International Telecommunication Union

ITU-T X.906

TELECOMMUNICATION (10/2014)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

Open distributed processing

Information technology T Open distributed
processing i Use of UML for ODP system
specifications

Recommendation ITU-T X.906

International
Telscommunication
Wrilon

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEMSNTERCONNECTION
Model and notation
Service definitions
Connectioamode protocol specifications
Connectionlessnode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
IP-based networks
MESSAGE HANDLINGSYSTEMS
DIRECTORY
OSI NETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Quality of service
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT
Systems management framework and architecture
Management communication service and protocol
Structure of management information
Management functions and ODMA functions
SECURITY
OSI| APPLICATIONS
Commitment, concurrency and recovery
Transaction processing
Remote operations
Generic applications of ASN.1
OPEN DISTRIBUTED PROCESSING
INFORMATION AND NETWORK SECURITY
SECURE APPLICATIONS AND SERVICES
CYBERSPACE SECURITY
SECURE APPLICATIONS AND SERVICES
CYBERSECURITY INFORMATION EXCHANGE
CLOUD COMPUTING SECURITY

X.1i X.19
X.201 X.49
X.501 X.89
X.90i X.149
X.15Gi X.179
X.180i X.199

X.20Gi X.209
X.21Gi X.219
X.2201 X.229
X.2301 X.239
X.2400 X.259
X.260 X.269
X.2700 X.279
X.2801 X.289
X.290Gi X.299

X.30G X.349
X.3501 X.369
X.370Gi X.379
X.400i X.499
X.5001 X.599

X.600 X.629
X.6301 X.639
X.6400 X.649
X.6500 X.679
X.6801 X.699

X. 700G X.709
X.7100 X.719
X. 7200 X.729
X. 730 X.799
X.8001 X.849

X.8501 X.859
X.860 X.879
X.8801 X.889
X.8901 X.899
X.90G X.999
X.1000'X.1099
X.1100'X.1199
X.1200'X.1299
X.1300/X.1399
X.1500'X.1599
X.1600 X.1699

For further details, please refer to the list of ITTURecommendations.

INTERNATIONAL STANDA RD ISO/IEC 19793
RECOMMENDATION ITU -T X.906

Information technology i Open distributed processingi
Use of UML for ODP systemspecifications

Summary

Rec ITU-T X.906 | ISO/IEC 19793defines use of thdJnified Modelling Language(UML 2.4.1 Superstructure
Specification, ISO/IEC 19508, for expressing system specifications in terms of the viewpoint specifications defir
thereference modedf open distributed processif@M-ODP, ReclTU-T X.901 to X.904 | ISO/IEC 10746 Partsdl 4)
and theEnterprise Languag@&ec.ITU-T X.911 | ISO/IEC 15414). It covers:

a) the expression of a system specification in terms of-@®BP viewpoint specifications using define
Unified ModelingLanguaggUML) concepts and extensions.g.,structuring rules, technology mapping
etc.);

b) relationships between the resultant RNDP viewpoint specifications.
This Recommendation | International Standard refines and extends the definitionopidroglistributed processit@DP)

systems are specified kgefining the use of théJnified Modelling Languagefor the expression of ODP syste
specifications.

History
Edition Recommendation Approval Study Group Unique ID°
1.0 ITU-T X.906 2007+11-13 17 11.1002/1000/9261
1.1 ITU-T X.906 (2007) Cor.1 200910-29 17 11.1002/1000/1024«
2.0 ITU-T X.906 20141007 17 11.1002/1000/1215:

To access th®ecommendation, type the URL http://handle.itu.int/ in the address field of your web brinlsgred by the
Recommendatios'unique ID. For exampléttp:/handle.itu.int/11.1002/1000/11880.

Rec. ITU-T X.906 (10/2014) [

http://handle.itu.int/11.1002/1000/9261
http://handle.itu.int/11.1002/1000/10244
http://handle.itu.int/11.1002/1000/12152
http://handle.itu.int/11.1002/1000/11830-en

FOREWORD

The International Telecommunication Union (ITU) is the Unikations specialized agency in the field of
telecommunications information and communication technologies (ICTEhe ITU Telecommunication
Standardization Sector (I'FU) is a permanent organ of ITU. ITU is responsible for studying technical,
operaing and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes
the topics for studyythe ITUT study groups which, in turn, produce Recommendations on these topics.

The approval of ITUT Recommendations is covered by the procedure laid down in WTSA Resdlution

In some areas of information technology which fall within ¥Td purview, he necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure.g, interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory mosiaie met. The words "shall” or some other
obligatory language such as "must" and the negative equivalents are used to express requirements. The use o
such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve
the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or
applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of
the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by p&nts, which may be required to implement this Recommendation. However, implementers are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB
patent database lttp://www.itu.int/ITU-T/ipr/.

a ITU 2015

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior
written permission of ITU.

ii Rec. ITU-T X.906 (10/2014)

http://www.itu.int/ITU-T/ipr/

10

11

12

13

CONTENTS

O R Y @ I PP PPPRRR PRI
0.2 UML 1ttt e R R et e e Rt e s aR e e e R e e e amnennre e e nnrne e e
0.3 OVErVIEW aNUMOLIVALION.eeiiiieieiireee et ieeee et ener e e st e s e e s s r e e e smnesnn e e s nnrneeenns
o7 PP PP
NOIMALIVEIEIEIENCES. ... eii ettt et eenr e e e e e s e e s nnre e e s eeenns
2.1 Identical Recommendations | InternatioBENAArdS............c.eevieiiiiiiieeei e,
2.2 AJJItIONAI RETEIENCES ittt eert ettt e et e e e e e e e e e e e s e s s e s ammmeeaeaaeeeesaesaaaannns
(D= T o110 £ TP UUURUUPRT
3.1 Definitions from ODPSIANAAIUSuueiiiiiiiiiiee e
3.2 Definitions from the ENterpriSEaNQUAGE.eviiiiiiiiii e
3.3 Definitions from the Unified Modelinlanguage..............cccoccciviiiimmmr s s e eseneenees
F Y o] e =) = 1] L PRSP RRPT
10701 0177=T01 1 o] o T PP PRI
Overview of modelling and system specificatBEpproach.................uviiiiiiiccciiiie e
LS00 A 1o i To L1 od T o PRSI
6.2 Overview of ODP concepts (extracted from RDDP Part 1)........ccccoocuvveiieiiiiiemmniiiiieee s iiiieeeeen
6.3 OVEINVIEW Of UML CONCEPLS. .. eeiiiiiiiiiiiiei et ie ettt e ettt e ettt e e e e sttt e e e e s st b e ensbeeeeeeeaae
6.4 Universes of discourse, ODP specifications and URAdElS..............cccveviiiiiiiemniiiiee e,
6.5 Modelling concepts and UML profiles for ODP viewpoint languagescandespondences..........
6.6 General principles for expressing and structuring ODP system specification®Jiing.............
6.7 Correspondences between Viewp@EPECITICAtIONS.cooiiiiiiiiiiiier e
ENterpriSESPECITICALION.........viiiiie ettt e sttt eamt e e e e eas
% R Y/ o T = 11 To oo o =T o PR
%72 O 11,1 o o 1= PR
7.3 Enterprise specification structure (in UML tErMS).........cooviiiiiiiiiireeieis e eieeee e e e ee e
7.4 Viewpoint correspondences for the enterplEBBIUE............eveeiieieiieeiiiieeee e
INfOrmMatioNSPECITICALION.........eiiiiiii e e e e e e e e e e e e e et e mnr e e e aeteat e e eeaeaaaaeees
S 70 R o o 1= g To oo o =T o PR
S T2 U 11V, | I o o 1= USSP
8.3 Information specification structure (in UML termS)........cooouuriiieiiiicemiiieeee e
8.4 Viewpoint correspondences for the informatlanguage...............cooeiiiiiiieccii e,
ComputatioNaBPECITICALION.ciiiiiiiiii ettt e e e e e e s e e e s
1S R Y o T =1 | IT oo o] g [od= o) =P PP PPTPP
9.2 UML POl ettt e e e e b e e e b e ab b eeera s
9.3 Computational specification structure (in UML termMsS)..........cccouiiiiiiiieeriiie e
9.4 Viewpoint correspondences for the computatidanfuage..............occvveeeeeiiiiemniieeeee e
(= aTo [aT=T=T g1 aTe < o T=Tol] {Tor= 11 o] o DR PPPPTPPRPR
10.1 MOEIING CONCEPLS. ...ttt ettt eeeeib bbbttt ettt et e e e e e e e e s eeameeeeeaeteaaaaaaaaaaaaeaaaammeaaaaaeeaeeaesaaaannnnnnes
10.2 UML PIOFIE ettt ettt e e e st bbbt e b e e e eeeeesaaarnees
10.3 Engineeriy specification structure (in UML tErMS).........uuuiiiiiiiiiiiiiaaaiiiiiiiiieieeeeeeee e e e
10.4 Viewpoint correspondences for the engineetimuage............ccccuuviiiiiiiieeeniieeeee e
TechnNOolOgYSPECITICALION.ii ettt eeee b bbb e e e s e e e eeeeeaeeas
0 A /T To [T g To oo o= o KT PP PPUUPUUPTPPT
R U 1V o o) 11 PR PR
11.3 Technology specification structure (in UML tEIMS)......ouuviiiieiiiiiireeieeee et
11.4 Viewpoint correspondences for the technolGYQUAGE.ccvvveiieeiiiiiieee e
100] g2 ool glo [T Tot: o T=Tol] {Tor=1 (o] o WP RRRPRP
2 A /T Yo [1T To oo T o= o) = PSSR
2 1Y/ R o T 1= SO
Modelling conformance in ODP SystespecCifiCationS............ccccccuviiiiiimeeiss s eeeeeeree e
13.1 Modelling CONfOrMANCEONCEPLS.uuitiiiiiiiiiiieite et eeeeitiib et e ettt e e e e e e e e eeeere e e e e et e e aaaaaeaaeae e s e s ammneeas

Rec. ITU-T X.906 (10/2014)

10

R T2 U 1Y/ o T 1= S PPS 67
14 Conformance and compliance to this Recommendation | InternaBtaraard...........cccccceevvveeeiiiccennnn, 68
I R O] o (o T 4= g o= PSPPI 68
I @ 41] 1=V o R 68
Annex AT An example of ODP specifications USIIALccooiiiiiiiiiiieei e eeesre e ee e 69
Al The Templeman LiDrargyStemL..ot e e e e e e 69
A.2 Enterprise SPecCifiCation MLocuuiiiiiiiiiiieee e 70
A.3 Information SPeCifiCation IMUMLccuuiiiiiiiiiii et eeeees 83
A.4 Computationabpecification iIMUMLcooiiiiiiiiioi e ee e e e 91
A.5 Engineeringspecification iMUMLccuuiiiiiiiiiii et eeeees 96
A.6 TechnologyspecCifiCation INUMLccuueiiiiiiiiiii e ee et e e e e e s e e eeeees 107
Annex Bi An example of the representation of dEOBBOICEPTS.........eevieiiiiiiiiiieiiee e emee e 111
170 R N =R od= o - 14 o PO PUP SR 111
B.2 EXxpressing the deOntBDNSIIAINTS.ciiii i eeer e e e e e e e e e ees e e e e e e e e e eeaaerann s enres 112
INDEX i iieie ittt etttk E e ea b e aR R et e E R et oo R e e e eamee AR R e e e e R R e e e ek Ee e e aA R R en et e e e Re e e s R Ee e e e rne e e e nes 117
iv Rec. ITU-T X.906 (10/2014)

Introduction

The rapid growth of distributed processing has led to the adoption méfdrence modedf open distributed processing
(RM-ODP), which provides a coordinating framework for the standardization of open distributed processing (ODP). It
creates an architecture within which support of distributiotgrworking andportability can be integrated. This
architecture provides a framevk for the specification of ODP systems.

The reference modebf open distributed processirig based on precise concepts derived from current distributed
processing developments and, as far as possible, on the use of formal description techniquefidatisped the
architecture. It does not recommend any notation.

The Unified Model P)ngwalsa ndgeuvaegleoEp e(dUMLy t he Obj ect Manager
a notation for modelling in support of information system design and is widely lusmdyhout the IT industry as the
language and notation of choice.

This Recommendation | International Standard refines and extends the definition of how ODP systems are specified by
defining the use of thenified modellinglanguagdor the expression of DP system specifications.

0.1 RM-ODP

The RM-ODP consists of:

I Part 1 [Rec. ITUT X.901 | ISO/IEC 10748]: Overview, which contains a motivational overview of ODP,
giving scoping, justification and explanation of key concepts, and an outline of the Cfiifeciure. It
contains explanatory material on how the NDP is to be interpreted and applied by its users, who may
include standards writers and architects of ODP systems. It also contains a categorization of required areas
of standardization expressatterms of the reference points for conformance identified in Rec:TITU
X.903 | ISO/IEC 10748. This part is informative.

T Part2[Rec. ITUT X.902 | ISO/IEC 1074@]: Foundations, which contains the definition of the concepts
and analytical frameworkor normalised description of (arbitrary) distributed processing systems. It
introduces the principles of conformance to ODP standards and the way in which they are applied. This is
only to a level of detail sufficient to support Rec. FITUX.903 | ISO/IEC107463 and to establish
requirements for new specification techniques. This part is normative.

i Part 3 [Rec. ITUT X.903 | ISO/IEC 10748]: Architecture, which contains the specification of the
required characteristics that qualify distributed proogsas open. These are the constraints to which ODP
standards shall conform. It uses the descriptive techniques from Red. K02 | ISO/IEC107462.

This part is normative.

T Part4[Rec. ITUT X.904 | ISO/IEC 10744]: Architectural semantics, which dains a formalization of
the ODP modelling concepts defined in Rec. {TW.902 | ISO/IEC 1074@ clauses 8 and 9. The
formalization is achieved by interpreting each concept in terms of the constructs of one or more of the
different standardized formdescription techniques. This part is normative.

In the same series as the RDDP are a number of other standards and recommendations, and, of these, the chief that
concerns this Recommendation | International Standard is:

i TheEnterprise Languag®ec. ITU-T X.911 | ISO/IEC 15414], which refines and extends the enterprise
language defined in Rec. IFOX.903 | ISO/IEC 10748 to enable full enterprise viewpoint specification
of an ODP system.

0.2 UML

The Unified Modelling LanguagéUML) is a visual languag for specifying and documenting the artefacts of systems. It

is a generapurpose modelling language that can be used with all major object and component methods and that can be
applied to all application domains (e.g., in health, finance, telecommumsatbr aerospace) and implementation
platforms (e.g., J2EE, COREBA.NET).

The version of UML currently adopted as an International Standard (ISO/IEC 19505) is UML 2.4.1. UML version 2 has
been structured modularly, with the ability to select only thuests of the language that are of direct interest. It is
extensible, so it can be easily tailored to meet the specific user requirements. The UML specification defines thirteen
types of diagram, divided in two categories that represent, respecthelgatic structure of the objects in a system
(structure diagrams) and the dynamic behaviour of the objects in a system (behaviour diagrams). In addition, UML
incorporates extension mechanisms that allow the definition of new dialects of UML (managed usimgdfilds) to
customize the language for particular platforms and domains.

Rec. ITU-T X.906 (10/2014) v

The UML specification is defined using a metamodelling approach (i.e., a metamodel is used to specify the model that
comprises UML). That metamodel has been constructed so thastiléng family of UML languages is fully aligned
with the rest of the OMG s p®%andté dlmvahe exohange of models betwedn@Bl&, O

0.3 Overview and motivation

Part 3 of theeference modeRec. ITUT X.903 | ISO/IEC 1046-3 defines a framework for the specification of ODP
systems comprising

a) five viewpoints, called enterprise, information, computational, engineering and technology, which provide
a basis for the specification of ODP systems;

b) a viewpoint language fagach viewpoint, defining concepts and rules for specifying ODP systems from
the corresponding viewpoint.

This Recommendation | International Standard defines:
i use of the viewpoints prescribed by the RNDP to structure UML system specifications;
i rulesfor expressing RMODP viewpoint languages and specifications with UML and UML extensions
(e.g, UML profiles).

It allows UML tools to be used to process viewpoint specifications, facilitating the software design process. Currently
there is growing interesh the use of UML for system modelling. However, there is no widely agreed approach to the
structuring of such specifications. This adds to the cost of adopting the use of UML for system specification, hampers
communication between system developers aakiesiit difficult to relate or merge system specifications where there is

a need to integrate IT systems.

The RMODP defines essential concepts necessary to specify open distributed processing systems from five prescribed
viewpoints and provides a framewdor the structuring of specifications for distributed systems. However, th©RN
prescribes neither a notation, nor a model development method.

This Recommendation | Internation&tandardorovides the necessary framework for ODP system specificasiong
UML. It defines both a UML based notation for the expression of such specifications, and an approach for structuring of
them using the notation, thus providing the basis for model development methods.

By defining how UML and UML extensions should bsed to express RI@DP viewpoint specifications, the standard
enables the ODP viewpoints and ODP architecture to provide the needed framework for system specification using UML.

This Recommendation | International Standard contains the following annexes:
T Annex A: An example of ODP specifications using UML
i Annex B: An example of the representation of deontic concepts.

These annexes are not normative.

Vi Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

INTERNATIONAL STANDA RD
ITU-T RECOMMENDATION

Information technology i Open distributed processingi
Use of UML for ODP system specifications

1 Scope

This Recommendation | International Standard defines usewdfiffed modellinglanguag€UML 2.4.1superstructure
specification, ISO/IEC 195082, for expressing system specifications in terms of the viewpoint specifications defined
by thereference modedf open distributed processitBM-ODP, Rec. ITUT X.901 to X.904 | ISO/IEC 10746 Parts

1 to 4) and thé&nterprise languagdRec. ITUT X.911 | ISO/IEC 15414). It covers:

a) the expression of a system specification in terms of &P viewpoint specifications using defined
UML concepts and extensions.g.,structuring rules, technology mappings, etc.);

b) relationshipdetween the resultant RRADP viewpoint specifications.

ThisRecommendation | Internatiorstandards intended for the following audiences:

T ODP modellers who want to use the UML notation for expressing their ODP specifications in a graphical
and standrd way;

i UML modellers who want to use the ROIDP concepts and mechanisms to structure their UML system
specifications;

T modelling tool suppliers, who wish to develop UNSased tools that are capable of expressing®P
viewpoint specifications.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editioresl indicat
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendatis and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendaions | International Standards

I Recommendation ITd X.901 (199) | ISO/IEC 10746L:1998, Information technologyi Open
Distributed Processing Reference Model: Overview

i Recommendation ITT X.902 (2009) | ISO/IEC 1074B:2010, Information technology’ Open
Distributed Processing Reference Model: Foundations

i Recommendation ITT X.903 (2009) | ISO/IEC 10748:2010, Information technology’ Open
Distributed Processing) Reference Model: Architecture

i Recommendation ITd X.904 (1997) | ISO/IEC (7464:1998, Information technologyi Open
Distributed Processing Reference Model: Architectural semantics

i Recommendation ITd X.911 (2012) | ISO/IEC 15414:2013nformation technologyi Open
distributed processing Reference modé&lEnterprise languge

I Recommendation ITO X.725 | ISO/IEC 10165, Information Technologyi Open Systems
Interconnectiori Structure of Management InformatiorPart 7: General Relationship Model

2.2 Additional References

i Recommendation ITAT X.950 (1997))nformationtechnologyi Open distributed processifigrrading
function: Specification

i Recommendation ITY X.960 (199), Information Technology Open Distributed ProcessirigType
Repository Function

Rec. ITU-T X.906 (10/2014) 1

ISO/IEC 19793:2015 (E)

i ISO/IEC 195052:2012 Information Technology OMG Unified Modehg Languagé Superstructure

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 Definitions from ODP standards

3.1.1 Modelling conceptdefinitions

This Recommendation | International Starttimakes use of the following terms as defined in Rec-TTX1902 |
ISO/IEC 107482:

abstraction; action; activity; architecture; atomicity; behaviour (of an object); binding; class; client
object; communication; composition; component objeeb.[]; mmposite object; configuration (of
objects); conformance point; consumer object; contract; creation; data; decomposition; deletion;
distributed processing; distribution transparency; <X> domain; entity; environment; environment
contract; epoch; error; eslgshing behaviour; failure; fault; <X> group; identifier; information;
initiating object; instance; instantiation (of an <X> template); internal action; interaction; interchange
reference point; interface; interface signature; interworking reference; poirttduction; invariant;
location in space; location in time; name; naming context; naming domain; notification; object;
obligation; ODP standards; ODP system; open distributed processing; perceptual reference point;
permission; persistence; produceraattj programmatic reference point; prohibition; proposition; quality

of service; reference point; refinement; role; server object; spawn action; stability; state (of an object);
subdomain; subtype; supertype; system; <X> template; term; terminating hahardding; type (of

an <X>); viewpoint (on a system).

3.1.2 Viewpoint languagedefinitions

This Recommendation | International Standard makes use of the following terms as defined in ReX.908 |
ISO/IEC 107463:

binder; capsule; channel; clusteammunity; computational behaviour; computational binding object;
computational object; computational interface; computational viewpoint; dynamic schema; engineering
viewpoint; distributed binding; enterprise object; enterprise viewpoint; <X> federatifixmation

object; information viewpoint; interceptor; invariant schema; node; nucleus; operation; protocol object;
static schema,; stream; stub; technology viewpoint; <viewpoint> language.

3.2 Definitions from the Enterprise Language

This Recommendationlfiternational Standard makes use of the following terms as defined in Red. K911 |
ISO/IEC 15414:

actor (with respect to an action); agent; artefact (with respect to an action); authorization; commitment;
community object; declaration; delegati@valuation; field of application (of a specification); interface
role; objective (of an <X>); party; policy; prescription; principal; process; resource (with respect to an
action); scope (of a system); step; violation.

3.3 Definitions from the Unified Modeling Language

This Recommendation | International Standard makes use of the following terms as defined in ISO/IEZ 19505

abstract class; action; activity; activity diagram; aggregate; aggregation; association; association class;
association end; attribe; behaviour; behaviour diagram; binary association; binding; call; class;
classifier; classification; class diagram; client; collaboration; collaboration occurrence; comment;
communication diagram; component; component diagram; composite; compositarstdiagram;
composition; concrete class; connector; constraint; container; context; delegation; dependency;
deployment diagram; derived element; diagram; distribution unit; dynamic classification; element; entry
action; enumeration; event; exception; @#on occurrence; exit action; export; expression; extend;
extension; feature; final state; fire; generalizable element; generalization; guard condition;
implementation; implementation class; implementation inheritance; import; include; inheritanag; initi
state; instance; interaction; interaction diagram; interaction overview diagram; interface; internal
transition; lifeline; link; link end; message; metaclass; metamodel; method; multiple classification;

2 Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

multiplicity; n-ary association; name; namespaugje; object; object diagram; object flow state; object
lifeline; operation; package; parameter; parent; part; partition; pattern; persistent object; pin; port; post
condition; precondition; primitive type; profile; property; pseudtate; realization; reive [a message];
receiver; reception; refinement; relationship; role; scenario; send [a message]; sender; sequence diagram;
signal; signature; slot; state; state machine diagram; state machine; static classification; stereotype;
stimulus; structural feate; structure diagram; subactivity state; subclass; submachine state; substate;
subpackage; subsystem; subtype; superclass; supertype; supplier; tagged value; time event; time
expression; timing diagram; trace; transition; type; usage; use case; udeagss; value; visibility.

4 Abbreviations
For the purposes of this Recommendation | International Standard, the following abbreviations apply.
BEO Basic Engineering Object
IXIT Implementéion extra Information for Test
MOF MetaObject Facility
oCL Object Constraint Language
ODP Open Distributed Processing
OMG Object Management Group
QoS Quiality of Service
RM-ODP Reference Model of Open Distributed Processing
UML Unified ModelingLanguage
uoD Universe Of Discourse
XMI XML Metadata Interchange

NOTET UML, CORBA, XMI, MOF, OMG, Object Management Group, and Unified Modeling Language are either registered
trademarks or trademarks of Object Management Group, Inc. in the United States or other countries.

5 Conventions
In the text that follows, the following conventions apply.

Rec. ITUT X.902 | ISO/IEC 1074& (RM-ODP Part 2: Foundations) and Rec. FTWX.903 | ISO/IEC 10748 (RM-
ODP Part 3: Architecture) are referred td'Bart 2 and"Part 3 of the RMODP, respectively.

Rec. ITUT X.911 | ISO/IEC 15414 (RMDDP Enterprise Language) is referred tdtas Enterprise Language

The UML superstructurapecification (see [2.2]) is referred to'dhe UML specificatioh. The UML notation defined
in the UML specification is referred to agML".

References to the normative texttbfs Recommendation | International Standéodhe text of Parts 2 and 3 of the
RM-ODP, to theEnterprise Languagend to UML are expressed in one of these forms:

[n.n] i a reference to clause n.ntbfs Recommendation | International Standard
[Part 21 n.n] T areference to clause n.n of RODP Part 2;

[Part 31 n.n] T a reference to clause n.n of RODP Part 3;

[E/LT n.n] T areference to clause n.n of theterprise Language

[UML 7 n.n] 1 areference to clause n.n of the UML specification;

For example, [Part29.4] is a reference to subclause 9.4 of Part 2 of the®WP; and [6.5] is a reference to claGsg
of this Recommendation | International Standdd@hese references are for the convenience of the reader.

NOTET The clauses correspond to the specific dated versions of the documents referelaces i2.

In the clauses that follow, except in the headings, teritalintypeface are terms of the RKADP viewpoint languages
as defined in Parts 2 and 3 of the RODP, or in theEnterprise LanguagéJML concepts are shown sans-serif
typeface. UMLstereotype names are shown in normal font, enclosed in guillemets (« and »).

The Pllowing conventions apply to the UML diagrams:

Rec. ITU-T X.906 (10/2014) 3

ISO/IEC 19793:2015 (E)

Association end names are placed at the end of the association that is adjacent to the class playing the
role. Association end names are omitted if they do not add meaning to the diagram. In this case, the
implied association end name is the name of the class at that end of the association, but starting in lower
case.

Cardinalities of associations are placed adjacent to the class that has the cardinality.
Where there are no attributes, the attributé phthe class box is suppressed.

Black diamonds are used to represent wipalg associations, with no cardinality or role name at the
whole end of the association, and no role name at the part end of the association. The meaning is that
the part cannagxist without exactly one instance of the whole.

Nouns are used in association end names, rather than verbs.
Class names representing ODP concepts start with upper case.
Arrowheads accompanying association names are avoided.

Icons associated with semtypes are used in some of the UML figureghis Recommendation |
International Standard his is done to aid understanding, but the icons are not normative.

6 Overview of modelling and system specification approach

6.1 Introduction

This clause provides an introductiontbdss Recommendation | International Standaayering:

an overview of ODP system specification concepts;
an overview of UML concepts;

an explanation of the relationships between ODP models, the subjects of thsls (universes of
discourse), and the UML models that express the ODP models;

an overview of the structuring principles for system specifications defined in the document;
an explanation of the concept of correspondences (relationships) betweeninvieppoifications.

6.2 Overview of ODP concepts (extracted from RMODP Part 1)

An overview of the ODP modelling concepts and the structuring rules for their use is given-@DRMPart 1
(Rec.ITU-T X.901 | ISO/IEC 10744.: Overview) and the concepts astducturing rules are formally defined in RM
ODP Parts 2 and 3. The text that follows.(the rest of [6.2]), is abstracted from the text in RNDP Part 1. RM
ODP Parts 2 and 3 are the authoritative standards, and should be followed in case of ehypetnlen those Parts
and this clause.

The framework for systermspecification provided by the RI@DP has four fundamental elements:

an object modelling approach to system specification;

the specification of a system in terms of sefmbait interrelated viewpoint specifications;

the definition of a system infrastructure providing distribution transparencies for system applications;
a framework for assessing system conformance.

6.2.1 Object modelling

Objectmodelling provides a formalization of the weltablished design practices of abstraction and encapsulation

Abstraction allows the description of system functionality to be separated from details of system
implementation

Encapsulation allows the ding of heterogeneity, the localization of failure, the implementation of
security and the hiding of the mechanisms of service provision from the service user.

Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

The object modelling concepts cover:

i basic modelling concepts: providing rigorous definitiofi® minimum set of concepts (action, object,
interaction and interface) that form the basis for ODP system descriptions and are applicable in all
viewpoints;

I specification concepts: addressing notions such as type and class that are necassagniog about
specifications and the wmions between specifications, providing general tools for design, and
establishing requirements on specification languages;

i structuring concepts: building on the basic modelling concepts and the specificatteptsado address
recurrent structures in distributed systems, and covering such concerns as policy, obligation, naming,
behaviour, dependability and communication.

6.2.2 Viewpoint specifications

A viewpoint(on a systemis an abstraction that yields a specification of the whole system related to a particular set of
concernsFive viewpointshave been chosen to be both simple and complete, covering all the domains of architectural
design.These five viewpoints (see Figutpare:

i the enterpriseviewpoint, which is concerned with the purpose, scope and policies governing the
activities of the specified system within the organization of which it is a part;

i theinformationviewpoint, which is concerned with the kinds of infation handled by the system and
constraints on the use and interpretation of that information;

T thecomputationaliewpoint, which is concerned with the functional decomposition of the system into
a set of objects that interact at interfatesablingsystem distribution;

T the engineeringviewpoint, which is concerned with the infrastructure required to support system

distribution;
i the technologyviewpoint, which is concerned with the choice of technology to support system
distribution.
Enterprise
Business Aspects
The purpose, scope and policies for the
organization that will own the system.
What for? why? who? when?
Information Computational

Information System Aspects

Information handled by the system and Application Design: Aspects

Functional decomposition of the system into

constraints on the use and interpretation of " . A
that information objects suitable for distribution.
R i How does each bit work?
What is it about? ODP -
System

Technology Engineering
Implementation Solution Types & Distribution
System hardware & software and Information required to support
actual distribution. distribution.
With what? How do the bits work together?

Figure 17 RM-ODP viewpoints

For eactviewpointthere is an associategwpoint languagehich can be used to specify a system from that viewpoint.
The object modelling concepts give a common basis foritgpoint languagesand make it possible to identify
relationships between the differeviewpointspecificationsand to assert correspondenbesween the models of the
system in differentiewpoints(see [6.7]).

NOTET Although the different viewpoints can be independently defaretithere is no explicit order imposed by the-RaP

for specifying them, a common practice is to start by developingritegprisespecification of the system, and then prepare the

Rec. ITU-T X.906 (10/2014) 5

ISO/IEC 19793:2015 (E)

information and computationalspecifications. These two specificationsynfeave constraints over each other. An iterative
specification process is quite common too, whereby ei@etpointspecification may be revised and refined as the other two are
developed. Correspondences between the elements of thesei¢hvpeintsare dfined during this process. After that, the
engineeringspecification of the system is prepared, based ordhgutationalspecification. Correspondences between the
elements of thes@ewpointsare then defined together with the newly specified elemEmally, thetechnologyspecification

is produced based on tleagineeringspecification. Again, some refinements may be performed on the rest aéthgoint
specifications, due to the new requirements and constraints imposed by the particular sélestiorlogy.

6.2.3 Distribution transparency

Distribution transparencies enable complexities associated with system distribution to be hidden from applications
where these complexities are irrelavéo the applicatios purpose. For example:

I access transparenayasks differences of data representation and invocation mechanisms for services
between systems;

i location transparencynasks the need for an application to have information about lodatiarder to
invoke a service;

i relocation transparencynasks the relocation of a service from applications using it;

T replication transparencynasks the fact that multiple copies of a service may be provided in order to
provide reliability and availabfy.

ODP standards define functions and structures to realize distrilttaimsparenciesHowever, there are performance
and cost tradeffs associated with ea¢ransparencyand only selectettansparenciewill be relevant in many cases.
Thus, a confaning ODP system shall implement thdasensparencieshat it supports in accordance with the relevant
standards, but it is not required to supportralhsparencies

6.2.4 Conformance

The basic characteristics of heterogeneity amdlution imply that different parts of a distributed system can be
purchased separately, from different vendors. It is therefore very important that the behaviours of the different parts of
a system are clearly defined, and that it is possible to assignpronsi bi Il ity for any fail
specifications.

The framework defined to govern the assessment of conformance addresses these is@U2B.Fvt 2 defines four

classes of reference points: programmatic reference point, perceptuaigefeoint, interworking reference point, and
interchange reference point. The reference points in those classes are the candidate for conformance points. Part :
covers:

i identification of the reference points within an architecture that provide candiiafiermance points
within a specification of testable components;

T identification of the conformance points within the set of viewpoint specifications at which observations
of conformance can be made;

i definition of classes of conformance point;

I specifcation of the nature of conformance statements to be made in each viewpoint and the relation
between them.

6.2.5 Enterprise language

The enterprise language provides the modelling concepts necessary to mad2P asystemin the context of the
business or organization in which it operates. An enterprise specifidafioes the purposscope andpoliciesof an
ODP systenand it provides the basis for checking anfiance of system implementations. The purpose of the system
is defined by the specifidaehaviourof the system whilgoliciescapture further restrictions of thehaviourbetween
the system and isnvironmentor within the system itself related to thesiness decisions of the system owners.
NOTE 17 An enterprise specification of a system may therefore be thought of as a statemertreduhrements for the
system. However, it must be emphasized that it is not fundamentally different from anglethent of the specification for the
system.

In an enterprise specificatipthe system is modelled by one or mer@erpriseobjectswithin the communitieof
enterprise objectthat model itenvironmentand by theolesin which these objects are involved. Theskes model,
for example, the users, owners and providers of information processed by the system.

NOTE 21 There is a question of modelling style to be considered that has particular significance for an entedjficsiop,

which is intended to be approachable for a subject matter expert. This is concerned with whether to name model elements in
terms of instances or types. Thus it is common practice to express an enterprise specification in terms of aobjegtgous

6 Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

named by theitype e.g., including in enterprise specifications phrases suth @sstomer enterprise objectulfils the role
applicant", when what is actually meant f&n (anonymousgnterprise objegtconforming to theenterprise object type
customer, fulfils therole applicant".

An important aspect of an enterprise specification is the expression of deontic constraints, such as obligation,
permission and prohibition. Concepts are included to simplify the expression of the dynamics ofrikatby
representing them as objects that can be transferred between communities, allowing the description of delegation and
of transfer of responsibility.

6.2.6 Information language

The individual components of a distifed system should share a common understanding of the information they
communicate when they interact, or the system will not behave as expected. These items of information are handled,
in one way or another, igformation object#n the system. To ensure that the interpretation of these items is consistent,
the information language defines concepts for the specification of the meaning of information stored within, and
manipulated by, an ODP system, independently of the wainthienation processing functions themselves are to be
implemented.

Information held by th©DP systenabout entities in the real world, including tB®P systenitself, is modelled in an
information specificationin termsof information objectsand their relationships arakehaviour Basic information
elements are modelled by atorméormation objectsMore complex information is modelled as composifermation
objectseach modelling relationships over a set of constitugarmation objects

The information specification comprises a set of related schemata, namétyattient, staticanddynamicschemata:

T aninvariant schemanodels relationships betweerformation objectshat must always be true, for all
valid belaviours of the system

T astatic schemanodels assertions that must be true at a single point in time. A common use of static
schemata is to specify the initistateof aninformation object

i adynamic schemspecifies how the information can evolvetlas system operates.

6.2.7 Computational language

The computational viewpoint is directly concerned with the distribution of procedmibgot with the interaction
mechanisms that enable distribution to occur. The computational specificdioomposes the system into
computationalobjectsperforming individual functions and interacting iaterfaces It thus provides the basis for
decisions on how to distribute the jobs to be done becabgerts can be located independentlgssuming
communications mechanisms can be defined in the engineering specification to support the behbrioterédces
to thoseobjects

The heart of the computational language is the computational object model, which constrains the computational
specification by defining:

T the form ofinterfaceanobjectcan have;
i the way thatnterfacescan be bound ahthe forms ofnteractionthat can take place at them;

i the actionsan object can perform, in particular the creation of nebjectsand interfaces and the
establishment dbindings

The computational object model pides the basis for ensuring consistency between different engineering and
technology specifications (including programming languages and communication mechanisms) since they must be
consistent with the same computational object model. This consistena afmen interworking and portability of
components in the resulting implementation.

The computational language enables the specifier to model constraints on the distribution of an application (in terms of
environment contractassociated with individuahterfacesandinterface binding®f computational objecjswithout
specifying the actual degree of distribution in the computational specification; this latter is specified in the engineering
and technology specifications. Thaasures that the computational specification of an application is not based on any
unstated assumptions affecting the distributioengfineeringandtechnology object8ecause of this, the configuration

and degree of distribution of the hardware on wi@&P applications are run can easily be altered, subject to the stated
environment constraints, without having a major impact on the application software.

6.28 Engineering language

The engineering language focuses on the way object interaction is achieved and on the resources needed for it to tak
place. It defines concepts for describing the infrastructure required to support selectable, distribution transparent

Rec. ITU-T X.906 (10/2014) 7

ISO/IEC 19793:2015 (E)

interactions betweeabjects and rules for structuring communicatiohannelsbetweenobjects and for structuring
systems for the purposes of resource management. These rules can be moelejectasngemplategfor example,
anengineering channel template

Thus the omputational viewpoint is concerned with when and whjectsinteract, while the engineering viewpoint

is concerned with how they interact. In the engineering language, the main concern is the suppeEndotibns
betweencomputational objectsAs a cmsequence, there are very direct links between the viewpoint descriptions:
computational objectare visible in the engineering viewpointiassic engineering objecésd computational bindings
whether implicit or explicit, are visible @&therchannelor localbindings

The concepts and rules are sufficient to enable specification of internal interfaces within the infrastructure, enabling the
definition of distinct conformance points for different transparencies and the possibilismdastization of a generic
infrastructure into which standardized transparency modules can be placed.

The engineering language assumes a virtual machine that corresponds to a platform offering minimal support for
distribution.
NOTE 1 The functionality of he virtual machine assumed by the engineering language corresponds, for example, to a set of
computing systems with staradoneoperating systenfacilities plus communication facilities. In practice, the functionality
available from current vendor technglg for example when it offers a CORBA or J2EE environment, already provides
significant elements of the functionality to be covered by the engineering specification

Thus, the engineering specification is interpretethis Recommendation | International Standesdiefining the mechanisms
and functions required to support distributed interaction between objects in an ODP system, making use of the supporting
functionality provided by the specific vendor technology defibg the technology specification.

6.2.9 Technology language

The technology specificatiaescribes the implementation of the ODP system in terms of a configuratémimoblogy

objects modelling the hardware and software components of the implementation. It is constrained by cost and
availability of technology objects (hardware and software products) that would satisfy this specification. These may
conform toimplementable standargghich are effectively templatefer technology objectsThus, the technology
viewpoint provides a link between the set of viewpoint specifications and the real implementationngythisti
standards used to provide the necessary basic operations in the other viewpoint speciffmtonf the technology
specification is to provide the extra information needed for implementation and testing by selecting standard solutions
for basc components and communication mechanisms.

6.3 Overview of UML concepts

Theunified modellinglanguaggUML) is a visual language for specifying, constructing and documenting the artefacts

of systems. It is a generplurpose modelling language that can be used with all major object and component methods
and that can be applied to all application domains (e.g., in health, finance, telecommunications, or aerospace) and
implementation platforms (@., J2EE, CORBA, .NET). However, not all of UML modelling capabilities are necessarily
useful in all domains or applications. Therefore, the UML specification has a modular structure, with the ability to
select only those parts of the language that adéreft interest, and is extensible, so it can be easily customized.

The UML specification defines thirteen types of diagram, divided in two categories that represent, respectively, the
static structure of the objects in a system (structure diagrams)hamtynamic behaviour of the objects in a system
(behaviour diagrams). In addition, the UML specification incorporates extension mechanisms that allow the definition
of new dialects of UML to customize the language for particular platforms and domains.

6.3.1 Structural models

Structural models specify the structure of objects in a model. They are represented in:

i class diagrams, which show a collection of declarative (static) netesheénts, such aslasses, types,
and their contents;

i object diagrams, hich encompassbjects and their relationships at a point in time. An object diagram
may be considered a special case of a class diagram or a communication diagram;

I component diagrams, which show the organizations and dependenciescampogents;

I deployment diagrams, which represent the execution architecture of systems. They represent system
artefacts asodes, which are connected through communication paths to create network systems of
arbitrary complexityNodes are typically defined in a nestadanner, and represent either hardware
devices or software execution environments;

8 Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

i composite structure diagrams, which depict the internal structurelaafséier, including the interaction
points of theclassifier to other parts of the system. Theyoshthe configuration of parts that jointly
perform the behaviour of the containidgssifier;

i package diagrams, which depict how magleinents are organized into packages and the dependencies
among them, including package imports and package extensions

6.3.2 Behavioural models

Behavioural models specify the behaviofiobjects in a model. They are represented by:

I use case diagrams, each of which illustrates the relationships antorggand the system, antgse
cases;

i state machie diagrams, which specify the sequencestatbs that anobject or aninteraction goes
through during its life in response dogents, together with its responses aadions;

i activity diagrams, which depict behaviour using a control andftatamodet
i interaction diagrams, which emphasize objeetractions and can be one of the following:

I sequence diagrams, that depigeractions by focusing on the sequence of messages that are
exchanged, along with their correspondiegent occurrences on theifdlines. Unlike a
communication diagram, a sequence diagram includes time sequauicéses not includebject
relationships. A sequence diagram can exist in a generic form (that describes all possible scenarios)
and in an instance form (that describage actual scenario). Sequence diagrams and communication
diagrams express similar information, but show it in different ways;

I communication diagrams, which focus on itteractions between lifelines where the architecture
of the internal structure anddow this corresponds with the message passing is central. The
sequencing of messages is given through a sequence numbering scheme. Sequence diagrams anc
communication diagrams express similar information, but show it in different ways;

I interaction ovengw diagrams, which represénteractions through a variant of activity diagrams
in a way that promotes overview of the control flow; in these diagramsnedetcan itself be an
interaction diagram;

T timing diagrams, which show the changetate or cordition of a lifeline (representingdassifier
instance or classifier role) over linear time. The most common usage is to show the change in state
of anobject over time in response to acceptaents or stimuli.

6.3.3 Model management

Model managemerdoncerns the structuring of a model, including any extensions used, in terms of the groupings of
modelelements that comprise it. There are three grouping elements:

i models, which are used to capture different views of a physical system;
i packages, whichare used within a model to group model elements;
T subsystems, which represents behavioural units in the physical system being modelled.

6.3.4 Extension mechanisms

UML provides a rich set of modelling concepts and notattbat have been carefully designed to meet the needs of
typical software modelling projects. However, users may sometimes require additional features beyond those defined
in the UML specification.

UML can be extended in two ways. First, a new dialedUdIL can be defined by usingrofiles to customize the
language for particular platforms (e.g., J2EE/EJB, .NET/COM+) and domains ({e.ghealth, finance,
telecommunicationgr aerospace)lternatively, a new language related to UML can be specifiectbsing part of

the UML InfrastructureLibrary package and augmenting it with appropfriataeclasses and metarelationships. The
former case defines a new dialect of UML, while the latter case defines a new member of the UML family of languages.

A profile is a kind ofpackage that extends a reference metamodel. The primary extension constructtisdhiype,

which defines how an existingietaclass may be extended, and enables the use of platform or domain specific
terminology or notation in place of or &ddition to the ones used for the basgaclass being extended. Just like a
class, astereotype may have properties, which are referred to as tag definitions. Whtaneatype is applied to a
modelelement, the values of the properties are referredsttegged values.

Rec. ITU-T X.906 (10/2014) 9

ISO/IEC 19793:2015 (E)

Constraints are frequently defined in a profile, and typically define-faatiedness rules that are more constraining
but consistent withthose specified by the reference metamodel. The constraints that are part of the profilearedeval
when the profile has been applied tpaakage, and need to be satisfied in order for el to be well formed.

6.4 Universes of discourseODP specificationsand UML models

In using the techniques describedtlis Recommendation | International Standatds necessary to understand the
relationships between the subject of a model, i.eunigerse of discarse(UOD), ODP specifications for that UOD,
and how those ODP specifications are expressed in.UML

The four main sets of notions involved in understanding these relationships are:
i the entities, and the relationships amongst them, in the UOD being modelled;
i the ODP specifications that model that UOD;
i the UML models that express the ODP speations;

i the UML notation (diagramming techniques and other mechanisms) by means of which the UML models
are represented.

There are three important kinds of relationship between these notions

I first, in the same way that an OBBjectmodels an entitya concrete or abstract thing of interest), an
ODP specificatiormodelsa UOD. The modeller uses the concepts and structuring rules €D BRI
Part 2, together with those of the relevant ODP viewpoint languagesOBRIPart 3 and thénterprise
Languagg to produce a specification that models relevant facts and assertions about the entities that
exist in the UOD. The rules for this kind of relationship are stated in Parts 2 and 3 of t8&®RMNnd
in theEnterprise Language

T second, each model elemente(. instance of an ODP viewpoint language concept) in the ODP
specifications iexpressedby one or more UMlelements (instance of a UMLmetaclass, specialized
as necessary through the relevantffile) in a UML model, which is thus an expression of the BD
specification. The rules for this kind of relationship are statetlinRecommendation | International
Standarg

i third, the UML notation is used tepresent, graphically or otherwise, the underlying UML model. The
rules for this kind of relationshigre stated in the UML standard.

This Recommendation | Internatioréfandarcaddresses the three simple relationships described above, and the terms
that are highlighted above are invariably used to refer to them.

While there are other derived relatioimhbetween elements in this chain (e.g., between UOD and UML model), they
are not otherwise referred to this Recommendation | International Standardese relationships are illustrated in
Figure 2.

10 Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

Universe
of Discourse
(UOD)
models
(seeRM-ODP)
ODP expresses UML
specification [(described here) —| model
represents
(seeUML spec)
The UML
notation

Figure 21 Relationships between UOD, ODRpecifications, and UML models

6.5 Modelling concepts and UML profiles for ODP viewpoint languages and correspondences

Clauses 7 to 11 athis Recommendation | International Standard devoted, in turn, to each of the fi@bP
Viewpoints enterprisejnformation,computationalengineering, andechnology).

The first subclause of each of these clauses provides an overview of the ODP modelling concepts for that viewpoint.
The ODP viewpoint modelling concepts are describgdgutext as well as a simplified set of UML class diagrams,
which show the major modelling concepts for the ODP viewpoint as classes, and binary associations (including
cardinality constraints) that may exist between these viewpoint concepts. Thesmsliangether with the text can be
considered as specifying MOF compliant metamodels for the subset of the ODP viewpoint concepts defined in Parts 2
and 3 of the ODReference model that are usedhis Recommendation | International Standard

NOTE 17 In the case of th&nterprise Languagehe metamodel is standardized in Rec.{TX.911 | ISO/IEC 15414 and

reproduced here; if there is any discrepancyfBhterprise Languageersion is definitive.

The second subclause of each of these clauses provdgesification of a UML profile for that ODP viewpoint. UML
based ODP viewpoint models can be expressed using the notation defined for therdfiMdlfor that viewpoint.

Any ODP viewpoint model expressed using the Uptbfile for that ODP viewpoint satiifs the constraints specified
in each of the corresponding ODP viewpoint metamodels defintaisiRecommendation | International Standard

NOTE 2i Itis an implementation issue whether the constraints defined in each ODP viewpoint metamodel arebgrifooted
which construct ODP viewpoint models using that viewpsi®@DPprofile.

Clause 12 deals with correspondences between viewpoints, and is structured in the same way as clauses 7 to 11.

6.6 General principles for expressing and structuring ODPsystem specifications using UML

This clause defines the structuring style for ODP syseeatifications, expressed using the UML profiles defined in
Clauses 7 to 12 dhis Recommendation | International Stand@®P system specificationsathare in compliance
with this Recommendation | International Standaittiuse this structuring style.

The ODP system specification will consist of a single Ufilddel stereotyped as «ODP_SystemSpec», that contains a
set ofmodels, one for each viewpointpgcification, each stereotyped as «<X>_Spec», where <X> is the viewpoint
concerned. Each viewpoint specificatiovhich consists of a coherent set of instances of the concepts described in that
viewpoint language, uses the appropriate UML profile for that language, as described in Clauses 7 ttusl1 of
Recommendation | International Standardere will also be aet of correspondence specifications (see clake

In this Recommendation | International Standateteotypes are used to represent domain specific specializations of
UML metaclasses in order to express the semantics of the-RBMP viewpoint languageoticerned.

In general, the way in which the UML is used to express a given viewpoint specification (which will consist of a
coherent set of instances of the concepts described in each viewpoint language) is such that:

i each of the viewpoint language contes expressed by one or more extended UiHtaclasses
(expressed by the use siéreotypes);

Rec. ITU-T X.906 (10/2014) 11

ISO/IEC 19793:2015 (E)

i the relationships (metassociations) between the viewpoint language concepts"@a@mmunityhas
exactly oneobjectivé in the enterprise language) is fiamy expressed, preferably by medasociations
between the corresponding UMuhetaclasses (e.g, "Class may be associated witblass") or, failing
that, by use of specific additional UMdlements.

This is done in a way that is consistent with the seicenf the UML metamodel.

6.7 Correspondences betweeniewpoint specifications

6.7.1 ODP Correspondences

The correspondences between viewpoint specificatmasdefined in Part 3 of the RRDP andin the Enterprise
Language The text that follows in this clause is abstracted from these standards, which remain the authoritative
standards, and should be followed in case of conflicts bettheeRecommendation | International Standard those
standads.

A set of specifications of an ODP system written in different viewpoint languages should not make mutually
contradictory statements i.e., they should be mutually consistent. Thus, a complete specification of a system includes
statements of correspomuees between ternand language constructs relating one viewpoint specification to another
viewpoint specificationshowing that the consistency requirement is met.

The key to consistency is the idea of cormasfences between different viewpoint specifications, i.e., a statement that
some terms or structures in one specification correspond to other terms and specifications in a second specification.
The underlying rationale in identifying correspondences betwidérent viewpoint specifications of the same ODP
system is that there are some entities that are modelled in one viewpoint specification, which are also modelled in
another viewpoint specification. The requirement for consistency between viewpoifitapens is driven by the fact

that what is specified in one viewpoint specification about an entity needs to be consistent with what is said about the
same entity in any other viewpoint specification. This includes the consistency of thas @ntipgties, structure and
behaviour.

The specifications produced in different ODP viewpoints are each complete statements in their respective languages,
with their own locally significant names, and so cannot be related without additional information inntheffo
correspondence statements that make clear how constraints from different viewpoints apply to particular elements of a
single system to determine its overall behaviour. The correspondence statements are statements that relate the variou
different vievpoint specifications, but do not form part of any one of them. The correspondences can be established in
two ways:

I by declaring correspondences between terms in two different viewpoint languages, stating how their
meanings relate. This implies that the languages are defined in such a way that they have a common,
or at least a related, set of foundation concepts and structuring rules. Such correspondences between
languages necessarily imply and entail correspondences relating to all things ot intéchsthe
languages are used to model (gllings modelled by objects or actions);

i by considering the extension of terms in each language, and asserting that particular entities being
modelled in the two specifications are in fact the same entity. This relates the specifications by
identifying which observations need to be interpretablgoth specifications.

The correspondence statements to be provided in a system specification are specified in Part 3 &mdeiptise
Languageof the RM-ODP, and in lauses 7 to 11 dhis Recommendation | International Standataky fall into two
categories:

I some correspondences are required in all ODP specifications; these areetplleztl correspondences
If the correspondence is not valid in all instances in which the concepts related occur, the specification
simply is not a valid ODP sp#ication;

i in other cases, there is a requirement that the specifier provides a list of items in two specifications that
correspond, but the content of this list is the result of a design choice; these arerezplieed
correspondence statements

NOTET In RM-ODP Part 3, the following correspondences are explicitly specified
I between computational and information ([Part B0.1]),
i between engineering and computational ([P&rtl®.2]).
In theEnterprise Languaggtandard, the following correspdences are specified
I between enterprise and information ([E/111.2]),
i between enterprise and computational ([E/L1.3]),

12 Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

I between enterprise and engineering ([E/LL.4]).

6.7.2 Expressing ODP correspondences in UML

Correspondencebetween ODP modelling elements of different viewpoints are expressed using the UML profile
defined in clause 12 ofthis Recommendation | International Standafthe main concept introduced is the
correspondence link. A correspondetio& is established between two viewpoint specifications, and each of its ends
refers to a set afermsinvolved in the correspondence relationshipcdrespondence statemestexpressed by a
constraint applied to this link, and is used for checking sistency between viewpoint specifications.

7 Enterprise specification

7.1 Modelling concepts

An enterprise specification uses the RMNDP enterprise languagéhe modelling concepts and the structuring rules of
the enterprise language are defined in [Par6Band expanded upon in [EIL6 and 7]. They are summarized in this
clause. In case of conflict between the explanations herein and the text in PdréBrterprise Languagéehe latter
documents should be followed.

The set of diagrams at the end of this clause (i.e., at [7.1.8]) summarizes a metamodel for the enterprise language,
defined in Rec. ITUT X.911 | ISO/IEC 15414.

7.1.1 Systemconcepts

An enterprise specificatiothescribes a®@DP systenand relevant aspects of éavironmentAn ODP Systens a kind
of enterpriseobject Theenterpriseobjectsthat interact with a giveanterprise objectorm part of theenvironmentof
thatenterpriseobject

The ODP Systenhasa scope which defines thébehaviourthat the system is expected to exhibit. An enterprise
specificatiorhas dfield of applicationwhich describes its usability properties.

These system concepteallustrated in Figure 3.

7.1.2 Community concepts

The fundamental concept of the enterprise language@ramunity which is a configuration oénterprise objects
formed to meet anbjective Any objectivemay be refined into a set of salijectives A communityis specified in a
contract which models the agreement amongst the entities to work together to melgietttieve Thus thecontract

T states th@bjectivefor which thecommunityexists;

T governs thestructure thebehaviourand thepoliciesof thecommunity
i constrains théehaviourof the members of theommunity

i states the rules for the assignmentiatierprise objectto roles

Eachenterpriseobjectmodels some entitgabstract or concrete thing of interest) in th®D. A particular kind of
enterpriseobjectis acommunityobject which models, as a single object, an entity that is elsewhere in the model refined
as acommunity

The configuration of @ommunityis modelled in terms of the wapnterpriseobjectsinteract infulfilling roles which
identify behavioursntended to meet thebjectiveof thecommunityconcerned.

The community concepts are illustrated-igure 4.

7.1.3 Behaviour concepts

A behaviouris a collection ofctions(things that happen), with constraints on when they occuererpriseobject
may be involved in (playolesin) anactionin one or more of the flowing three ways:

I if it participates in thectionit is anactor with respect to thactior
i ifitis referenced (i.e. mentioned) in thetion, it is anartefactwith respect to thaction;

i ifitis essential to the (performance of) tlaation, and requires allocation or may become unavailable,
it is aresourcewith respect to thaction

Rec. ITU-T X.906 (10/2014) 13

ISO/IEC 19793:2015 (E)

A role identifies a specifibehaviourof anenterprise objecin acommunity Suchbehaviouris observable as a set of
interactionsin which theobjectparticipates, and relationships between them. This implies thaeteviourof an
objecthas to be viewed in the context of the corresponbettaviourof theobjectswith which it interacts.

Communitiesnay be open or closed; that is they may or may not interact withetfigionmentWhere aole that is
in (i.e, is part of the configuration of) @mmunityidentifiesbehaviourthat takes place with the participation of one
or moreobjectsthat are nbin thatcommunity it is aninterfacerole.

The modelling ofbehaviourmay be structured into one or mgyocesseseach of which is a graph efepstaking
place in a prescribed manner and which contributes to the fulfilment objantive In this aproach, astepis an
abstraction of aactionin which theenterpriseobjectsthat participate in thaiction may be unspecified. Atepmay
be refined as processitself consisting of a set ateps

A violationis a specifidehaviourof anenterpriseobjectthat is prohibited in @ommunity contractThecontractmay
specify some specifibehaviourthat is to take place whervalation occurs.

The behaviour concepts are illustrated in Figures 4 and 5.

7.1.4 Deontic concepts

The specification of enterprigeehaviourtypically involves the expression of deontic constraints such as obligations,
permissions and prohibitions. These are incorporated into an -tigjsett model by introducingnterprise objects
calleddeontic tokenslf an active enterprise objechas an associatatkbontic tokenthen the corresponding deontic
constraint applies to thebjects behaviour However,deontic tokensire not themselveactive enterprise objecend

are not directly involved in interaotis by taking action role§achdeontic tokeris associated with exactly oaetive
enterprise objectThere are three types @éontic token

T aburdenrepresentanobligationon the objects with which it is associated;
i apermitrepresents permissiorheld by the objects with which it is associated:;
i anembargorepresentsa prohibition affecting the objects with which it is associated.

These deontic constraints are created or modified by specific typesaiwhich are calledpeech actsA speech act
may result in the creation afeontictokensor the transfer of suctokensbetweenobjectsplaying particularaction
rolesin thespeech actThe destruction of tokenat the end of its lifecycle is also generally performed bpeech act
althoughtokensmay destroy themselves as a result of a timeout or other trigger.

NOTE i The set oftokensheld by theobjectsconcerned determines whetherspeechact can take plee and what its
consequences are. For example:

T it may be necessary for abjectto hold apermitbefore it can perform speectact,

T having anembargomay prevent awmbjectfrom performing aspeectact, even though thactionwould otherwise be
permitted by th@bjectsrole;

T aburdenheld by arobjectmay be discharged as a result of its performisgeechact,

i the performance of a delegatispeechact may transfer groupof tokens(for example burdensandpermitg to the
objectto which responsibility is delegated.

A deontic token may be in either an active or a pending state. When it is in an active state, the constraint it carries is
applied to control the behaviour of the active enterprise object that hditsaiever, when it is in the pending state,
this constraint is masked so that it does not affect the current behaviour.

The deontic concepts are illustrated in Figures 4, 7 and 8.

7.1.5 Policy concepts

A policyis a constraint on a systespecification foreseen at design time, but whose detail is determined subsequent to
the original design, and capable of being modified from time to time in order to manage the system in changing
circumstances. It identifies the specificatiorbehaviour or constraints obehaviour that can be changed during the
lifetime of the ODP system, or that can be changed to tailor a single specification to apply to a range of different ODP
systems.

The specification of @olicy includes:
i the name of theolicy,
i the rules, modelled asbligations permissionsprohibitionsandauthorizations
i the elements of the enterprise specification affected bydhey;

14 Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

i the policy envelope that constrains the possible restrictions oribehathat are acceptable as policy
values;

i anybehaviourfor changing theolicy;
I adefault policy value to be used until any explicit initial change takes place.
Where there is a requirement to model dynamic policy settipgliey can be changed bytehaviour

A policy may also constrain the structure (configuration) @oaamunity by governing the assignment afles to
enterpriseobjects Such golicyis called arassignmenpolicy.

NOTET For a giverpolicy envelopgonly onepolicy valueis inforce at a point in time. This policy value may be selected from
a set of values defined in the policy envelope or it may be a statement in a policy language that is consistent witts @onstrai
the policy envelope.

The policy concepts are illustratedrigure 6.

7.1.6 Accountability concepts

Accountability concepts concern the modelled behaviopadfes A partyis anenterpriseobjectmodelling a natural
person or any other entity considered to have swintige rights, powers and duties of a natural person, and which can
therefore be considered accountable foadsons A party may delegate authority to anotherterpriseobject(which

may or may not be garty), in which case it is referred to as fivincipal in thatactionof delegationand theenterprise
objectto whom authority is delegated is thgentof thatparty.

Only partiescan take part in accountatdetions Suchactionsmay take the following forms:
T prescription anactionthat establishes a rule;

I commitmentanactionresulting in an obligation by one or more of the participants in the act to comply
with a rule or perform aontract

i declaration anactionthat establishes a state of affairs in #revironmentof the object making the
declaration

T evaluation anactionthat assesses the value of something
i delegation anactionthat assigns authority, responsibility or a function to anatbggct

The accountability concepts are illused in Figure 7.

7.1.7 Structure of an enterprise specification
An enterprise specification is structured in termsafimunitieandcommunity objects

Eachcommunityis modelled in terms of the following concepts and the relationships between them:
i theobjectiveand subobjectives (of tteommunity,

i thebehaviourof thecommunity modelled in terms adctionsand constraints on the order in which they
may occurBehaviourcan be structured to emphasize:

i rolesfulfilled by enterprise objectthat interact as members of th@mmunity

I processeshat model sequences adtions carried out by one or moenteprise objects
i enterprise objectthat fulfil therolesin thecommunity
T policiesconstraining théehaviour

Some enterprise objectsmay be composite objects and are subclassifiedoasmunity object@and refined as
communities

At some level of detil the ODP systemwill be present in the model as anterprise object

7.1.8 Summary of the enterprise language metamodel

The diagrams below (Figures 3 to 8) illustrate the concepts of the esgelgnguagand the relationships between
them.

Rec. ITU-T X.906 (10/2014) 15

ISO/IEC 19793:2015 (E)

Environment EnterpriseObject
0.1 1

ODPSystem |SYStEmM Scope
1 1

describedSystem |1..*

1

EnterpriseSpecification context | FieldofApplication
1.* 1

Figure 37 System concepts

NOTET The concept of environment was introduced in Part 2 in order to allow description of the properties of some particular
object by introducing eepresentation of all the other elements in a model with which it might interact, directly or indirectly. As
such, in particular, it represents some abstraction of the other objects in the model, but this abstraction relatwinghiplés n

in any moe!.

16 Rec. ITU-T X.906 (10/2014)

sub-objective |0..*

ISO/IEC 19793:2015 (E)

— Behaviour [Action
fulfill
parent | Objective - L composite component
0.1 0. 1. 0.* 0.*
gt ? ConditionalAction
PolicyDeclaration | SPECIfiEr | Contract behaviour |Community
0. 1 A 1.4 Behaviour
behaviour |1 Role
identifier (0.1 [
refinement | Community CommunityRole 4 InterfaceRole
1 1 0.*
0..‘ lol
member (0..*
EnterpriseObject
Burden | [Embargo | ([Permit
communityRojeFiller {disjoint } I I
0.1 | abstraction 0. I | A 0.
CommunityObject ——>{ ActiveEO OWnEr: DeonticToken refersTo W ActionRole
: . 1 0.* 0.4 1.4 =
actionRoleFiller |0..1 l1 =
Actor | |Artefact | |Resource

DeonticToken |

Community
Behaviour

Action

Constraints on DeonticToken

AN

=L}
{-- derived attribute:
context DeonticToken

self.actionRole.actionRoleFiller }

{-- Tokens can only be applied to Conditional Actions
self actionRole->forAll(action.oclisTypeOf(Conditional Action))

def : referencedEOs : Set(EnterpriseObject) =

AN

Constraints on Community
Behaviour

{self .objective->notEmpty()}

Constraints on Action

context Action
inv self. component-=isEmpty()}

context Action

inv AtLeastOneActorAsActionRole :
self actionRole->select(oclisTypeOf(Actor))-=notEmpty{) }

{-- Actions are atomic, i.e., cannot be decomposed

{-- At least one ActionRole has to be an actor

Figure 417 Community concepts

Rec. ITU-T

X.906 (10/2014) 17

ISO/IEC 19793:2015 (E)

1

trigger Violation composite
0. 0.
compensation [0..* violatedRule |1..* 0.,
component
CompensatingBehaviour Rula P
0.* 1. 0.*
constraint 0.
abstraction kv 0.t Policy
Process .
0.1 1| Behaviour
composite composite
* *
abstraction (0.1 1 0.
component |1..* component |0..*
refinement abstraction
Step Action
0.1 0.1 1
Interaction | |InternalAction
Figure 57 Behaviour concepts
PolicyEnvelope |CONStTainer [poevsettingBehaviour
a.r 1.4
! 1 J; 1
Behaviour
0.*
i i *
conformantPalicy/alue |1.. currertConstraint T
PolicyValue AffectedBehaviour
1 kv . a.r
1 guge |qonstrairnt
1.* currentPolicyalue [1 0.’ 0.
1 0.
Policy
1 [
specification (1 - |
PolicyDeclaration SPECHIEr | Contract Community I

This concept
represents the one
defined in Part 2{11.2.5)

Constraints for Policy

N

{context Policy
inv currentPolicyalueinPlace:
zelf affectecBehaviour-=forAlllcurrentConstraint = self currentPolicy'alue)}

18

Figure 61 Policy concepts

Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

Evaluation Declaration Prescription |creator
0.1
= handledToken
Action }— SpeechAct DeonticToken
0 1.2
o Oz controllingToken |0..*
accountableParty {1.*
Party | . ActiveEO ["WNe!
1
i T 1 | 1
Principal Agent Embargo Permit Burden
1 1 0.* 0:x 0z
] | \o.+/0.» _[* 1T %
Authorization | [Commitment | [Delegation Prohibition | (Permission | |Obligation
T Y | | J
| \ I
B B component Rule createdRule
0.* P
{context Authorization inv: {context Commitment inv: composite Ko

self handledToken->any
(ocllsTypeOf(Permit))

self handledToken->any

(oclisTypeOf(Burden))}

and
self handledToken->any
(ocllsTypeOf(Burden))}

Figure 77 Deontic and accountability concepts

create

delegationF ails

done remqove

delegate |

after (timeout expires)

Figure 81 Deontictoken lifecycle

7.2 UML profile

NOTET This Recommendation | Internationdtandarddefines UML expressions for concepts likely to be found in concrete
elements within practical specifications. Some of the ODP concepts are abstract, expressing the categorizgtiactafahe
concepts. The abstract concepts are mentionéedoUML expression is offered.

This clausespecifies how the ODP enterprise concepts described in the previous clause are expressed in UML in an
enterprise specificatiorA brief explanation of the UML concepts used in the expression of each concept is given,
together with a justification of the expression used.

7.2.1 ODP system

An ODP Systernis anenterprise objectt is expressed in ML by aninstanceSpecification of a UML class stereotyped
as«EV_ODPSystem, see [7.2.6]. Thatlass expresses thenterprise object typéNote also that modelling purposes

Rec. ITU-T X.906 (10/2014) 19

ISO/IEC 19793:2015 (E)

may require that a®DP systentoe further detailed as@mmunity in which case thenterpriseobjectthat models it
is classified as aommunityobjectand refined as eommunity see [7.2.4]

7.2.2 Scope

The scopeof an ODP systemis the set obehavioursthat the system is expected to exhibit, ,gtg.roles. It is not
therefore, expressed by any single Uklément, but by the set aflements that express iteehaviour

7.2.3 Field of application

Thefield of applicationis a property of the enterprise specification as a whole, and is expressed by a tag definition of
stereotype «Enterprise_Spec». This tag definition is named EV_FieldOfApplication, and is ofttiqee That string
contains the description of tlfield of applicationof the enterprise specification.

7.2.4 Community

A communityis modelled in terms of itgype which is expressed bycamponent stereotyped as «EV_Community».
This is included in apackage stereotyped as «EV_CommunityContsadhat contains the specification of the
community i.e., its objective its behaviour and anyenterpriseobjectsand object typesthat are specific to the
communityconcerned (see [7.2.9]). Where a spedfitity (e.g.,organizational unit) is being rdelled it is expressed
by aninstanceSpecification of acomponent stereotyped as «EV_Community».

Any component expressing aommunitywill have exactly on@ssociation, stereotyped agEV_ObjectiveO$ to aclass
stereotyped as «EV_Objective», that expresse objective of the community and a set ofealizations, each
stereotyped as «EV_CommunityBehaviour», to the Uddssifier elements expressing iteles and the associated
behaviour(interactions,actions stepsandprocesses

See also [7.2.8] and.2.9].

7.2.5 Enterprise object

An enterpriseobject is generally specified in terms of itgpe which is expressed by elass stereotyped as
«EV_Object».
NOTET The UML concept otlass is different to the ODP comept ofclass A UML class is a"descriptiori of a set of objects,
while an ODPclassis the set obbjectsitself. Therefore, the UML concept olfass is closer to the ODP concepttype and
there is no UML concept corresponding to the ODP conceglas$ Therefore, no UML expression for the ODP concept of
classis provided.

Any class stereotyped as «EV_Object» may have any numbassotiations, each stereotyped as «EV_FulfilsRole»,
with any number oflasses stereotyped as «EV_Role» in one or momyenmunity modelling the fact that thenterprise
objectsof thattypefulfil the roles

Where anenterprise objectis required to represent a specific entity in tb©D, it is expressed by an
instanceSpecification of aclass that is stereotyped as «EV_Object».

7.2.6 Object types and templates as enterprisebjects

There are cases where there is the need to modsipber templateof anenterprise objecat the instance level. An
example is the case of a generic factory, which is invoked by passing it a representatempfte(which hasype
templat, and responds by instantiating teenplateand returning a reference to the creaibjict To indicatehat an
objectis derived from a givetemplate we need to represent both thenplate objecand the instantiateobjectin the
model. Likewise fotypes to indicate that anbjectconforms to a givetype we need to represent both thtgectand
its object typen the model.

Bothtype object@ndtemplate objectareenterprise objectsand therefore are expressedchigses that express their
typeor template To distinguish them from othenterprise objectsuchclasses are stereotyped «EV_TypeObject» or
«EV_TemplateObject», respectively. Bathreotypes inherit from «EV_Object».

The relationship between @mterprise objecand theobjectthat represents itemplate or theobjectsthat represent
its typescan be expmssed as aattribute of theclass that expresses thenterprise object

For example,n some specifications, such as in the Gidingfunction specification, there is the need to specify the
type of a service, so the trader can locate objects implemgenich a service. The diagram shown in Figure 9 represents
the specification of aanterprise objectPrintService, and of itstype PrintServiceType, expressed so that théject

is able to know and accesstigpe(i.e., thetypeof theobjectis accesble as part of its metadata, by means oftaibute

of theclass that expresses its specification)

20 Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

==E%_Ohject== :E E
PrintService f#
PrintServiceType

+myType © PrintServiceType

Figure 91 An explicit representation of the type of an enterprise object so thahe object can access its type

7.2.7 Community object

A communityobjectis anenterprise objectat is refined in the model acammunity Like any other enterprise object
a community objectis modelled in terms of its type, which is expressed byclass stereotyped as
«EV_CommunityObject», which is, in turn, a specialization of «kEV_Object».cldss has alependency, stereotyped
as «EV_RefinesAsCommunity», to themponent stereotyped asEV_Community which expresses thgpeof the
communitythat refines it.

7.2.8 Objective

An objective(of acommunity is expressed by @dass, stereotyped as «EV_Objective». Thisss has arassociation,
stereotyped as «EV_ObjectiveOf» with tluenponent, stereotyped as «<EV_Community» thaschébes theommunity
being specified.
NOTE i When anobjectiveis refined into subbjectives the subbjectiveis also expressed by @ass stereotyped
«EV_Objective» and the relationship betwedjectiveand subbjectiveswill be acomposition.

7.2.9 Contract

A contractfor a communityspecifies theobjectiveof that community and how thabbjectivecan be met (i.e., its
behaviourand policieg. It is the specification of thatommunityas it appears in the enterprise specificatibime
expression otontractis by apackage stereotyped as «EV_CommunityContract».

In the name space of tpackage will be the UML elements expressing theommunityitself, itsobjective itsrolesand
the associateblehaviour(actions interactionsstepsandprocesses and thgolicy and accountability concepts specific
to thecommunity Relationships between all these UMlements may also be included in thigckage's namespace.
Thepackage may also contain some or all of thements expressing thenterpriseobjectsthat fulfil its roles (Those
elements expressingenterprise objectshat fulfil roles in other communitiesmay be contained in any one of the
packages expressing thoseommunitieg

7.2.10 Behaviour

7.2.10.1 General

NOTE i In this clause phrases such 'asteractionsbetweenroles’ and "stepsperformed byroles' should be read as
"interactionsbetweerenterpriseobjectsulfilling roles' and"stepgerformed byenterprise objectulfilling roles' respectively.

A behaviouiis a set ofctionswith constraints on when they may occur. It is not expressed by any singleleivint.

It is expressed by a set @bments expressing théehaviouras a set oprocesse®f a communityin which thesteps
arebehavioursof rolesin thecommunity Where required, thieehaviourof arole can be further detailed in terms of a
set ofelements expressing théehaviourin terms ofinternal actionsof therole andinteractionsbetweertherole and
otherrolesin thecommunity Where behaviour needs to be expressed in a more generic way than given belaw, a
machine stereotyped as «EV_Behaviour» is used.

Annex A illustrates the application of the concepts described in the follovwdnges (7.2.10.2 and 7.2.10.3).

7.2.10.2 Behaviour as processes and steps

Where thébehaviouiis modelled in terms girocessesf acommunityaprocesss expressed by axttivity stereotyped

as «EV_Process» in the namespace ofdheonent, stereotypd as «<EV_Community», that expressesabmmunity

that uses thisprocess to achieve its objective This activity has a realization link, stereotyped as
«EV_CommunityBehaviour» from thabmponent. Within thisactivity:

i thestepsof theprocessare expresed bycallBehaviorActions, stereotyped as «EV_Step»;

i therefinementof a step as aprocess is expressed by associating the relevatiBehaviorAction,
stereotyped as «EV_Step», that expressestdpwith anactivity, stereotyped as «EV_Process», that
expresses theefinement

Rec. ITU-T X.906 (10/2014) 21

ISO/IEC 19793:2015 (E)

i activityPartitions (stereotyped as «EV_Rolerdpresent classes (also stereotyped as «EV_Role») that
express theroles of the enterprise objectdn the name space of theackage (stereotyped @
«EV_CommunityContract») that expresses toenmunityin which therole is specified; similarly,
activityPartitions (Stereotyped as «EV_Objectsgpresent classes (also stereotyped as «EV_Object»)
that express thenterprise objectdefined as local to thcommunity concerned;

I where astepis not refined as processthecallBehaviorAction, stereotyped as «EV_Step», that expresses
the step is associated with aopaqueBehavior specified in the context of the corresponditigss
stereotyped as «EV_Rol¢sat expresses thele of theenterprise objecthat performs thetep

NOTE T An opaqueBehavior can express, in an appropriate language, any level of detail about the step that is
required to meet the modelling objectives

i the artefacts that are refemeced in the steps are expressed bybjectNodes, stereotyped as
«EV_Artefact».

In general, the completeehaviourfor arole is modelled by thactionsfor thatrole in a number oprocesses

7.2.10.3 Behaviour as interactions between roles

The detailedehaviourof individual rolesmay be expressed by the following combination of UdlEments:

T one or morelasses each having one or moassociations with theclass stereotyped as «EV_Role» that
expresses theole being specified. Each of thestasses is stereotyped as «EV_Interactioribhe
relationship is expressed with an association, stereotyped as «EV_Interactionlnitiator» or
«EV_InteractionResponder» as appropriate

I eachclass stereotyped as «EV_Interactiomill haveassociations with classes that are stereotyped as
«EV_Role», where there is amteractionbetween theseoles An «EV_Interaction» is composed of
signals, each also stereotyped as «EV_Interactidémterprise objectghat are referenced in the
interactionsare represented by the values of jiheperties of thesignals;

T eachclass stereotyped as «EV_Interaction» shall have an operatienur):void that defines the
behaviour that takes place when the interaction occurs. It can also be sgegtifp pre and post
conditions on the interaction, which can be represented as OCL constraintsanut@peration This
operation links the static, templdtke, view of interactions with the occurrences of the interaction in
the community behawur;

i one or morestateMachines for which the context is thelass stereotyped as «EV_Role», that define the
constraints on the receiving and sending of information bgraerprise objectulfilling the role and
any associatenhternal actionsof theenterprise objectEach of thesstateMachines shows the sending
and receiving of theignals, each stereotyped as «EV_Artefact», associated witintdeactionsof the
role, and thus shows the logical ordering of thiggeractions and defines theaternal actionsof the
role in terms of thébehaviors associated with thetates.

T Anassignment policis expressed in the same way as any gibécy, see 7.2.15.

Theinternal actiondgdentified in (thestates of) the stateMachines for the «EV_Role» corresporid theactions in an
activityPartition expressing theole in the correspondingctivityDiagrams, and theproperties of thesignals correspond
to theobjectNodes in the correspondingctivityDiagrams.

7.2.10.4 Interface role

An interface roleis expressed by dass stereotyped as an «EV_ InterfaceRole», which inherits from «EV_Role». The
part of thebehaviouridentified by theinterface rolethat takes place with the participation of one or more external
objects(objectsthat do noform part of the decomposition of tkemmunity objedhat is refined by thatommunity

is modelled by aimteractionwith arole that identifies the requiredehaviourof the externabbjects Thisbehaviour

is expressed by dass stereotyped as «EV_Interaction» that hssociations with each of thelasses (stereotyped as
«EV_InterfaceRole») that express tmerface role on the one han@nd someroles or local objectswithin the
community(stereotyped asEV_Role» or «EV_Object») on the other

7.2.10.5 Violation

A violationis expressed by state machine stereotypd as«EV_Violation» that inherits frorxEV_Behaviour».

22 Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

7.2.11 Action Roles

7.2.11.1 Actor (with respect to an action)

The concepactoris a relationship between amterprise objecand anaction. There is no single UML elemettiat
expresses an instance of the RNDP enterprise language concegattor. Actorsin a model may be identified from
either or both of:

I an examination of thénteraction model where the existence aftors will be indicated by the
associations, stereotyped agsEV_FulfilsRole», between theasses stereotyped as «EV_Role» and
«EV_Objet», respectively, taken in combination with thtateMachine that expresses thehaviourof
the relevantole;

i inan examination of therocessnodel, the presence of an «EV_Step» in an «EV_RavityPartition
indicates that thenterprise objectulfilling the role is anactor for thestepconcerned.

7.2.11.2 Artefact (with respect to an action)
The conceptrtefactis also a relationship between anterprise objecand anaction. In aninteraction model, an
artefactreferenced irmnactionis expressed by signal stereotyped as «EV_Artefactwhich has twassociations:

I oneassociation, stereotyped as «EV_ArtefactRole», will be with the «EV_Objelabs expressing the
enterprise objecthat is arartefactwith respect to thaction

I the otherassociation, stereotyped as «EV_ArtefactReference», will be with the «EV_Interactiass>
that expresses treetionor interactionfor which theenterprise objecis anartefact

In aprocesamodel, it is possible to express eachidnse ofartefactwith a single UMLelement, namely arobjectFlow
stereotyped as «EV_Artefact».

7.2.11.3 Resource(with respect to an action)

No specific UMLmetaclass is extended to express this concept. If required, the fact thatlsdmagiourrequires the
existence of aenterprise objecas aresourcemay be stated in @mment on thatbehaviour

7.2.12 Deontic concepts

7.2.12.1 Burden

A burdenis expressed in UML either asctass stereotyped as «EV_Burden» or asGbjectNode stereotyped as
«EV_Burden».

The presence of asbligationis implied by the representation obarden If a less specific expression is required, the
fact that somdehaviourplaces or fulfils arobligation may be stated in eonstraint stereotyped as «EV_Obligation»
on thatbehaviour

NOTE T The specifier selects an appropriate level of detail for the specification. Obligations are either reified as burdens or
represented as constraints, but the style chiosamparticular specification should be consistent.

7.2.12.2 Permit

A permitis expressed in UML either asctass stereotyped as «EV_Permit» or as@isjectNode stereotyped as
«EV_Permit».

The presence of permissionis implied by the regesentation of permit If a less specific expression is required, the
fact that soméehaviourequires or createsgermissiomrmay be stated in@nstraint stereotyped as «EV_Permission»
on thatbehaviour

NOTE T The specifier selects an appropriateeleof detail for the specification. Permissions are either reified as permits or
represented as constraints, but the style chosen in a particular specification should be consistent.

7.2.12.3 Embargo

An embargois expressed in UML either aslass stereotyped as «EV_Embargo» or a®ajectNode stereotyped as
«EV_Embargo».

The presence of grohibition is implied by the representation of ambargolf a less specific expression is required,
the fact that soméehaviour requires or creates prohibition may be stated in a&onstraint stereotyped as
«EV_Prohibition» on thavehaviour

Rec. ITU-T X.906 (10/2014) 23

ISO/IEC 19793:2015 (E)

NOTET The specifier selects an appropriate level of detail for the specification. Prohibitions are either reified as embargos or
represented as constrairtsit the style chosen in a particular specification should be consistent.

7.2.13 Policy

Policiesare expressed in UML using a combinatiorelefnents, which together are used to express the following:

i thepolicy itself, including its current value and the envelope that defines the range of values that are
possible;

i theobjectsand thebehaviourconstrained by thpolicy;

i the behaviourby which thepolicy valuemay be changed amubjectsthat are allowed to éwbit that
behaviour

The policy is expressed by alass stereotyped as «EV_PolicyDeclaration», withcanstraint stereotyped as
«EV_PolicyEnvelopeRule» expressing the range permitted for the policy.

Eachpolicy valueis expressed by eass stereotyped @«EV_PolicyValue» which has the rdleurrent valug in an
association with the «EV_PolicyDeclarationelass that expresses thmlicy. In this way, thepolicy allows thepolicy
envelopeo restrict the currergolicy value.

zEV_Processs
Set Policy A by Process —___ B
«E‘-I_PnlicySetlinEE"émqu» @fgﬂ EY_PolicyEnvelopeRule
«E\"_F‘oli::VDecIaration» — {pnlarmirted=from list of
- Policy A values}
__}j:PmI‘Ey_—S-—e—ﬁingBehavioul'»
=BV _Interaction=
Set Policy A by Interaction .
«EV_Roles
-7
-
-~
-
<EV_AffectedBehaviours
= e
EHrEant - =EV_Processs
b - -
viE| - — =
4 =i - — =BV _AffectedBehaviours
EV _Pelicy'/alueRule L — _aEY_PolicyValugs
{priority == high} curremnt - -
{priority == high} T - =
’ iLIr — O
=BY _AffectedBehaviours <EVInteraction:s

Figure 101 Pattern for UML expression of goolicy

Where the enterprise specification includes elements modellingetieviourconcerned with setting theolicy value
this is modelled byolesidentifying behaviourthat may be detailed ggocesse®r interactions with associations,
stereotyped as «EV_PolicySettingBehaviour», betweertltisses expressing thegolicy envelopeand theclasses
expressing theehaviour

The relationships betweenpalicy and thebehaviourghat it constrains are expressed by one or rdependencies,
stereotyped as «EV_AffectedBehaviour», fromdiasses expressing thbehaviourdo theclass expressing thpolicy.

Unless the set opolicy valuesis predetermined, a set afonstraints stereotyped as «EV_PolicyEnvelopeRulex»
expressing rulegoverning acceptablgolicy values is attached to the «EV_PolicyDeclaratioiass.

Attached to each «EV_PolicyValuelass is a set otonstraints stereotyped as «EV_PolicyValueRule», which together
expressbehaviourrules related to thgolicy value. These rules, which may comprigmbligations permissions
prohibitions authorizations or other expressions, may be expressed in OCL or other suitable notation.

The pattern for expression pblicy and its impact on other parts of an enterprise specifita&ishown in Figure 10.

24 Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

7.2.14 Accountability concepts
7.2.14.1 Party

A party is anenterprise objecinodelling an entity with some of the rights, powers and duties of a natural person. It is
expressed in UML by aimstanceSpecification of aclass stereotyped as «EV_Party», which must also be stereotyped
as «EV_Object».

7.2.14.2 Accountable action

An actionmay beaccountablevhen it is part of theehaviouridentified by arole fulfilled by aparty. This is expressed
in UML with anassociation, stereotyped as «EV_Accountable», betweerltys expressing theole and theclass or
activity expressing thénteractionor procesgespectively in which the accountalplarty participates.

NOTET Where this construct is used fopacessthis only indicates that threle is accountable for thostepghat it performs,
and not for thee performed by some otheie. This is a limitation of the semantics of the UML approach chosen, as it is not
possible to associatecssifier with theelement expressingteps

7.2.14.3 Authorization

An authorizationis expressed in UML by dnstanceSpecification of aclass stereotyped as «EV_Authorization», which
is a specialization of «<EV_Behaviour».

7.2.14.4 Delegation

A Delegationis expressed in UML by anassociation, stereotyped as «EV_Delegation», between thksses
stereotyped as «EV_Object» with association ends showirmattyewhich is theprincipal and theenterprise object
which is theagentto whom the delegation is made.

7.2.14.5 Principal

A principal is anenterprise objectodelling an entity responsible for thetsof its agentin consequence of some
delegation It is expressed in UML by ainstanceSpecification of aclass stereotyped as «EV_Principal», which is a
specialization of «EVObject».

7.2.14.6 Agent

An agentis anenterprise objecmodelling an entity performingctson behalf of grincipal in consequence of some
delegation It is expressed in UML by ainstanceSpecification of a class stereotyped as «EV_Agentwhich is a
specialization of «<EV_Object».

7.2.14.7 Prescription

A prescrigion is expressed in UML by anstanceSpecification of aclass stereotyped as «EV_Prescription», which is
a specialization of «<EV_Behaviour».

7.2.14.8 Commitment

A commitments expressed in UML by ainstanceSpecification of aclass stereotyped as «EV_Commitment», which
is a specialization of «EV_Behaviour».

7.2.14.9 Declaration

A declarationis expressed in UML bgninstanceSpecification of a class stereotyped as «EV_Declaration», which is
a specialization of «<EV_Behaviour».

7.2.14.1CEvaluation

An evaluationis expressed in UML by anstanceSpecification of aclass stereotyped as «EV_Evaluatis, which is a
specialization of «<EV_Behaviour».

7.2.15 Summary of UML extensions for the enterprise language

The enterprise language profilEV_Profile) specifies how the enterprise viewpoint modelling concepts relate to and
are expressed in standard UMkingstereotypes, tag definitions, andonstraints.

The following diagrams (Figures 11 to 15) show a graphical representation of theptdifile for the enterprise
languageusing the notation provided by UML.

Rec. ITU-T X.906 (10/2014) 25

ISO/IEC 19793:2015 (E)

zprofiles
EV Profile
«stereotypes
zMetaclass» Enterprise_Spec
Model +EV_FieldOfApplication : String
«lﬁ?::;a: : T «stel‘e;type»

EV_CommunityContract
/

AN

{In a well formed complete model there must be a component,
stereotyped as <EV_Community=, expressing the specification
of the Community within the namespace of the package
expressing the Community Contract}

Figure 117 Model management

aprofilez

EV _Profile

ssterectypes

EV_Principal

zsterectypes
EV_Agent

[
zsterectypes
EV_PolicyEnvelope

£

ssterectypes

/U—Ts‘lﬂeonjeﬂ

/ .

1 . asterectypes
Fo" ___— EV_TemplateObject
«siereot?fpe»q-_.____‘ asterectypes)
EV_Object EV_CommunityObject
Within a well-farmed complete model there must be a component, sterectyped
Lkl as «EY_Communitys, expressing the refinement of the Community Ohject.,
[’ljf! Applies only to class also sterectyped as <<BV_Object==}
zsterectypes

EV_ODPSystem

ssterectypes -&
cstereotypes ,N) EV_Community
EV Obijective TWithin a well-formed complete model there must be a
o component, sterectyped as <EV_Community s, sMetaclasss
+description : String expressing the refinement of the Community Object.} Component
esterectypes &
EV_Party

{Applies only to class also stereotyped as =<E%_Ohject>>}

. ssterectypes

estereotypes < EV_InterfaceRole

«Metaclasss
ActivityPartition

s (]
ﬂ E: stel'ébt\,rpe»
zMetaclasss

zsterectypes

V_Interaction EV_Artefact

3 O

«steré.(-)type» zsterectypes esterectypes
EV_Burden EV_Permit EV_Embargo

Figure 1271 Classifiers

26 Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

zprofiles
EV Profile
aMetaclassz
Activity I+ zsterectypes
EV_Process
zMetaclassz " stereat
ActivityPartition esterealypes
EV_Role
ry 59
«Sterébtype»
sterectypes
/ V_Artefa EV_Burden
zMetaclassz O
ObjectNode zsterectypes
ermit
zsterectypes
EV_Embargo
" zsterectypes
EV_Authorization
zMetaclasss ¢
Action astereotypes esterectypes
EV_step EV_Commitment
asterectypes
EV_Prescription
sMetaclasss ssterectypes [
StateMachine EV_Behaviour
.. q.ﬂ_h‘_____‘
zsterectypes
EV_Declaration
zsterectypes
zsterectypes _
EV Violation EV_Evaluation
Figure 1371 Activities
zprofiles
EV_Profile
astereotypes
EV_PolicyEnvelopeRule
{applies to class stererotyped as <<BEY_PolicyEnvelope=>}
aMetaclasss
Constraint

{applies

zsterectypes
EV_PolicyValueRule
to class sterectyped as <<EY_PolicyValue>>}

zsterectypes aster

EV_Prohibition

EV_Permission

zsterectypes

rectypes
EV_Obligation

Figure 147 Constraints

Rec. ITU-T X.906 (10/2014)

27

ISO/IEC 19793:2015 (E)

zprofiles

EV Profile

zsterectypes
EV_ObjectiveOf
{between <<EV_Objective=> class and <<EV_Community=> component }

zstereotypes
EV_FulfilsRole
{between <<EV_Object== class and <<EV_Role== class}

zstereotypes
EV_InteractionResponder
{between <<EY_Interaction=> class and <<EY_Role=> class}

zstereotypes
EV_Interactioninitiator
zMetaclasss {hetween ==EY_|nteraction== class and =<E%_Role== class}
Association

zsterectypes
EV_Delegation

{hetween =<E'_Role== class which has =<EV_FulfilsRole=>
association with <<EV_Party>> class and <<EV_Role>= }

zstereotypes
EV_Accountable
{between <<EVY_Role=> and <<EV_|Interaction=> or <<EY_Process=>}

zsterectypes
EV_ArtefactRole
{between ==E'_Object== class and =<E%_Arefact>> signal}

ssterectypes
EV_ControllingBehaviour
{between ==<EV_PolicyEnvelope== and =<E%_Process== or =<E\/_|nteraction==}

«sterectypes
EV_ArtefactReference
{hetween =<EV_Interaction== class and =<EV_Artefact=> signal}

zstereotypes
EV_RefinesAsCommunity
{between ==E%_CommunityObject== and ==E%_Community==}

aMetaclasss 4——’—/
Dependency 1——____‘-
zstereotypes

EV_AffectedBehaviour

{between =<EY_PolicyEnvelope== Class and =<EY_Role==
or =<B%_Interaction==> class, or <<E_Process== activity}

«stereatypes

Ietac!
zMetaclasss EV_CommunityBehaviour

Realization {hetween <<E%_Community>> component and <<E%_Process>> activity }
Figure 151 Relationships
7.3 Enterprise specification structure (in UML terms)

An enterprise specificatids contained in anodel, stereotyped as «Enterprise_Spec». At the top level withimtitsl
there are one or mogackages, stereotyped as «EV_CommunityContradbat include, where necessatigsses,
each stereotyped as «EV_CommunityObject», expresisengelevantommunitieascommunity objects

28 Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

Within each «EV_CommunityContracpackage, there is a singleomponent, stereotyped as «EV_Community» and
a singleclass, stereotyped as «EV_Objective», as well as atlearents, packaged as convenient, eegsingoehaviour
(roles processeandinteractiong, andenterprise objectthat are local to theommunity

7.4 Viewpoint correspondencedgor the enterprise language

7.4.1 Contents of this clause

This clause describes the corresgence concepts for the enterprise langulagenot how they are expressed in UML.
The latter is covered idause 12.

7.4.2 Enterprise and information viewpoint specification correspondences

In general, not all the element$ the enterprise specification of a system néedorrespond to elements of its
information specification. However, the information viewpoint shall conform tpalieiesof the enterprise viewpoint
and, likewise, all enterprispolicies shall be consistent with thstatic dynami¢ and invariant schemata of the
information specification.

Where there is a correspondence between enterprise and information elements (e.g., betmtegpriae objecand
theinformation objectthat stores the relevant information about it), the specifier shall provide:

I for eachenterprise objecin the enterprise specification, a list of thas®rmation objectgif any) that
model information or infanation processing concerning the entity modelled byehtgrprise object

T for eachrole in eachcommunityin the enterprise specification, a list of thasrmation object types
(if any) that specify information or information pessing of arenterprise objectulfilling that role;

i for eachpolicy in the enterprise specification, a list of tinvariant, static and dynamic schematef
information objectgif any) that correspond to thenteprise objectsto which thatpolicy applies; an
information objects included if it corresponds to tleaterprise communitiyat is subject to thaolicy,

i for eachactionin the enterprise specification, tiformation objectgif any) subject to alynamic
schemaconstraining thactior

T for each relationship betweemterprise objectgheinvariant schemdif any) which constrainsbjects
in that relationship;

i for each relationship betweamterprise rolestheinvariant schemdif any) which constrains objects
fulfilling rolesin that relationship.

7.4.3 Enterprise and computational viewpoint specification correspondences

Not all the elements of the enterprise specification of a syetd to correspontb elenents of its computational
specification In particular, not alstates behavioursandpoliciesof an enterprise specificatioreed to correspon
statesandbehavioursf a computational specification. There may eti@nsitional computational states within pieces
of computationabehaviourwhich are abstracted as atomic transitions in the enterprise specification.

Where there is a correspondence between enterprise and computational elements, the specifigidghall pro

i for eachenterprise objecin the enterprise specification, that configuratiomafputational object§f
any) that realizes the requirbdhaviour

i for eachinteraction in the enterprise specification, a list of thosemputational interfacesand
operationsor streamgq(if any) that correspond to the enterpriseeraction together with a statement of
whether this correspondence applies to all occuent theinteraction or is qualified by gredicate

i for eachrole affected by golicy in the enterprise specification, a list of t@mputational object types
(if any) that exhibit choices in the computatiobahaviourthat are modified by thegdlicy;

i for eachinteractionbetweerrolesin the enterprise specification, a listafmputational binding object
types(if any) that are constrained by the enterpiigeraction

i for each enterprisiteraction type a list of computationabehaviour typegif any) of computational
behaviourscapable of carrying out anteractionof that enterprisenteraction type

7.4.4 Enterprise and engineering viewpoint specification correspondences

Not all the elements of the enterprise specificatibra systenmeed to correspontb elements of its engineering
specification Where there is a correspondence between enterprise and engineering elements, the specifier shall provide:

Rec. ITU-T X.906 (10/2014) 29

ISO/IEC 19793:2015 (E)

i for eachenterprise objedn the enterprise specification, the set of thesgineering node§f any) with
their nuclei capsulesandclusters all of which support some or all of iiehaviour

i for eachinteractionbetweerrolesin the enterprise speftion, a list ofengineering channel typesd
stubs binders protocol objects and interceptors (if any) that are constrained by the enterprise
interaction

NOTE 11 The engineering nodes may result from rules about assigning support for the beHaamberpoise objects to nodes.
These rules may capture policies from the enterprise specification.

NOTE 2i The engineering channel types and stubs, binders or protocol objects may be constrained by enterprise policies.

7.4.5 Enterprise and technology vievpoint specification correspondences

In accordance with [Parti215.5] and [Part 3 5.3], an implementer provides, as part of the claim of conforménee
chain of interpretations that permits observation at conformance points to be interpreted in terms of enterprise concepts.
While there may be specific correspondences between entgrpliiesand technology viewpoint specifications that
require tke use of particular technologies, there are neither required correspondences nor required correspondence
statements.
NOTET Although there are no required viewpoint correspondences between enterprise and technology specifications, there may
be cases wherpart of an enterprise specification has a direct relationship with a technology specification or a choice of
technology. Such examples include enterppisiéciescovering performance (e,gesponse time), reliability, and security.

8 Information specification

8.1 Modelling concepts

An information specification uses the RODP information languagd he modelling concepts and the structuring rules
of the information language are defined in [F&Ft6]. They are summarized in this clause. Except where otherwise
stated, in case of conflict between the explanations herein and the text in Part 3, the latter document should be followed.

The set of diagrams at the end of this clause (i.e., at [§) Blidimarizes a metamodel for the information language.

The information viewpoint is concerned with information modelling. It focuses on the semantics of information and
information processing in th®@DP systemThe individual components of a distributggtem must share a common
understanding of the information they communicate when they interact, or the system will not behave as expected.
These items of information are handled, in one way or another, by one opbjectsin the system. To ensure that

the interpretation of these items is consistent, the information language defines concepts for the specification of the
meaning of information stored within, and manipulated byQOBY¥ systemindependently of the way the information
processing functions émselves are to be implemented.

In the ODPreference modethe information language uses a basic set of concepts and structuring rules, including those
from Part 2 of RMODP, and three concepts specific to the information viewpin&riant schemastaic schema
anddynamic schema

8.1.1 Information object

Information held by the ODP system about entities in the real world, including the ODP system itself, is modelled in
an information specification in terms ioformation obgcts and their relationships ammhaviour

Basic information elements are modelled by atoimformation objectsMore complex information is modelled as
compositeinformation objectsmodelling relationships over a set of constitugrformation objects Information
objects as any other ODBbject exhibitbehaviour state identity, andencapsulation

NOTET Information objectsnay haveoperations although information operations are names for significant stimuli for state
changes, and are not necessarily the sameraputational operations

8.1.2 Information object type

Thetypeof aninformation objecis a predicate characterizing a collectionnfbrmation objects

8.1.3 Information object class

A classof information objectss the set of alinformation objectsatisfying a giverype

30 Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

8.1.4 Information object template

An information objectemplateis the specification of the common features of a collectiomfofmation objectsn
sufficient detail that amnformation objectcan be instantiated using Ihformation object templatemay reference
statig, invariantanddynamicschemata

8.1.5 Information action and action types

An actionis a model of something that happens in the real wdstdesof actionsare modelled byction typesAn
action in the information viewpoint is associated with at leastinf@mation object

Actions can be eithdénternal actionsor interactions An internal actionalways takes place without the participation
of the environmenf the object An interactiontakes place with the participation of teavironmenbf the object
Objectscan only interact ahterfaces ODPinteractionsare instances of ODEmmunications

8.1.6 Invariant schema

An invariant schemas a set of predicates on one or miafermation objectsvhich must always be true. The predicates
constrain the possible states and state changes albjinetsto which they apply.

An invariant schemaan also describe the specificatiorladtypesof one or morénformation objectsthat will always
be satisfied by whatever behaviour tiigectsmight exhibit.

8.1.7 Static schema

A static schemids a specification of the state of one or misfermation objectsat sane point in time, subject to the
constraints of aninvariant schemata

8.1.8 Dynamic schema

A dynamic schemi a specification of the allowable state changes of one or imforenation objectssubject to the
constraints of anynvariant schemataA dynamic schemapecifies how the information can evolve as the system
operates. In addition to describing state chandygsamic schematean also create and del@&érmation objectsand

allow reclassifications of instances from dgpeto another. Furthermore, in the information language, a state change
involving a set obbjectscan be regarded as ameractionbetween thosebjects Not all theobjectsinvolved in the
interactionneed to change state; some of thgctsmay be nvolved in a reagbnly manner.

8.1.9 Structure of an information specification

An information specificatiomefines the semantics of information and the semantics of information processing in an
ODP system in terms of aowfiguration ofinformation objectsthe behaviourof theseobjects and environment
contractsfor theobjectsin the system. More precisely, an information specification is structured in terms of:

i a configuration ofnformation objectsdescribed by a set atatic schemata
i thebehaviourof thoseinformation objectsdescribed by a set diyfnamic schematand
i the constraints that apply to either of the abdweafiant schemata

The different schemata may apply to thieole system, or they may apply to particular domains within it. Particularly
in large and rapidly evolving systems, the reconciliation and federation of separate information domains will be one of
the major tasks to be undertaken in order to managematan.

There are also some considerations that need to be taken into account when specifying the information viewpoint of an
ODP system:

i information objectsare either atomic or are modelled as a composition of compamntnation
objects When arinformation objecis a composit®bject the schemata are composed as;well

i alowable state changes specified bgynamic schemaan include the creation of newformation
objectsand the deletion dhformation objecténvolved in thedynamic schemahllowable state changes
can be subject to ordering and temporal constraints

i the configuration oinformation objectss independent from distribution, i.e., there is no sense or focus
on distribution in this viewpoint.

Rec. ITU-T X.906 (10/2014) 31

ISO/IEC 19793:2015 (E)

8.1.10 Summary of the information language metamodel

The diagram below (Figure 16) illustrates the concepts of the information larguétee relationships between them.
The descriptions of the cospts have been given above. The descriptions of the relationships between the concepts are
included in the description of the concepts.

referencedinvariantschema referent

0.t |o.s

- : . .
InvariantSchema coTstralner 0. 0. |'"formation0hjectTempla‘te 0.*
D“__ . constrainedinformationObject Template | .
constrainer Sonstraner constraier] o T —) 3_0_* tra “3'————__________ ot a i
g 0 o e | Sconstrainer ———T InformationObjectClass
c:B‘nsi,r@ner —
corstrginer T Te— 0.2 0.+ /
~— 27 /
“MH InformationObjectType |1
~
T o
—
H‘“"‘-q._
~._ 0
T = -
change — startState—
0.* 0r 1
StateChange . }/édstate
0.¢ cammE —— -~
OF[effect. auss —_— \
5
g \“\ referencedstaticSchema
\\‘x 0t 0.*descriper 0.*
T -~ StaticSchema
T Action — —
o.x 1.% |specifier o B locationlnTirme © LocstionlnTirme
y 0.*
MynamicSchema | referencedDyramicSchema |
0.* |
0. |

0." |ActionType |
a.*
0." |ActionTemplat

Figure 1671 Information language concepts

8.2 UML profile

This clausespecifies how the ODP informtion concepts described in the previous clause are expressed in UML in an
information specificationA brief explanation of the UML concepts used in the expression of each concept is given,
together with a justificationfdhe expression used.

NOTET In this clause UML expressions are only defined for those concepts for which use has been demonstrated through an

example, included in the main bodytbfs Recommendation | International Standaréh its annexes. Where naample has
been identified, the concept concerned is mentioned, but no UML expression is offered.

8.2.1 Information object

An information object is generally specified in terms of itgpe which is expressed by dass stereotyed as
«IV_Object»

Where aninformation objectis required to represent a specific entity in tH®D, it is expressed by an
instanceSpecification of aclass that is stereotyped as «IV_Object».

8.2.2 Object types and templates asnformation objects

There are cases where there is the need to modgither templateof aninformation objectt the instance level. An
example is the case of a generic factory, which is invoked by passing it a representat@nptéte(which hastype
templatg, and responds by instantiating teenplateand returning a reference to the creatbpct To indicate that an
objectis derived from a givetemplate we need to represent both thenplate objecand the instantiateabjectin the
model. Likewise fotypes to indicate that anbjectconforms to a givetype we need to represent both thtgectand
its object typen the model.

Bothtype objectandtemplate objectareinformation objectsand therfore are expressed biasses that express their
typeor template To distinguish them from othérformation objectssuchclasses are stereotyped «IV_TypeObject»
or «IV_TemplateObjecty»respectively Bothstereotypes inherit from «IV_Object»

32 Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

Therelationship between anformation objectand theobjectthat represents itemplate or theobjectsthatrepresent
its types can be expressed asatiibute of theclass that specifies thanformation object

For example,he diagram shown in Figure’ Tepresents the specification of iaformation objectLoan, and of its
type MyLoanType, expressed so that tlubjectis able to know and access fige (i.e., thetype of the objectis
accessible as part of its metadata, by means atfriante of theclass that expresses its specification)

==y _Dhject== ‘D =<l _TypeObject==, 5
Loan MylLoanType

Hype MyLoanType

Figure 177 An explicit representation of the type of an information
object so thatthe object can access its type

8.2.3 Information action and action types

An interactionis expressetly asignal sent or received by theateMachines of theinformation object€oncerned. An
action types expressed by signal stereotypedis«IV_Action».

In the information viewpointactions are mainly used for describing events that cause state etiang for
implementingcommunicationdetweerobjects i.e., flows of information.

In an information specification, dnternal actionis expressed by anternal transition of a state of thetateMachine
for theinformation objectoncerned.

8.2.4 Relationships between information objects and between information object types

A relationship betweemformation object typesvhen modelled as part of tstateof the objectsof thosetypes can
be expressed by association between thelasses expressing thostypes Instances of thessssociations (i.e., links)
will express the relationships between iff@rmation objects

When associations betwe@rformation objectsare modelled in ODP davariant schematathe UML expressions
defined inclause 8.2.5 apply.

8.2.5 Invariant schema
Invariant schematanay impose different kinds of constraints in an information specification.

First,invariant schemataan provide the specification of thgesof one or morénformation objectsthat will always

be satisfied by whatevdrehaviourthe objectsmight exhibit. This kind ofnvariant schemanay be expressed in a

UML Package stereotypea@s«lV_InvariantSchema»hich specifies a set object typegin terms of theset ofclasses

that express suabbject typek their possible relationships (expressedspociations), and constraints on thoebject

types on their relationships, and possibly on the#éhaviours(expressed by the specification of the corresponding

stateMachines). Theassociation multiplicities and theconstraints on the different modelling elements will constrain the

possible states and state changes oéléreents to which they apply.
NOTE 11 OCL is the recommended notation for expressing thet@nts on the modelling elements that form part of the
UML expression of amvariant schemaHowever, other notations can be used when OCL does not provide enough expressive
power, or is not appropriate due to the kind of expected user of the spemifi¢air example, a temporal logic formula or an
English text can be used for expressing a constraint that imposes some kind of fairness requiremdrghawitheof the
systen(e.g.,"Objects of class X will produce requests to objects of class Ygtanthan a given time T after condition A on
objects of classes X, Y and Z is satisfied

There are cases, however, in whichirarariant scheman an information viewpoint specification is defined over a set
of concreteinformation objects Such a kindof invariant schemamay be expressed bypackage stereotypedas
«IV_InvariantSchemax», that contains the corresponding sefjeafts. Theconstraints on thesenbjects, together with
the specifications of thdassifiers of theseobjects, constrain the @Esible states and state changes obHjets.

NOTE 27 Theclassifiers of the objects will constrain the possible states and state changes objes to which they apply
(through theassociations, stateMachines, and constraints of theskssifiers).

Finally, individualconstraints stereotypeds«IV_InvariantSchemasan also be used to exprésgariant schemata

Rec. ITU-T X.906 (10/2014) 33

ISO/IEC 19793:2015 (E)

8.2.6 Static schema

A static schemés expressed by gackage stereotype@s«lV_StaticSchemawof objects, theiattribute links, theirlink
ends, which have amssociated target link end which is navigable, and theitassifiers.
NOTET The possible associations of tinormation objectslescribed in a&tatic schemavith otherobjectsnot contemplated
in the schemaeed not be included in tipackage, since they are not part of the specification provided bgehemaTherefore,
whenever the absence of an association instance (iré&) aeeds to be expressed, it should be explicitly stated ifg.gsing
constraints attached to the appropriaibjects).

8.2.7 Dynamic schema

A dynamic schems expressed in terms stateMachines for theinformation objectén the information specification,
stereotypeds«lV_DynamicSchemasT heactionsthat relate to thetatechanges are expresseddignals that are sent
and received ofransitions of thestateMachines.

8.2.8 Summary of the UML extensions for the information language

The information language profilé\(_Profile) specifies how the infonation viewpoint modelling concepts relate to,
and are expressed in, standard UML usitegeotypes, tag definitions, andonstraints.

Figure 18 shows the graphical representation of the Uiifile for the information languageusing the notation
provided by UML.

==profile==
IV _Profile
==stereotype==
_|M_TemplateOQbject
==metaclass== <=5teregt‘y’pe>=:® "
Class * _Object
N ==stereotype==g5
et - IY_TypeOhject
2=metaclasse» & ereut_fpe =
o IV _Action

Signal

==sterentype=> 17
N_DynamicSchema

==metaclags==

StateMachine
il ==sterentype== ¥
< ==
diti IV_StaticSchema
Package -
— +locationinTime © date
—
==gtereotype=> 3
ssmetaclass== 4 N _InvariantSchema
Constraint
==metaclass== ==gtereotype==
Model - Information_Spec

Figure 181 Graphical representation of the information language profile

8.3 Information specification structure (in UML terms)

All the elements expressing the information specification are defined withimdel, stereotyped «Information_Spec».
Such amodel contains thegackages that express thievariant, staticanddynamic schemataf the system

Thesepackages may be defined and organized as follows:

34 Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

i in the first place, a set of «IV_lariantSchemaspackages with class diagrams will define the
information objectand object typesof the system, their relationships, and the constraints on these
elements

T second, a set of «IV_StaticSchemaekages with object diagrams will express thte of the system
or parts of it at specific locations in time that may be of interest to any of the system stakeholders. The
classifiers of the instanceSpecifications of these diagrams should have been previously defined in the
«IV_InvariantSchemapackages that define the structure and composition of the system

i third, dynamic schemateexpressed by individuaktateMachines will be associated with the
correspondinglements in the previouspackages. Thus, individualstateMachines will be associated
with the correspondinglassifiers or instanceSpecifications. Likewise,constraints describing invariants
and pre and postconditions ofignals will be associated to theates of thestateMachines and with the
correspondinglassifier definitions

i Finally, a sebf «IV_InvariantSchemaeonstraints will impose further constraints on the elements of all
the previougpackages. Suchconstraints can be either directly attached to the corresponeliemgents,
establishing an implicit context by attachmemtthey can form part of a separate piece of specification
in which the context of each constraint is explicitly established by naming.

8.4 Viewpoint correspondencedgor the information language

8.4.1 Contents of this clause

This clause describes tlwerrespondenceoncepts for the information language, but not how they are expressed in
UML. The latter is covered idause 12.

8.4.2 Enterprise and information viewpoint specification correspondences

In general, not all the elements of the enterprise specificaficm system need to correspond to elements of its
information specification. However, the information viewpoint shall conform tpadkieiesof the enterpriseigwpoint
and, likewise, all enterprigaoliciesshall be consistent with tletatic dynamic invariant schemataf the information
specification.

Where there is a correspondence between information and enterprise elemetst{eegn arenterprise objecand
theinformation objecthat stores the relevant information about it), the specifier shall provide:

i for eachenterprise objectand for eachartefact role in an enterpriseaction, the correspondm
configuration ofinformation objectgif any) that model them in the information viewpoint;

i for each enterprismle, actionandprocessn the enterprise viewpoint, the corresponditygamicand
invariant schemalefinitions in the information viewpot that specify thavehaviour

i for each enterprispolicyin the enterprise viewpoint, the constraints in the corresporsdimgmatahat
implement it since enterprispoliciesmay become constraints in any of gehemata
NOTET In the case of a nimnal incremental development process of the ODP viewpoint specifications, whereby the information
specifications are developed taking into account the previously defined enterprise specificdtonation objectsnay be
discovered through examinatiohan enterprise specification. For example, eatéfactreferenced in angctionsin which an
ODP Systemparticipates will correspond in some way with one or niwigrmation objects

8.4.3 Information and computational viewpoint specification correspordences

Not all the elements of the information specification of a system need to correspond to elements of its computational
specification. In particular, not all states of an information specification need to correspond td statasputational
specification. There may exist transitional computational states within pieces of computational behaviour that are
abstracted as atomic transitions in the information specification.

Where arinformation objectcorresponds to a set obmputational objecighe static andinvariant schemataf the
information objectorrespond to possibiatesof the computational object€Every change in state of arformation
object corresponds either to some setimteractionsbetweencomputatioml objects or to aninternal actionof a
computational objectTheinvariantanddynamic schemataf theinformation objectorrespond to theehaviourand
environment contracaif thecomputational objects

Rec. ITU-T X.906 (10/2014) 35

ISO/IEC 19793:2015 (E)

8.4.4 Information and technology viewpoint spedication correspondences

While there may be specific correspondences between infornsafimmatand technology viewpoint specifications
that require the use of particular technologies, there are neither required corresponulerezpsred correspondence
statements.

NOTET There may be cases where part of an information viewpoint specification has a direct relationship with a technology

viewpoint specification or a choice of technology. Such examples indhvdeiant schemataovering performance (e.g.,
response time) or security.

9 Computational specification

9.1 Modelling concepts

A computational specification uses the RMDP computational language. The modelling concepts and the structuring
rules of the computational language are defined in [Par?3 Some of the concepts in Part 2 of RMDP are also

used when defining the computational language concepts. The concepts and structuring rules are summarized in this
clause. Except where othdes stated, in case of conflict between the explanations herein and the text in Parts 2 or 3,
the latter document should be followed.

The set of diagrams at the end of this clause (i.e., at [9.1.22]) summarizes a metamodel for the computational language

NOTET Another partial metamodel for the computational language can be folRetinTUT X.960|SO/IEC 14769: Type
Repository Function, which is concerned with the storage and management of computational type systemsambdel is
therefore a partial view concentrating on the computational type system, rather than on system design in general. Bdaders sho
be aware that:

a) cardinality constraints on types are not, in general, the same as the cardinality constrimistances an
interface must be associated with an object, but an interface type can be defined independently of an object type;

b) the different focus there leads to different choices of primary relations, so that some relations that are explicit in
tha metamodel are derived in this representation, and vice versa.

If there is any ambiguity, statementstiiis Recommendation | International Standak@ precedence.

9.1.1 Computational object

An objectis a model of an entity. Aobjectis characterized by itsehaviourand dually, by itsstate An objectis
distinct from any otheobject An objectis encapsulated.e., any change in itstatecan only occur as a result of an
internal actionor as a result of aimteractionwith its environment

A computational objecis anobjectas seerlin the computational viewpoint. It models functional decomposition and
interacts with othecomputational objectsSince it is ambject it hasstateandbehaviouy andinteractionsare achieved
throughinterfaces

9.1.2 Interface [Part 2 8.4]

An interfaceis an abstraction of thbehaviourof anobjectthat consists of a subset of tileractionsof thatobject
together with a set of constraints on when they can occur.

9.1.3 Interaction [Part 27 8.3]

An interactionis one of two defined kinds ddctions Actionitself is defined as something that happens, and every
action of interest for modlling purposes is associated with at least a@ject The set ofactionsassociated with an
object is partitioned intointernal actionsand interactions An internal action always takes place without the
participation of theenvironmentf theobject An interactiontakes place with the participation of teevironmenbf
theobject

9.1.4 Environment contract [Part 2T 11.2.3]

Environment contracts a contractbetween anobject and its environment including Quality of Service (QoS)
constraints, usage and management constraints.

QoS constraints include:
i temporal constraints (e,gleadlines);
i volume constraints (e.ghroughput);

36 Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

i dependency constraints covering aspects of availability, reliabilitintamaability, security and safety
(e.g, mean time between failures).

QoS constraints can imply usage and management constraints. For instance, some QoS constrauaiafsiligy)
are satisfied by provision of one or more distribution transpare(&igsreplication).

An environment contraatan describe both:
i requirements placed on abjects environmenfor the correcbehaviourof theobject
i constraints on thebject behavioum a correcenvironment

9.1.5 Behaviour (of an object) [Part 27 8.6]

Behaviourof anobjectis acollection ofactionswith a set of constraints on when they may occur.

The specification language in use determines the constraints that may be modelled. Constraints may include, for
example, sentiality, nondeterminism, concurrency or r&ale constraints.

Behaviourmay include internal actions.

Theactionsthat actually take place are restricted byahgironmentn which theobjectis placed.

9.1.6 Signal[Part371 7.1.1]

A signalis an atomic sharedctionresulting in oneway communicatiofrom an initiating object to a responding object.

9.1.7 Operation [Part 371 7.1.3]

An operationis aninteraction between a clienbbjectand a servepbject which is either arinterrogationor an
announcement

9.1.2 Announcement[Part 371 7.1.3]

An announcements an interaction the invocation initiated by a clientobject resulting in the conveyance of
information from that clienbbjectto a servepbject requesting a function to be performed by that sestgct

9.1.9 Interrogation [Part 37 7.1.4]

An interrogationis aninteractionconsisting of

i oneinteraction theinvocation initiated by a clienbbject resulting in the conveyance of information
from that clientobjectto a servepbject requesting a function to be performed by the sevbgrct

followed by

i a secondnteraction the termination initiated by the serveobject resulting in the conveyance of
information from the servasbjectto the clientobjectin response to the invocation.

9.1.10 Flow [Part 3§ 7.1.5]

A flow is an abstraction of a sequenceintieractions resulting in conveyance of information from a produmigject
to a consumeonbject

NOTET A flow may be used to abstract over, for example, the exact structure of a sequence of interactions, or over & continuou
interaction including the special case of an analogue information flow.

9.1.11 Signal interface[Part 37 7.1.6]

A signal interfacds an interfacein which all theinteractionsaresignals

9.1.12 Operation interface[Part 371 7.1.7]

An operation interfacés aninterfacein which all theinteractionsareoperations
9.1.13 Stream interface[Part 371 7.1.4]

A stream interfacés an interfacein which all theinteractionsareflows.

9.1.14 Computational object template[Part 37 7.1.9]

A computational object templais an objecttemplatewhich comprises a set of computatiomaérface templatethat
the object can instantiate bahaviourspecification and aanvironment contractpecification.

Rec. ITU-T X.906 (10/2014) 37

ISO/IEC 19793:2015 (E)

9.1.15 Computational interface template [Part 31 7.1.9]

A computational interface templaie an interface templatdor either asignal interface a stream interfaceor an
operation interface A computational interface templateomprises asignal a streamor an operation interface
signatureas appropriate, behaviourspecification an@nvironmentortract specification.

9.1.16 Signal interface signature[Part 371 7.1.11]

A signal interface signaturé an interface signaturdor a signal interface A signal interfacesignaturecomprises a

finite set ofaction templatesone for eaclignal typein theinterface Eachaction templateomprises the name for the

signal, the number, names and types of its parameters and an indication of causality (initiating or responding, but not
both) with respect to thebjectthat instantiates theenplate

9.1.17 Operation interface signature [Part 37 7.1.12]

An operation interface signatuiis aninterface signaturdor anoperationinterface An operation interface signature
comprises a set ainnouncemenand interrogation signatires as appropriate, one for eacdperation typein the
interface together with an indication of causality (client or server, but not both) fontedgaceas a whole, with
respect to thebjectwhich instantiates thieemplate

Eachannouncement signatlis anaction templateontaining the name of thevocationand the number, names and
types of its parameters.
Eachinterrogationsignaturecomprises amaction templatevith the following elements:

i the name of thenvocation

i the number, names and types of its parameters

i afinite, nonempty set ohction templatesone for each possiblermination typef theinvocation each
containing both the name of tkerminationand the number, names ayges of its parameters.

9.1.18 Stream interface signature [Part 3/ 7.1.13]

A stream interface signatutis an interface signaturdor astream interfaceA stream interface&omprises a finite set
of action templatesone for eaclilow typein the stream interfaceEachaction templatdor a flow contains the name
of theflow, the informatiorntypeof theflow, and an indication of causality for tHew (i.e., producer or consumer but
not both) with rgpect to the object which instantiates tdeplate

9.1.19 Binding object [Part 371 7.1.14]
A bindingobjectis acomputational objedhat supports aindingbetween a set of otheomputational objects

9.1.20 Binding [Part 27 13.4, Part 3i 7. 2.3]

A binding behaviouis anestablishingoehavioubetween two or mormterfacegand hence between their supporting
objectd. The contractual context, resulting from a giestablishing behaviouis callel abinding

In Part 3 bindingis defined with reference tminding actionsUse of such actions is callegplicit binding There are
two kinds ofbinding actionsprimitive bindingactionsandcompound bindingctions A primitive binding actiorbinds

two computational objectdirectly. Acompound binding actiocan be expressed in termspoimitive binding actions
linking two or morecomputational objectgia abinding object

In notations which have no terms for expresdimgling actionsbindingis implicit. Implicit binding for other than
serveroperation interfacess not defined in theeference model

9.1.21 Transparency schema [Part 3i 16]

A transparency schemnidentifies thosé¢ransparenciesequired by a computational specification. These transparencies
areconstraints for a mapping from the computational specificati@angpecification that uses specific ODP functions
and engineering structureld. defines a combination distribution trarsparenciesassumed byhe computational
specification.
NOTET As described in [Parti316], thedistribution transparenciescludeaccess transparencfailure transparencylocation
transparency migration transparency persistence transparencyelocaion transparency replication transparency and
transaction transparency

38 Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

9.1.22 Structure of a computational specification

A computational specificatiodescribes the functional decomposition of@DP systemin distrbution transparent
terms, as:

i aconfiguration oEomputational objects

i theinternal actionsof thoseobjects

I theinteractionsthat occur among thosmjects

I environment contract®r thoseobjectsand theirinterfaces

The set otomputational objectspecified by the computational specification constitute a configuration that will change
as thecomputational objectinstantiate furthecomputational objectsr computational intedices performbinding
actions effect control functions updsinding objectsdeletecomputational interfacesr deletecomputational objects

The computational language defines a set of rules that constrain a computational specification. These comprise:
i interactionrules,bindingrules andyperules that provide distribution transparent interworking;
i templaterules that apply to aomputational objectandcomputational interfaces
i failure rules that apply to alcomputational objectand identify the potential points d&ilure in
computational activities.

9.1.23 Summary of the concepts of the computational metamodel

Figure 19 illustrates theoncepts of the computational language and the relationships between them. The descriptions
of the concepts have been given above. The descriptions of the relationships between the concepts are included in the
description of the concepts.

NOTET Some of tle relationships between computational language concepts are not shown in Figure th@, relgtionship
between interface and signature, since they are related through their supertypes.

Rec. ITU-T X.906 (10/2014) 39

ISO/IEC 19793:2015 (E)

40

1

constrainer |EnyirehmentContract
0.

[aegimn] - [Behaviour|
Actiorﬂ Behaviour|9.
O R~ _ \jri

owner (1

specifier | ComputationalTomplate

1 specifier

WWHEr

InternalAction

ComputationalObject|0."
P ——

<=enumeration=>
Causality
T

==ghumeration==
OperationCausality

==Enumeration==
SignalCausality

SErver

initiator

cliernt

responcder

1.
interaction| 4_'5# ace —

w{COmputationalObjectTemplate <<enumeration==
1 5 FlowCausality
o. recsate
\\ producer
CONSUIMED
\\, R
0.# ‘\ =pecifier pa
- ComputationalinterfaceTemplate
2."_ q__"-—m__,__ +icentifier

F

InterfaceSighature

+name : String

‘ Flow | refinsmert | Sjgnal |refinement Operation 1/Invocation |1 Termination‘
0.1 1. 024 0.1 0.1
T 0.1

+izComplemertary(is : InterfaceSignature) : boolean

i

Streaminterface

Sighallnterface

OperationinterfaceSignature

SignalinterfaceSignature

StreaminterfaceSignature

+causslty : OperstionCausalty

+causslty | SignalCausalty

Anhouncement Interrogation

Operationalinterface

Q.3 a.*

AnhouncementSighature

InterrogationSignature

+causality | OperationCausalty

+causalty | OperationCausality

g

TerminationSignature

+oausalty | OperationCausalty

a.*

Q.4

SighalSignature

FlowSignhature

+cauzalty | SignalCausalty

+caussalty : FlowCausslity

]

1 |InteractionSignatu

re

1 |actionTemplate |_.L.

specifier

Figure 191 Computational language oncepts

Rec. ITU-T X.906 (10/2014)

+hame String
+hurmberOfParameters int

Parameter

+hname ; String

+Hype : ParameterDataType

ISO/IEC 19793:2015 (E)

The following restrictions apply to the elements of the diagram shown in Figure 19
i A binding objecis associated with at least two differetjects

i A binding objectbinds two or morebjectsthrough the samgype of interface(signal, announcement
interrogation or flow);

i All interfacesassociated with a&ignal interface signaturare signal interfaces[9.2.9], and all its
constitueninteraction signaturearesignal signatires

context Signalinv SignalSignature: self.interfaceorAll(oclisTypeOf(Signallnterface))
context Signallnterfacenv SignalSignatureself.specifier>forAll(oclisTypeOf(SignalSignature))

context Signallnterfacenv SignallnterfaceSignature:
self.speifier->forAll(oclisTypeOf(Signallnterface Signature))

i All interfacesassociated with aoperation interface signaturareoperation interface§9.2.9], and all its
constitueninteraction signaturesreannouncemeninterrogation invocationor termination signatures

context Announcemeninv AnnouncementSignature:
self.interface>forAll(oclisTypeOf(Operationinterface))

context Invocationinv InvocatonSignatureself.interface
>forAll(ocllsTypeOf(Operationinterface))

context Terminationinv TerminationSignature:
self.interface>forAll(oclisTypeOf(Operationinterface))

context Operationinterfacev OperationinterfaceSignature:
self.specifier>forAll(oclisTypeOf(OperationinterfaceSignature))

T All interfacesassociaté with astream interface signatui@restream interfacef9.2.9].
context Flow inv StreamSignature: self.interfacdorAll(oclisTypeOf(Streaminterface))

context Streaminterfacenv StreaminterfaceSignature:
self.specifier>forAll(oclisTypeOf(StreamInterfee Signature))

9.2 UML profile

This clausespecifies how the ODP computational concepts described in the previous clause are expressed in UML in a

computational specificatiorA brief explanation ofhe UML concepts used in the expression of each concept is given,
together with a justification of the expression used.

NOTE 17 In this clause UML expressions are only defined for those concepts for which use has been demonstrated through an

example, inalded in the main body tfiis Recommendatiofinternational Standarak in its annexes. Where no example has been
identified, the concept concerned is mentioned, but no UML expression is offered.

NOTE 27 The concepts and rules of the computational laggeancern the decomposition of the systefanctionality into
computational objects performing individual functions and interacting at interfaces and thus provide the basis foratebiswns

to distribute the tasks to l®ne. This level of abstraction deals with aspects related to the software architecture of the system, and

therefore the appropriate UML mechanisms for modelling software architectures are used in thisnede(ts, ports, and
interfaces).

NOTE 3i The computational viewpoint assumes that the specifier selects a certain level of refinement below which the use of the
concept ofcomputational objecteases to be essential; these lower level specification concerns, such as the realization of the
behaviou of computationabbjects are outside the scope of the profile described here, and are addressed by other specification
techniques and languages, including the direct use of UML concepts and rules. Thus, this profile covers the specification of

computatbnal objectsat the level of UMLcomponents that interact through thegiorts, but leaves open to the specifier the way in
which the internal realization of sucbhmponents is specified.

9.2.1 Computational object

A computational objeds generally specified in terms of ismplate whichis expressed bgcomponent stereotyped as
«CV_Object».

The attributeisindirectlylnstantiated of such acomponent should be set tdrue This attribute constrainthe kind of
instantiation that applies tocamponent. If false thecomponent is instantiated as an addressabancef true (default
value), theeomponent is defined at desigtime, but at runtime (or executigime) aninstancespecified by theomponent
does not exist, that is, tlkemponent is instantiated indirectly, through tivestantiatiornof its realizingclassifiers or parts

Where acomputational objectis required to represent a specific entity in tH®D, it is expressed by an
instanceSpecification of acomponent that is stereotyped as «CV_Object».

Where there is the need to expres®mmputational objedlype,it is also expressed yUML component, stereotyped as
«CV_Object» The attributasindirectlylnstantiated of thecomponent stereotyped «CV_Object» should be sdrte.

Rec. ITU-T X.906 (10/2014) 41

ISO/IEC 19793:2015 (E)

When acomponent stereotyped agCV_Object» expressescamputational object templatéhe attribute isAbstract of
such acomponent should be set to false, meaning that ¢hmponent needs to providellathe information required to
instantiate objects.

9.2.2 Object types and templates as computational objects

There are cases where there is the need to modiipther templateof acomputational objecat the instance level. An
example is the case of a generic factory, which is invoked by passing it a representatiempite(which hastype
templatg, and responds by instantiating tieenplateand returning a reference to the creaibgbct To indcate that an
objectis derived from a givetemplate we need to represent both tieenplate objecand the instantiatedbjectin the
model. Likewise fottypes to indicate that anbjectconforms to a givetype we need to represent both thigectand
its object typen the model.

Bothtype objectandtemplate objectarecomputational objectsnd therefore are expressectbyponents that express
their type or template To distinguish them from othecomputational objectssuch components are steretyped
«CV_TypeObjector «CV_TemplateObject¥espectively Bothstereotypes inherit from «CV_Object»

The relationship betweencamputationabbjectand theobjectthat represents itemplate or theobjectsthat represent
its typescan be expressed asatribute of theclass that specifies theomputational object

For example,n some specifications, such as in the ODP Trading Function specification, there is the need to specify the
type of a service, so the trader can locatecisjimplementing such a service. The diagram shown in Figure 20 represents
the specification of aomputational objectPrintService, and of itstype PrintServiceType, expressed so that type can

be manipulated by computational operations

g '-: ==CY _TypeChject== o |
.....) MY THRE printService Type

==Y _Ohject==
PrintService

Figure 207 An explicit representation of the type of a computational
object so thatthe object can access its type

9.2.3 Binding object

A binding objectis a kind of computational object, and éxpressed byan instanceSpecification of a component,
stereotyped agCV_BindingObjecs, that represents itgpeor template.

The following two restrictions apply toinding objectsand therefore toomponents stereotypedCV_BindingObjecs:
i Anybinding objectis assciated with at least two differenbjects

T Any binding objectbinds two or morebjectsthrough the samtypeof interface(signal announcement
interrogation orflow).

9.2.4 Environment contract

An environment contractof a computational objectis expressed bya set of constraints (stereotyped
«CV_EnvironmentContract») applied to #@mponent that expresses tlmomputational object

9.2.5 Signal

A signal is expressed by message, ster@typed as«CV_Signab, sent byan initiating object and received by
respondhg object

9.2.6 Announcement

An announcemeris expressed bg message, stereotyped agCV_Announcement sent bya client objectand received
by a serverobjectwith no response expected.

9.2.7 Invocation

An invocationis a part ofnterrogationand isexpressed by message, stereotyped agCV_Invocatior, sent byaclient
objectand received bgi server object

9.2.8 Termination

A terminationis a part ofaninterrogationand is expressed lamessage, stereotyped agCV_Terminatior, sent bya
server objecand received by client object

42 Rec. ITU-T X.906 (10/2014)

ISO/IEC 19793:2015 (E)

9.2.9 Computational interface

Computational interface templateare expressed byorts, that can be stereotypedCV_Signalnterface,
«CV_Operatiohnterface> or «CV_Streaninterface> depending on the type ofterface(signal operationor strean).
Thus, an interface of a computational objects expressed by port of a component instance instantiated from the
correspondingomponent that expresses thabjects computational interface template

In order to express thEausalityof anoperationinterface thestereotype «CV_Operatioiinterface> has aag definition
causality, otype OperationCausality (aBnumeration type whoséditeralsare client and server).

In orderto express theausalityof asignalinterface thestereotype «CV_Signalnterface> has dag definition causality,
of type SignalCausality (aEnumeration type whosditeralsare consumer and producer).

Thestereotype «CV_Streaninterface> does not have angg definition, lecausestream interfacedo not haveausality

9.2.10 Computational interface signature

A computational interface signature is expressed by ra interface, stereotyped«CV_SignalnterfaceSignature»,
«CV_OperatiomnterfaceSignature» or €V_StreaninterfaceSignature» depending on the typeioferface signature
(signal operationor strean).

9.2.11 Computational signature

A computationalsighaturecan be expressed byreception, anoperation, or aninterface, depending on the sort of
signature Receptions are used to expressgnaturesof computational interactions/hich are expressed by individual
signals (signals announcementsinvocaions and termination3. Operations can be used to expregsterrogation
signaturesthat are composed of anvocation signatureand atermination signatureFinally, interfaces are used for
expressindlow signatureg9.2.18]

9.2.12 Signal signature

A signal signatureis expressed bya reception, stereotyped asCV_SignalSignature This stereotypedeception
expresse anaction templatevhich includeghe name for the signal, the number, names and types of its parameters, and
indication ofwhether it isnitiating or responding.

9.2.13 Announcement signature

An announcement signaturgasignaturefor anannouncemenfAn announcement signatuirgexpressed bgreception,

stereotyped agCV_AnnouncementSignatuseThis stereotypethterface expresse anaction templatevhich includes
thename for the invocation, the number, names and types of its parametess,jragidation ofwhether it is alient or
aserver.

9.2.14 Invocation signature

An invocationsignatureis asignaturefor an invocationin aninterrogation An invocationsignatureis expressed by

reception, stereotyped asCV_InvocationSignature. This stereotypedeception expresse anaction templatewvhich

includesthe name for thenvocation the number, names and types of its parametersr@indication ofwhether it is a
client oraserver.

9.2.15 Termination signature

A termination signaturds asignaturefor a terminationfor interrogation A termination signaturas expressed bwa

reception, stereotyped a8CV_TerminationSignatuse This stereotypedeception expressg anaction templatavhich

includesthe name for theéermination the number, names and types of its parameters, and indicatidretfer it is a
client oraserver.

The Stereotyp&CV_TerminationSignatusehas a tag definition, invocation, whoigee is Reception, that refers to the
invocationfor which thisreception is atermination

9.2.16 Interrogation signature

An interrogation signatureis a signaturefor an interrogation which comprises signatures for avocationand a
termination

In the case of afnterrogation signaturecomprising oneinvocation signatureand onetermination signaturgethe
interrogationsignaturecan be expressed lam operation, stereotyped agCV_InterrogatiorBignature. This stereotyped
operation expressg anaction templatevhich includeshe name for thenvocation the number, names and types of its
parametersthe indication ofwhether it is aclient ora server and the number, names and types ofténmminatioris
parameters

Rec. ITU-T X.906 (10/2014) 43

ISO/IEC 19793:2015 (E)

Alternatively, aninterrogation signaturecan be modelled in terms of omevocationsignature[9.2.14] and separate
terminationsignatureg9.2.15].

NOTET This alternative modelling approach may be used, for example, in the casatef@gationcomprising onénvocation
and possibly multiple kinds aérmination

9.2.17 Bindings

An explicit primitive bindingis expressedby anassembly connector, stereotyped agCV_PrimitiveBinding» Such a
connector can be defined from @quired interface to aprovided interface, or from arequired port to aprovided port.

For examplesuppose the following representation in UMLagferation interface signatureServiceAandService as
shown inFigure 21:

Figure 2171 Two operation interface signatures

Then, the diagram shown in Figure 22 represenesxalicit primitive bindingoetween the correspondingterfacesof
computational object€lientA andServer.

Figure 221 An explicit primitive binding between two interfaces

As another example,sauming the specification afperation interface signatureServiceA and Serviceas above, the
diagram shown in Figure 23 represents explicit primitive binding between the correspondinigterfaces of
computational object€lientA andServer, but showing explicitly thenterfacesignatureof bothinterfaceqstereotypes
and tag vales of theports representing sucinterfaceshave been omitted for clarity).

Figure 231 An explicit primitive binding between twointerfacesshowing their interface signatures

The following restrictions apply tassembly connectors, stereotyped agCV_PrimitiveBinding»s

i If they connecinterfaces, they are both stereotype@V_OperationinterfaceSignature» ati@operation
interface signatureexpressed by thelient interface is a subtypeof the operation interface signature
expressed by theerver interface [Part 31 7.2.3}

i If they connect ports, then: (a) these ports are stereotyped «CV_Signallnterfacey»
«CV_Operationinterface» orGV_Streaminterface», (lheir stereotypes coincide, and (c) thierface
expressed by thdient port is compatiblewith theinterfaceexpressed by theerver port, according to the
primitive bindingrulesdefined in [Part 3 7.2.3}

i If they connectports stereotypedCV_Streaminterface»the fact thatstreaminterfacesdo not have
causality implies that the assignment of direction (that is, the designation of the client element) is irrelevant.

An implicit primitive bindingcan only happen betweémerfaces specifyingoperation interface signatureand only
when therequired interface coincides with therovided interface; then there is no need to representctheector.

NOTET In this case théball and sockétconnection representation can be used, as shown in Figure 24.

44 Rec. ITU-T X.906 (10/2014)

