interactions were mapped to UML operations 6
on objects. 7

Note as well that the previous diagrams show not only the effect of the actions on the corresponding information objects, 8
but also the states in which the actions are allowed, serving as pre- and post-conditions for those actions. 9

B.3.6 Correspondences between the Enterprise and the Information specifications 10
Temporary Note – NBs are requested to provide text for this clause in the example, indicating, for instance, how the enterprise 11
polices of the Library can be related to the different schemata of the information viewpoint; or how computational messages and 12
operations can be mapped to and from information actions. Moreover, correspondences should be defined, for the information 13
viewpoint, at least between its concepts and the concepts of the enterprise and computational viewpoints, and vice-versa. 14

B.4 Computational specification in UML 15

B.4.1 Overview 16

The computational viewpoint is concerned with functional decomposition of an ODP system in distribution transparent 17
terms. A computational specification defines units of functions as computational objects, and the interactions among 18
those computational objects, without considering their distribution over networks and nodes. 19

This clause concentrates on the computational specification in UML of the borrowing process of the Library system. 20

B.4.2 Computational objects and interfaces 21

To represent the computational specification for the Templeman Library, we need to identify first the computational 22
elements that participate in the borrowing process. These elements (i.e., computational objects and interfaces) are 23
instantiated from their corresponding computational templates. In UML, we represent the system structure using a 24
component diagram that describes the computational object templates and the computational interface templates at which 25
these objects interact. 26

 27

Figure B.32 – Component diagram with computational object templates and interface signatures of the system 28

Figure B.32 shows the structural diagram for the Templeman example. This model does not try to be exhaustive, just to 29
depict how the main computational elements may be represented in UML 2.0 with the ODP Profile. 30

We consider four different computational objects directly related to the library elements that need to be managed: 31
(a) a manager (UserMgr) for each user; 32
(b) the system that controls the fines applied to users which exceed the borrowing period (FineSystem); 33
(c) the objects that manage the library items (ItemMgr); and 34
(d) the computational object that coordinates the whole borrowing process (BorrowingSystem). 35

Committee Draft ISO/IEC 19793:2005 (E)

124 Committee Draft ITU-T Rec. X.906 (12/2005)

These objects interact which each other and with their environments at computational interfaces, which are instantiated 1
from their corresponding interface templates. In this case, five different interface templates have been defined; all of 2
them correspond to operational interfaces. Interface templates are represented in Figure B.32 as UML ports. For 3
readability reasons, balls and sockets are used to represent interfaces signatures. 4

In this example, only operation computational interfaces have been defined. Figure B.33 shows a detailed description of 5
the interactions defined at interface UserMgntInterface. ODP operations are mapped to UML operations. This approach 6
is very useful when the exchange of information between objects can all be modelled in terms of operation interactions 7
between computational objects. In this case, modelling these interactions as UML operations might be probably simpler 8
than breaking them into their corresponding signals. 9

 10

Figure B.33 – Example of interaction signatures modelled as UML operations 11

As shown in Figure B.33, interaction signatures are grouped according to their corresponding stereotypes 12
(CV_AnnouncementSignature, CV_InterrogationSignature) inside the UML interface classifiers. 13

Figure B.34 shows the rest of the interface signatures. The interactions of interface signature IBorrow have been defined 14
using interrogations and terminations for illustration purposes, instead of using UML operations as we do for the rest of 15
the interface signatures. 16

 17

Figure B.34nteraction signatures for Library interfaces 18

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 125

B.4.3 Behaviour 1

Apart from the structural aspects, we need to specify the behaviour of the computational elements of a specification. 2
UML activity, communication, interaction and sequence diagrams might be useful to represent both the internal actions 3
of the computational objects, and the interactions that occur between them. 4

In case we want to specify how objects interactions are performed, activities can be useful because they are abstractions 5
of the many ways in which messages are exchanged between objects. This makes activities useful when the primary 6
concern is the dependency between tasks, rather than the interaction protocols. 7

The activity diagram for the borrowing process is shown in Figure B.35 8

validate item

get item

detail

validate user

get user

user
fines

check fines
fines

Update loan
validItem

validUser

User ManagerItem Manager Fine Control System Borrowing System

: Itemdetail

[Accepted]

[Rejected]

[Accepted]

[Rejected]

 9

Figure B.35Activity diagram for the borrowing process 10

Alternatively, UML interaction diagrams are more appropriate when messages and interaction protocols are the focus of 11
design, as shown in Figure B.36 12

Committee Draft ISO/IEC 19793:2005 (E)

126 Committee Draft ITU-T Rec. X.906 (12/2005)

: IUserMgnt : IItemMgnt: Assistant : IBorrow : ILoan : IFine

alt

«CV_Announcement»

«CV_Announcement»

«CV_Announcement»

«CV_Announcement»

«CV_Announcement»

{ due date is over }

«CV_Termination»

«CV_Invocation»

returnItem(userId, itemId)1:
getLoan (itemId)2:

fine(userId, amount)4:

removeLoan(id)6:

freeItem(id)7:

getLoanResponse (loanDetails)3:

suspendUser (id)5:

 1

Figure C.36 Interaction diagram for the borrowing process 2

B.4.2 Environment contracts 3

Environment contracts place constraints on the behaviour of computational objects, and usually include QoS, usage and 4
management aspects. The ODP Reference Model does not prescribe how an environment contract must be specified; it 5
just defines this concept and its basic contents. 6

Each system modeller might like to specify their own constraints in the way that best suits their particular application. 7
Therefore the UML elements (and their semantics) required to model different environment contracts can change from 8
one application to another. Thus, instead of incorporating this kind of concepts into the ODP-CV Profile, QoS and other 9
extra-functional aspects of environment contracts may be represented by separate specialized profiles. 10

The possibility offered by UML 2.0 to apply multiple profiles to a package—as long as they do not have conflicting 11
constraints—will allow system specifiers to use the QoS profile(s) of their preference, on top of the ODP Computation 12
Viewpoint profile. 13

Figure B.37 shows an example in which the QoS constraints are expressed using the OMG “UML Profile for QoS and 14
Fault Tolerance Characteristics and Mechanisms”. Notice that the application of a profile allows the use of its 15
stereotypes, but does not necessarily require their use. 16

ODP System

<<profile>>
OMG QoS Profile

<<profile>>
ODP CV Profile

<<apply>><<apply>>

 17

Figure B.37 – Applying multiple profiles to an ODP system specification 18

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 127

B.5 Engineering specification in UML 1

B.5.1 Overview 2

First we need to consider logical model for the Library example. Possible models include distributed component model 3
and messaging system model. In this example, we will take distributed component model as logical model. 4

Secondly, we need to consider physical deployment model for the Library example. There are several typical 5
architectural styles to apply to define physical deployment model, which are client-server, n-tier, model-view-controller 6
(MVC), and service-oriented-architecture (SOA). In this example, we will take n-tier (n=4) and MVC architectural style 7
as physical deployment model. Note that, even with this choice of architectural styles, there will be various types of node 8
configurations, depending on requirements, such as performance, reliability, availability etc. 9

B.5.2 Computational Objects 10

A set of computational objects, which this engineering specification will support, needs to be clarified. In this example, 11
those are computational objects defined in B.4, which are UserManager, ItemManager, FineSystem, and 12
BorrowingSystem. Those computational objects will be supported by corresponding basic engineering objects, which are 13
deployed within clusters on nodes, and by engineering infrastructure, such as node, nucleus, capsule, capsule manager, 14
cluster, cluster manager, and channel etc., supporting distribution transparencies. 15

B.5.3 Node configuration 16

We will consider the following node configuration (Figure B.38). The basic model consists of 4-tier nodes, called 17
ClientTier, InteractionTier, EnterpriseTier, and EISTier (EIS: Enterprise Information System) respectively. An assistant 18
(a user of the system) will use a desktop or notebook PC, which serves as ClientTier. A request from ClientTier is sent to 19
a server node, which serves as InteractionTier. A functional request is passed to other server node, which serves as 20
EnterpriseTier. Finally, data persistence is taken care of by yet other server node, which serves as IntegrationTier. In this 21
example, the following diagram shows an overview of node configuration. 22

 23

Figure B.38 – Node configuration overview 24

B.5.4 Node structures 25

Each node may consists of the node itself, nucleus, capsule, capsule manager, cluster, cluster manager, basic engineering 26
objects (BEOs), stub, binder, protocol object, and interceptor. In above node configuration, BEOs are hosted as follows: 27

– AssistantPC hosts BEOs for graphical user interface to access the system; 28
– InteractionServer does hosts BEOs necessary for n-tier and MVC architectural style; 29
– EnterpriseServer hosts BEOs for all four computational objects in different clusters with remaining BEOs 30

for n-tier and MVC architectural style; and 31
– EIS_Server1 hosts information and information access for user and item systems, and EIS_Server2 hosts 32

information and information access for fine system. 33

Committee Draft ISO/IEC 19793:2005 (E)

128 Committee Draft ITU-T Rec. X.906 (12/2005)

As an example of node structure, the following diagram shows internals of EnterpriseServer. 1

 2

Figure B.39 – Example: EnterpriseServer internals 3

B.5.5 Channels 4

In this example, four channels exist: one between AssistantPC and InteractionServer, one between InteractionServer and 5
EnterpriseServer, and two between Enterprise Server and IntegrationServers. First channel comprises of a stub, a binder, 6
and a protocol object of AssistantPC, and a stub, a binder, and a protocol object of InteractionServer. Since the structural 7
aspect of a channel is defined in node model, a channel package is defined to import relevant engineering objects to 8
construct a channel. 9

 10

Figure B.40 – Internals of a channel 11

B.5.6 BEO configuration 12

In B.5.4, several example BEOs are defined within a cluster in EnterpriseServer. 13

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 129

In order to define interactions between BEOs within a cluster, computational profile regarding interactions, interfaces, 1
and signatures may be reused here. To avoid confusion, it is suggested to use stereotype for engineering language first, 2
followed by stereotype for computational language. 3

 4

Figure B.41 – Interactions between BEOs within a cluster 5

B.5.7 Communication Domain 6

As an example of domains, here is a sample of communication domain definition in UML. It is a package that accesses 7
protocol objects which belong to the same communication domain. The domain may also have policy for controlling the 8
communication. 9

 10

Figure B.43 – An example of a communication domain 11

B.6 Technology specification in UML 12

B.6.1 Overview 13

In the library example in this viewpoint, a configuration of computer systems including hardware, software, and 14
networks connecting those systems will be described. In that configuration of technology objects, implemented standards 15
and its implementation will be shown. If it is necessary, the process of implementation is also shown. Finally, extra 16
information for testing, e.g. for conformance testing, will be provided. 17

The primary diagram for this specification is UML Deployment Diagram. 18

B.6.2 Node configuration 19

In UML Deployment Diagram, each kind of computer node is represented with UML Node and lines are introduced to 20
represent communication links between the nodes. Different types of network can also depicted as UML Nodes. 21

Figure B.44 shows the node configuration of the Library system, in two parts. The upper part of the figure describes the 22
deployment architecture of the system by showing the different technology objects types that will be used, and how they 23
can be connected among themselves. The diagram shows that there will be three different kinds of computing resources 24

Committee Draft ISO/IEC 19793:2005 (E)

130 Committee Draft ITU-T Rec. X.906 (12/2005)

(PCs, application servers and enterprise servers) and two different kinds of communication media (LAN and WAN). PCs 1
and application servers can be connected to LANs and WANs, whilst enterprise servers can only be connected to WANs. 2

The lower part of Figure B.44 describes the actual system, with concrete InstanceSpecifications of the previous Nodes 3
showing the technology objects that will comprise the system, and how they are connected. 4

 5

Figure B.44 – Node configuration overview 6

B.6.3 Node structure 7

Technology objects, such as implementation of engineering objects, are deployed on each node. This is shown with 8
UML Deployment Diagram including internal structure consisting of hardware elements, software elements, and network 9
elements. There are cases where both Technology profile and standard UML Profile (e.g. ExecutionEnvironment 10
stereotype) need to be applied to the same element. 11

In UML, node structures can be specified both at the type level and at the object level. The following diagram shows the 12
internal structure of the application servers used in the Library, and therefore it is described using object types. Other 13
diagrams can be used to show the internal structure 14

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 131

 1

Figure B.45 – Node structure 2

B.6.4 IXIT 3

The truth of a statement in an implementation can only be determined by testing and is based on a mapping from terms in 4
the specification to observable aspects of the implementation. A test is a series of observable stimuli and events, 5
performed at prescribed points known as reference points, and only at these points. These reference points are accessible 6
interfaces. Four classes of reference points at which conformance tests can be applied are defined, which are 7
programmatic reference point, perceptual reference point, interworking reference point, and interchange reference point. 8

IXIT is Implementation eXtra Information for Testing, which means additional information when performing a test 9
against an implementation claiming to implement defined specification or standard. In this respect, IXIT can be attached 10
to any technology objects for their interaction with user, other technology objects in the same node, and other technology 11
objects in other nodes. 12

 13

Figure B.46 – IXIT 14

Committee Draft ISO/IEC 19793:2005 (E)

132 Committee Draft ITU-T Rec. X.906 (12/2005)

Annex C Relationship with MDA® 1
(This annex forms an integral part of this Recommendation | International Standard) 2

This annex describes the relationship of this document with the Model Driven Architecture® specified by the OMG. This 3
annex is not normative. 4

C.1 Overview of the MDA® 5

The Model Driven Architecture® (the MDA®) is specified in the <authoritative OMG document> (currently omg/2003-6
06-01, MDA Guide Version 1.0.1), and that document is the basis for the text in this subclause. The <authoritative OMG 7
document> is the authoritative text and, in any conflict between that and this document, the former should be taken to 8
represent OMG’s position. 9

MDA® is an approach to system development. It is model-driven in that it provides a means for using models to direct 10
the course of understanding, design, construction, deployment, operation, maintenance and modification. It provides an 11
approach for, and enables tools to be provided for: 12

– specifying a system independently of the platform that supports it, 13
– specifying platforms, 14
– choosing a particular platform for the system, and 15
– transforming the system specification into one for a particular platform. 16

The three main goals of MDA® are portability, interoperability and reusability through architectural separation of 17
concerns. 18

In the MDA® the term architecture of a system is a specification of the parts and connectors of the system and the rules 19
for the interactions of the parts using the connectors, and the Model Driven Architecture® itself prescribes certain kinds 20
of models to be used, how those models may be prepared and the relationships of the different kinds of models. 21

The basis for prescribing these models is the concept of viewpoint, where a viewpoint on a system is a technique for 22
abstraction using a selected set of architectural concepts and structuring rules, in order to focus on particular concerns 23
within that system (cf. RM-ODP Part 2). Here “abstraction” is used to mean the process of suppressing selected detail to 24
establish a simplified model. The concepts and rules may be considered to form a viewpoint language. 25

The Model Driven Architecture® specifies three viewpoints on a system: 26
– a computation independent viewpoint that focuses on the requirements for the system; the details of the 27

system are hidden or as yet undetermined; 28
– a platform independent viewpoint that focuses on the application-specific behaviour of a system while 29

hiding the details necessary for a particular platform. A platform independent view shows the part of the 30
complete specification that does not change from one platform to another. A platform independent view 31
may use a general purpose modelling language, or a language specific to the area in which the system will 32
be used; 33

– a platform specific viewpoint that combines the platform independent viewpoint with an additional focus 34
on the detail of the use of a specific platform by a system. 35

In this context, a platform is a set of subsystems and technologies that provide a coherent set of functionality through 36
interfaces and specified usage patterns, which any application supported by that platform can use without concern for the 37
details of how the functionality provided by the platform is implemented. 38

Corresponding to these viewpoints the MDA® prescribes three kinds of model: 39
– A computation independent model: a view of a system from the computation independent viewpoint. A 40

CIM does not show details of the structure of systems. A CIM is sometimes called a domain model. 41
NOTE – To specify a CIM one can use a domain language, but also a UML model that expresses the domain 42
semantics using a domain vocabulary. 43

– A platform independent model: a view of a system from the platform independent viewpoint. A PIM 44
exhibits a specified degree of platform independence so as to be suitable for use with a number of 45
different platforms of similar type. 46

– A platform specific model is a view of a system from the platform specific viewpoint. A PSM combines 47
the specifications in the PIM with the details that specify how that system uses a particular type of 48
platform. 49

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 133

Platform independence is the quality that the model is independent of the features of a platform of any particular type. A 1
very common technique for achieving platform independence is to express a system model in terms of a technology-2
neutral virtual machine. A virtual machine is defined as an interpreter of the set of rules expressed in a language or 3
model. Given a model and a state of the environment, it determines unambiguously what actions are possible and which 4
of them are obligatory. An implementation of a virtual machine will generally execute the model as a program (or a 5
specialised implementation might answer questions about the model). A virtual machine is effectively an idealized 6
platform, and any model is expressed by the way it will be interpreted by the virtual machine. But such a model is 7
platform independent with respect to the class of different platforms on which the virtual machine has been implemented. 8
This is because such models are unaffected by the details of the underlying platform and, hence, fully conform to the 9
criterion of platform independence. 10

The MDA® also introduces a platform model providing a set of technical concepts that can express the different kinds of 11
parts that make up a platform and the services provided by that platform. It also provides, for use in a platform specific 12
model, concepts representing the various ways the platform can be used by an application. The aim of the platform 13
model is to provide a specific implementation of the PIM virtual machine, effectively constraining the PIM to PSM 14
transformation to target the specific platform. 15

Model transformation is the process of converting between two models describing different aspects or levels of detail of 16
the same thing. A model transformation may be partly automated in a modelling tool, but it will normally also involve 17
design choices by the developer and, possibly, some manual activity. 18

A tool builder may be primarily concerned with either the maintenance of a viewpoint specification in isolation or the 19
maintenance of a correspondence (or transformations) between viewpoints. Thus tools may be concerned solely with a 20
CIM, PIM or PSM, or they may be concerned with managing the correspondence between CIM and PIM, or between 21
PIM and PSM. They may be concerned with a specific instance of the correspondence, or with the rules applicable in a 22
broad class of use cases – that is, with the transformation as a reusable item. A particular tool may play any or all of 23
these roles. 24

C.2 Relationship of this document with the MDA® 25

A system specification that is compliant with this document may satisfy the requirements of the MDA®. Specifically: 26
– The enterprise specification is related to a computation independent model (CIM); a CIM may be 27

provided by an enterprise specification, together with relevant parts of an information specification. 28
– The information and computational specifications together form a (set of) platform independent model(s) 29

(PIM). Clause 7 (Computational Language) of RM-ODP Part 3 specifies a virtual machine that is the basis 30
for platform independence. 31

– The engineering specification constitutes a model of the system that specifies support for relevant ODP 32
transparencies (e.g., distribution). It may or may not make use of the functionality provided by the specific 33
vendor technology defined by the technology specification. This model is platform specific with respect to 34
the provision those transparencies, but still platform independent with respect to the particular choices of 35
technology to implement the system. 36

NOTE – The engineering language provides a series of templates for the concepts that are the elements of the 37
computational virtual machine. The result of applying these templates is the specific executable form of the 38
system, and is rarely made explicit. 39

– The technology specification defines the deployment of hardware and software (including network 40
elements) in the system, and does not have an equivalent in the MDA. 41

The correspondences between the viewpoint specifications constrain the transformations by means of which one model is 42
derived from another. 43

Figure C.1 illustrates the relationships described above. 44
Temporary Note – The figure has the merit of reflecting the text. There was no full agreement at the Málaga meeting on the 45
precise nature of the relationships between enterprise specifications and MDA models. 46

Committee Draft ISO/IEC 19793:2005 (E)

134 Committee Draft ITU-T Rec. X.906 (12/2005)

Business Needs

Enterprise Spec

Computational Spec

Engineering Spec

Technology Spec

Information Spec

CIM*

PIM*

PSM*

Platform Model*

Note: Terms with “*” are from MDA Guide

Transparencies

Choice of
technology

Business Needs

Enterprise Spec

Computational Spec

Engineering Spec

Technology Spec

Information Spec

CIM*

PIM*

PSM*

Platform Model*

Note: Terms with “*” are from MDA Guide

Transparencies

Choice of
technology

 1

Figure C.1 – ODP system specifications and MDA® models 2

 3

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 135

Annex D Architectural Styles 1
(This annex forms an integral part of this Recommendation | International Standard) 2

This annex describes some common architectural styles used in the design of distributed systems, and provides the 3
corresponding UML Profiles. This annex is not normative. 4

D.1 Introduction 5

By observing that some problems have common answers, software architects started to codify those common 6
architectural solutions on what they called architectural styles. As architectural styles are a way to model easily how 7
distribution is realized, they can be leveraged to make engineering deployment model easier and more practical. 8

The purpose of this annex will be to describe some of the common architectural styles and provide the associated UML 9
Profiles. The architectural styles that will be described are client-server, n-tier, Model-View-Controller (MVC), and 10
Service-Oriented Architecture (SOA). 11

D.2 Distribution Styles 12

D.2.1 Client-Server 13

Client-server architectural style, also known as two-tier, consists on distributing the system developed between two 14
physical nodes, the client and the server. Usually the client is always responsible of the presentation part and the server is 15
always hosting the database. The business and data access logic can then be hosted by the client, by the server, or by a 16
combination of the client and server. 17

A client that is only hosting the presentation logic is usually called a “thin client” by opposition to a “fat client” which 18
hosts presentation, business and eventually data access logic. 19

The UML profile used to describe such architectural style is shown in Figure D.1. 20

 21

Figure D.1 – Client-Server UML Profile 22

D.2.2 N-Tier 23

With the internet boom and the need to have applications always more poweful and scalable, architects introduced the 24
notion of multi-tiered applications, enabling the possibility to run each tier on a separate physical machine. 25

Committee Draft ISO/IEC 19793:2005 (E)

136 Committee Draft ITU-T Rec. X.906 (12/2005)

 1

Figure D.2– N-Tier architecture 2

As shown in Figure D.2, an N-Tier system is composed of three different tiers: 3
– The Presentation Tier, which has the responsibility of interacting with the user. This tier contains elements 4

that reside on both the client (Client Tier) and the server (Interaction Tier). The Client Tier is responsible 5
for rendering the user interface and for handling user interactions. The Interaction Tier is responsible for 6
processing client-side request and providing appropriate responses. 7

– The Business Tier, which has the responsability of the business logic. 8
– The Integration Tier, which has the responsibility of providing access to the Enterprise Information 9

System (EIS), like databases, external or legacy systems. 10

Figure D.3 shows the corresponding UML Profile. 11

 12

Figure D.3– N-Tier UML Profile 13

D.2.3 Model-View-Controller (MVC) 14

The MVC paradigm is a way of decoupling the graphical interface of an application from the code that actually does the 15
work. As explicitly mentioned in the name, it contains three elements. 16

These elements and their relationships are described in Figure D.4. 17

The Model encapsulates the state and behaviour of the application. The responsability of the View is to render the 18
Model, and the Controller processes user events and drives the Model and Views updates. 19

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 137

 1

Figure D.4 – MVC elements 2

Figure D.5 shows the UML Profile that can be used to model this style in your Engineering Viewpoint. 3

 4

Figure D.5 – MVC UML Profile 5

D.2.4 Service-Oriented Architecture (SOA) 6

The use of heterogeneous technologies and applications and the need to integrate them together is now a reality for any 7
company. The purpose of SOA is to make that integration easier by providing, through services, a loosely coupling 8
between those different applications. 9

A Service is a logical component that defines a set of interfaces and that is not allocated to a defined user but to multiple 10
clients which can share it. A Service Provider is a component that implements the service interfaces. Services and service 11
providers are published and accessed via a repository called a Service Registry. These services can be discovered and 12
accessed by consumers (end-user applications or other services) through the service registry, following the principles 13
shown in the figure below. 14

 15

Figure D.6 – SOA 16

The corresponding UML Profile is shown in Figure D.7. 17

Committee Draft ISO/IEC 19793:2005 (E)

138 Committee Draft ITU-T Rec. X.906 (12/2005)

 1

Figure D.7 – SOA UML Profile 2

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 139

Bibliography 1

This annex contains a list of standards, projects and initiatives related to the contents of this document, and a list of 2
books, articles, and research papers that are related to the use of UML for specifying ODP systems or any of the ODP 3
viewpoints. 4

This annex is not normative. 5
Temporary Note – National bodies are invited to contribute to these lists by providing information, links, and references to 6
projects and papers that can be included in this annex. 7

Related standards 8
 – omg/03-06-01, MDA Guide 9
– ptc/02-02-05, UML profile for Enterprise Distributed Object Computing 10

Related projects and initiatives 11
– Synapses project. (http://www.cs.tcd.ie/synapses/public/) 12
– INTAP (http://www.net.intap.or.jp/e) 13
– COMBINE project (http://www.opengroup.org/combine/overview.htm) 14
– NASA’s Reference Architecture for Space Data Systems (RASDS) 15
– EDF’s DASIBAO project. 16

References 17
[1] Peter Linington, “Options for Expressing ODP Enterprise Communities and their Policies by Using UML.” In 18

Proceedings of the 3rd International Enterprise Distributed Object Computing Conference (EDOC'99), Germany, 19
pp. 72-82, September 1999. IEEE Computer Society Press. 20

[2] Howard Bowman and John Derrick, “Viewpoint Modelling.” In Formal Methods for Distributed Processing. A 21
Survey of Object-Oriented Approaches, Cambridge University Press. Chapter 20, pp. 451-475, 2001. Cambridge, 22
England. 23

[3] Maarten W. Steen and John Derrick, “ODP Enterprise Viewpoint Specification.” In Computer Standards & 24
Interfaces, 22(3):165-189, September 2000. Elsevier. 25

[4] Francisco Durán and Antonio Vallecillo, “Formalizing ODP Enterprise Specifications in Maude.” Computer 26
Standards & Interfaces, 25(2):83-102, June 2003. Elsevier. 27

[5] Jan Aagedal and Zoran Milosevic, “ODP Enterprise Language: UML Perspective.” In Proceedings of the 3rd 28
International Enterprise Distributed Object Computing Conference (EDOC'99), Germany, pp. 60-71, September 29
1999. IEEE Computer Society Press. 30

[6] Xavier Blanc and Marie-Pierre Gervais and Raymonde Le Delliou, “Using the UML Language to Express the ODP 31
Enterprise Concepts.” In Proceedings of the 3rd International Enterprise Distributed Object Computing Conference 32
(EDOC'99), Germany, pp. 50-59, September 1999. IEEE Computer Society Press. 33

[7] Anne Picault, Philippe Bedu, Juliette Le Delliou, Jean Perrin and Bruno Traverson “Specifying an Information 34
System Architecture with DASIBAO.” In Proceedings of the International Conference on Enterprise Information 35
Systems (ICEIS 2004), Portugal, September 2004. 36

[8] F. Durán, M. Roldán, A. Vallecillo, “Using Maude to Write and Execute ODP Information Viewpoint 37
Specifications.” Computer Standard & Interfaces, 27(6):597-620, 2005. 38

[9] OMG. “Relationship of the Unified Modelling language to the Reference Model of Open Distributed Processing.” 39
OMG document ormsc/2001-01-01, Version 1.4, January 2001. 40

[10] INTAP (Interoperability Technology Association for Information Processing), Japan. “A Guide for Using RM-ODP 41
and UML Profile for EDOC.” Document available at http://www.net.intap.or.jp/e/odp/intap-guide.pdf. 42

[11] Stuart Kent, “The Unified Modelling Language.” In Formal Methods for Distributed Processing. A Survey of 43
Object-Oriented Approaches, Cambridge University Press. Chapter 7, pp. 126-152, 2001. Cambridge, England. 44

[12] D. H. Akehurst, J. Derrick, and A. G. Waters, “Addressing computational viewpoint design.” In Proceedings of the 45
7th International Enterprise Distributed Object Computing Conference (EDOC 2003), pages 147–159, Brisbane, 46
Australia, Sept. 2003. IEEE CS Press. 47

Committee Draft ISO/IEC 19793:2005 (E)

140 Committee Draft ITU-T Rec. X.906 (12/2005)

[13] E. Najm and J.-B. Stefani, “Computational models for open distributed systems.” In H. Bowman and J. Derrick, 1
editors, Proceedings of FMOODS’97, pages 157–176, Canterbury, 1997. Chapman & Hall. 2

[14] R. Sinnot and K. J. Turner, “Specifying ODP computational objects in Z.” In E. Najm and J.-B. Stefani, editors, 3
Proceedings of FMOODS’96, pages 375–390, Canterbury, 1996. Chapman & Hall. 4

[15] A. Février, E. Najm, and J.-B. Stefani, “Contracts for ODP.” In Proceedings of the 4th AMAST Workshop on Real-5
Time Systems, Concurrent and Distributed Software, Mallorca, Spain, May 1997. 6

[16] D. Hashimoto, H. Miyazaki, A. Tanaka, “UML 2 Models for ODP Engineering/Technology Viewpoints.” In Proc. 7
of the Second International Workshop on ODP for Enterprise Computing (WODPEC 2005), pages 32-38, 8
Enschede, The Netherlands, September 2005. 9

[17] R. Romero, A. Vallecillo, “Modelling the ODP Computational Viewpoint with UML 2.0.” In Proc. of the 9th IEEE 10
International Enterprise Distributed Object Computing Conference (EDOC 2005), pages 212-233, Enschede, The 11
Netherlands, September 2005. 12

 13

Committee Draft ISO/IEC 19793:2005 (E)

 Committee Draft ITU-T Rec. X.906 (12/2005) 141

Index 1

The number associated with the index entry indicates the clause or subclause where the index entry can be found. 2
Abbreviations, 4 3
Conventions, 5 4
Definitions, 3 5
Normative references, 2 6

 7

