
Atomic Use Case as a Concept to Support the MDE Approach to Web
Application Development

Kinh Nguyen
Computer Science & Computer Engineering Department

La Trobe University,Australia
kinh.nguyen@latrobe.edu.au

Tharam Dillon
Faculty of Information Technology

University of Technology Sydney,Australia
tharam@it.uts.edu.au

Abstract

While use case is a popular technique for capturing require-
ments, the process of proceeding from use cases to subse-
quent modeling activities is to a large extent still unclear.
In this paper, we propose the concept of atomic use case to
formally model the functional requirements in support of the
MDE approach to web application development. In partic-
ular we demonstrate how to construct a precise model for
the business logic layer and to establish clear relationships
between business logic model to other models such as the
domain model, user interface model, navigation model, and
the business process model. We also explore how the atomic
use case concept can be incorporated into UWE (UML Web
Engineering) Methodology.

1. Introduction

In this paper, we propose the concept of atomic use
case as a fundamental concept to support the MDE (Model-
Driven Engineering) approach to web-based application de-
velopment. A web application, in particular a web infor-
mation system, can be seen as having the following major
components: (a) web-based components, (b) business logic
and data source components, (c) other components such as
web-services, portlets, agents, metadata, data mining, etc.
We will be largely concerned with the first two kinds of
components.

The concept of atomic use [7] is proposed as a solution
to what we regard as a long-standing problem of informa-
tion system, be it relational or object-oriented – namely the
problem of analyzing and modeling the behavior of infor-
mation systems.

One advantage of relational database technology, it is of-

ten claimed, is the separation of the static aspect and the dy-
namic aspect. The modeling of the static aspect (the struc-
ture of the database) has been handled in practice reason-
ably well. In contrast, the dynamic aspect (the operations
of the database system,) is handled quite poorly. In the 70s,
IFIP (The International Federation on Information Process-
ing) recognized it as a key problem and organized a num-
ber conferences, inviting researchers to propose solutions to
this problem. A number of proposals were made but none
of them were adequate to the task, especially as a practi-
cal solution. Consequently, the problem gradually slipped
into the phase of being a forgotten problem. Interest in the
problem was briefly revived in the late 80s with the emer-
gence of Z notation. Before long, it was realized that Z
notation could not deliver the expected results, and the the
problem slipped back into the state of a forgotten problem.
In the mean time, the industry handles the problem in an
informal (hence ambiguous) and ad hoc manner, which in-
curs huge hidden costs (poor understanding of functional
requirements, poor specification for programmers, etc.).

As for object-oriented information systems, first of all,
we can observe that UML without OCL would be too im-
precise to describe behavior of information systems. An
activity diagram can represent at a number of tasks and the
flows between them; but it lacks the facilities to describe
the tasks in detailed and precise terms. The same is true of
sequence diagrams, which can show the sequence of mes-
sages in a collaboration, but are not good at describing the
detailed effects of such messages. Though there are situa-
tions in which the sequence of messages alone can be very
helpful (e.g. to explain how enterprise Java beans work,
that is, how a client, through a number of stubs, can com-
municate with the beans on the server), it is not the case for
information systems. For information systems, it is the ef-
fects of the messages that really tell us what really is going

on. In practice, it is more often than not that after drawing
pages and pages of sequence diagrams, when it comes to
implementation, we have to ask a whole host of questions
all over again. The gap between sequence diagrams and the
implementation code is far too big in most cases. In the lan-
guage of MDE, the model does not have sufficient informa-
tion for the subsequent transformation act. To strengthen the
UML models, OCL has been introduced. Since its incep-
tion, many important features have been added, and OCL
now appears to have adequate expressive power for specify-
ing complex applications. Given that is the case for OCL,
an issue needs to be be seriously considered: how are we to
use it? For example, what would be the units of behavior
that we are going to use it for? And how are we going to
identify these units in practice?

We propose atomic use case as an answer to the problem
of precise behavior modeling. In this paper, we will intro-
duce the concept and demonstrate how we can use it to con-
struct a precise model for the business logic layer, and from
there, to establish the clear relationships between business
logic model and the user interface (of any kind). Finally,
we explore how the atomic use case concept can be incor-
porated into UWE (UML Web Engineering) Methodology
and briefly describe how we may apply this concept to the
Travel Agency case study.

2. Introductory Example

We will take an example to show what atomic use cases
are and the role they play through out the life-cycle. Be-
cause we wish to show the role this concept can play in the
whole life-cycle, we will need to choose a very simple ex-
ample.

Problem Statement Consider an application in which
we are required to maintain information about a set of em-
ployees. Each employee has a unique ID, a name, and a
phone number. The ID and name of an employee cannot be
changed. System operations, or use cases, include: (1) Add
an employee, (2) Delete an employee, (3) Change the phone
number of an employee, (4) Retrieve employees by ID, by
name, or by phone number.

2.1. Identify and Specify Atomic Use Cases

We can go through the use cases one by one, identify the
atomic use cases, and formally specify them. Through this
process, as will be shown, we end up with a complete model
that captures the full functionality of the application.

Consider the operation (use case) to “Add an Employee.”
A use case description for this operation can be as follows:

“To add a new employee, first, the user enters the id of
the new employee. The system checks to determine if the id
is new. If it isn’t, an error message will be displayed and the
operation is terminated. Otherwise, the user enters next the

Start

id

Entered
End

T1: Enter ID

id?: ID phone?:PHONE

Add New Empoyee

T2: Add the Employee

T3: Handle Exception

msg!: MSG

name? : NAME

PRE: id? is new

POST: Add employee with
id = id?, name = name?
and phone=phone?

PRE: id? is not new

POST: msg = “ERROR: id is not new!”

Figure 1. A Petri Net Representation for “Add an
Employee” Use Case.

name and the phone number.The system then creates a new
employee with the input data and saves it.”

The use case and the various path it can take can be repre-
sented by a high-level Petri net shown in Figure 1 (What we
present here is a simple version of what we call the “obliga-
tion net” [8], a high-level Petri in which each transition has
pre- and postconditions to precisely express the obligations
the system has to fulfill.)

We now make a shift in the way we view the system’s
behavior. Instead of thinking in terms of “do this then do
that” or “if this, then do that” (the procedural view), we
consider the operation as one whole unit and ask “For this
use case, in how many different ways can the system makes
its response?” (the declarative view). For the current use
case, the system can respond in two ways, corresponding to
two paths in the system obligation net.

The first path consists of transitions T1 and T2. Follow-
ing this path, the system makes a positive response: it adds
a new employee to the information base. The second path
consists of transitions T1 and T3. In this case, the system
makes a do-nothing response: it simply leaves the system in
its prior state due to the non-fulfillment of the precondition
for adding an employee. We refer to the response described
by the first path as an atomic use case, and the one described
by the second path as an exception use case. A general def-
inition can be given as follows:

Definition: An atomic use case is conceived as an in-
divisible response by the system that either (1) effects a
change of the system’s state, which takes the system from
a consistent state to a consistent state, to reflect an event
taking place in the application domain, or (2) performs a
query that is of interest to the user in its own right.

Having identified the atomic use case, and in keeping
with the “atomic” viewpoint, we can specify it informally

in terms of the input, output, pre- and postconditions as fol-
lows:

– Input: id?, name?, phone?
– Output: None
– Pre: id? is new
– Post: Create a new employee with id?, name?, phone?

and add the employee set
We can now seek to specify the atomic use case formally.

As expected, the specification always follows a consistent
format which consists of input, output, pre- and postcon-
ditions, though some of these elements may be absent in a
particular case. The “Add Employee” atomic use case can
be specified as follows:

AddNewEmployee

input
id? : ID
name? : NAME
phone? : PHONE

pre
id? �∈ {e : allEmployees • p.id}

post
∃ newEmployee : allEmployees′ •

newEmployee �∈ allEmployees
newEmployee.id = id?
newEmployee.name = name?
newEmployee.phone = phone?
allEmployees′ = allEmployees

∪{newEmployee}

Two points should be made from this example. First,
in order to precisely specify the use case, we need to use
some formal notation. In the above example, we have used
Object-Z [3]. We could use OCL instead. Both use the
same mathematical concepts and we can easily translate
from one into the other (except for some advanced opera-
tors of Object-Z). Object-Z is more concise and we use it
here to save space.

Second, we have assumed the existence of two classes
(only the static features are required at this stage). One is the
Employee class, which has three attributes as shown below:

Employee

id : ID
name : NAME
phone : PHONE

. . .

The other is a system class. It represents the system from
the functional view point. It maintains a set of employees

and provides method to manage that set of employees. We
will call the class EmployeeApp:

EmployeeApp

allEmployees : P Employee

∀ e1, e2 • e1 �= e2 ⇔ e1.id �= e2.id

. . .

In this example, the Employee class is actually the whole
of the domain model. In general, to formally specify the
atomic use case, we need (a) the domain model or part of
the domain model relevant to the use case, and (b) the sys-
tem class. One crucial aspect of the system class is that
through the attributes of the system object we can get to all
the domain objects of the system.

By going through the use cases one by one, and identi-
fying and formally specifying the atomic use case for each
of them, we would obtain a collection of atomic use case
specifications, which constitutes a complete functional re-
quirements model of the application.

2.2. Derive Methods for Domain and System
Classes to Obtain a Complete Business Logic
Model

Once an atomic use case is formally specified, we can
deduce the methods required of the domain classes and the
system class to support that use case.

Each atomic use case will become a method of the sys-
tem class. For the “Add a New Employee” use case, we
require the method shown below in the system class:

EmployeeApp

AddEmployee
id? : ID
name? : NAME
phone? : PHONE

id? �∈ {e : allEmployees • e.id}
∃ e : Employee •

e �∈ allEmployees
e.INIT(id?/id?, name?/name?, phone?/phone?)
allEmployees′ = allEmployee ∪ {e}

. . .

From the postcondition of that method of the system
class, it is clear that we need to be able to create new
Employee instances. Thus, we have identified a method
(constructor) required of the domain class to support the
use case. The method is expressed in Object-Z as an INIT
schema as shown below:

Employee

INIT
id? : ID
name? : NAME
phone? : PHONE

id = id?
name = name?
phone = phone?

. . .

By repeating this activity for all atomic use cases, we
would get a complete business logic layer model as far as
the functional requirements are concerned. In general, this
model (which strictly speaking is not a design model) con-
sists of a system class and all the domain classes relevant to
the particular application.

2.3. Implement and Test the Business Logic Model

Having derived the methods required of the system and
domain classes, we can implement or prototype them. An
implementation for the “Add New Employee” use case is
shown below. We need one method for the system class:

public void addNewEmployee(String id,
String name, String phone) throws Exception
{

// compute the precondition.
// Assume that collectIds() returns the set of
// ids of the set of employees
boolean pre =

allEmployees.collectIds().contains(id);

// if precondition is not satisfied,
// abort the operation
if (! pre)
{ throw new Exception

("The ID already exists!");
}

// otherwise, create the new employee and add
// it to the information base
Employee newEmployee =

new Employee(id, name, phone);
allEmployees.add(newEmployee);

}

and one method for the domain class Employee:

public Employee(String id, String name,
String phone)
{

this.id = id;
this.name = name;
this.phone = phone;

}

Note that we have all the details from the business logic
model we need to do that. No further discovery activities
are needed.

Testing Once the two methods above are available, we
can test them with a testing script such as the one shown
below. The variable name theSystem is to emphasize the fact
that an instance of EmployeeApp represents the complete
system in this example.

// create a system object
EmployeeApp theSystem = new EmployeeApp();

// add first employee and display the system’s
// state
theSystem.addNewEmployee("E10","Smith","1234");
System.out.println(theSystem.toString());

// add second employee and display the
// system’s state
theSystem.addNewEmployee("E20","Adams","2345");
System.out.println(theSystem.toString());

// try to add employee with an existing id
// and observe that the system’s state remains
// the same
theSystem.addNewEmployee("E10","Clarke","3456");
System.out.println(theSystem.toString());

The testing script contains several test cases (scenarios of
the current use case), which are based on the precondition
specified in the atomic use case. For each test, the state of
the system object is displayed to verify that the implemen-
tation satisfies the postcondition specified in the atomic use
case.

The tests reveal two important consequences of the im-
plementation of the atomic use case.

• First, we can perform the required operation, i.e.
adding employees.

• Second, and just as important, the system can protect
itself from invalid requests and preserves the integrity
of its state.

The ability to make appropriate responses to both valid and
invalid requests is, of course, exactly what we should be
looking for. Notice that we can achieve all of these by con-
sidering only the atomic use cases.

The Functional Core Once we proceed to implement
the rest of the operations specified in the business logic
model, the two classes that we obtain constitute an exe-
cutable component that allows us to perform all the required
operations (add and delete employees, change phone num-
bers, etc.). We call this the functional core. It is a “basic
core of the system” that is fully functional in the sense that
it can store the relevant information, update the information,
and respond to queries in support of the business activities.
For this reason, we take the functional core to be the busi-
ness logic layer of the system. That is, in our approach, we
take the business logic layer to be precisely the implemen-
tation of the identified atomic use cases.

Moreover, once the functional core has been fully tested,
we can build the desired graphical user interface as a sep-
arate layer on top of it. As will be shown, it is possible to
build a separate GUI layer that interacts with the functional
core only at a small number of well-defined points.

3. Further Clarification on the Concept of
Atomic Use Case

In the definition of atomic use case, given earlier, the cri-
terion that an update atomic use case must “take the system
from a consistent state to a consistent state” is significant
and is useful to identify atomic use cases. The following
simple example illustrates this point.

Example - Enroll Student Consider the case of en-
rolling students in subjects. Suppose subjects are classified
as core or optional, and each student must take at least 3
core subjects. Without the condition that a student must
take at least 3 core subjects, the act of enrolling a student in
a subject is an atomic use case. With that condition in place,
that act is no longer an atomic use case: it may cause the in-
formation base to be in an inconsistent state. The atomic
use case in this case must be “To enroll a student in a set of
subjects in one go”. More precisely,
– The inputs are a student id and a set of subject codes
– The outputs: NONE (it is clearer not to regard error mes-
sages as output; they are implied by the preconditions)
– The preconditions are: (1) the id must exist, (2) each unit
must exists, (3) the set contains at least three core unit
– Postcondition: Enroll the student in those subjects.

Similarly, the phrase “to reflect an event taking place
in the application domain” provides a useful criterion for
identifying atomic use case. The following example illus-
trates this point.

Example - Add Student or Staff Consider an applica-
tion which deals with students and staff in an academic in-
stitution (suppose we maintain some different information
about them). “Add a Student” and “Add a Staff” are atomic
use cases. In one of our presentations, it has been asked:
Should we take “Add a Person” as an atomic use case? The
answer is “No”. In the application domain, we may have
the event of “Having a new student” or “Having a new staff
member”, but not the event “Having a new person”. “Per-
son’ is an abstraction with some information left out of stu-
dent or staff, and the so-called event “Having a New Per-
son” cannot fully describe the situation. Furthermore, it we
consider the states of the information base, we can see this
clearer: When the information base change from state S to
state S’, then S’ may be S plus information about a new
student or a new staff, but not simply about a new person.

Finally, when the use case is a query use case it needs to
be “of interest to the user in its own right.” The following
example serves to illustrate this point.

Example - Redistribution Parts between Warehouses
In [4], Jacobson presents a rather sophisticated screen to
show how the user may interact with a system to redis-
tributes parts among various warehouses (we move items
from the ‘From’ warehouse to the ‘To’ warehouses). There
is a drop-down list to select the ‘From’ warehouse. When
a ‘From’ warehouse is selected by the user, the system re-
spond by listing the rest of the warehouses as potential ‘To’
warehouses. In making this response, the system would
need to perform a query against the information base. Now,
it is unlikely that such a query is of interest to a user by it-
self (in this example, it serves as a small step in determining
the potential ‘To’ warehouse and where in that warehouse
we should move items to). If that is the case, the query does
not amount to an atomic use case. It is simply a query that
supports the user interface.

In our approach, we would extend the functional core to
provide the user interface-support queries. The functional
core and the extended part together are called the extended
function core

4. Relationships to Use case Descriptions
Graphical User Interfaces

Use cases can be given at different grains of granuality.
Three main levels are usually distinguished, and using the
terminology of [2],they are: summary goal level (business
use cases), user goal level (system use cases), and subfuc-
tions (subfunction use cases). Use case descriptions are usu-
ally given in three general formats: the simple unstructured
format, the user-system dialog format, the flows of events
format. Given a description of a use case, regardless of its
format, we can identify the atomic use case associated with
it. As shown earlier, one way to do this is to sketch a net
like one in Figure 1 and observe how the system responds to
various paths (some lead to atomic use cases, some do not).
Very often, we can even recognize the atomic use cases di-
rectly: they normally correspond to the main flows of the
system use cases.

Identifying atomic use cases through use case descrip-
tions is not the only option. In fact, it is more practical to
do so through the graphical user interface. In the industry,
people are less likely to talk about use cases; they often talk
about user interface and how the user interacts with the user
interface. We will be talking the ‘language of the indus-
try’ when we identify the atomic use cases through the user
interface sketches (or designs) and the descriptions of how
they work.

Add Student/Staff

Add Cancel

Student Staff

ID:

Name:

Phone:

Figure 2. Screen to Add Student or Staff.

Example - Add Staff or Student Consider the screen
in Figure 2.

– When the user checks either the ‘Student’ or the ‘Staff’
checkbox, no query is made to the information base. The
user interface simply ’remembers’ that the user has made
that choice.

– When we enter id, the system would respond by check-
ing whether the id is new or not, and warn us if it’s not new.
This action requires the system to make a query to the un-
derlying information base. The purpose of this query is to
support the user interface.

– After the user has entered relevant information and
press button “ADD”, the system will respond by calling the
business layer to add a student or a staff member. Thus, out
of this screen we have two atomic use cases: one to add a
new staff and one to add a new student.

In general, given a screen or a series of screens, web-
based or otherwise, many events can be generated by the
user’s actions. By examining how the system responds to
each of these events, in particular how it interacts with the
information base, we can identify atomic use cases and all
the queries needed to support the operation of the user in-
terface.

5. Transforming Functional Core Model to
Business Logic Layer

The implementation of the functional core model, in
essence, requires the translation of formal expressions for
pre- and postconditions into programming code. To do that,
in most cases we only need to handle a small number of
common expressions. These expressions are are list in Fig-
ure 3, which show the equivalents in Smalltalk. Equivalent
Java code segments would be less concise, but definitely
standard patterns can easily be established.

In the language of MDE, (a) we have a formal platform
independent model of the business logic layer, and (b) we
can readily formulate transformation rules to transform the

∀ x : X • p(x) X size =
(X select: [:p| p(x)]) size

∃ x : X • p(x) (X select: [:P| p(x)])
isEmpty not

x ∈ X; x �∈ X x in: X (or X includes: x)

x �∈ X x notIn: X
(or (X includes: x) not)

X ∪ {a} X add: a

X \ {a} X remove: a

X ∪ Y X union: Y

X ∩ Y X intersect: Y

X \ Y X removeAll: Y

{x : X | p(x)} X select: [:x | p(x)]

{x : X • e(x)} X collect: [:x | e(x)]

∃ x : X • x := X detect: [:x | p(x)].
p(x) x oper
� x.oper

(Note that in:aCollection can be defined as a method in the class

Object as aCollection includes: self)

Figure 3. Equivalent Expressions between Formal
Specification and Smalltalk

model into a platform-specific component.

EJB Implementation We can implement each atomic
use case as a session bean, which may access data sources
in a distributed manner. In this case, the system class is
implemented implicitly as a collection of session beans.

However, in most cases, it is better to put all the atomic
use cases in one session bean, one method for each atomic
use case. In this case, the system class is implemented ex-
plicitly. Conceptually, such an implementation would be
much clearer and easier to understand. Practically, it would
make it easier for the client programs to locate and use the
beans on the server-side: there is only one bean that the
client should be aware of.

Note It is not unusual to break up an application into
a small number of major components. In such a case, the
“system class” is implicitly made up of these components
and each atomic use case is to be described in the context of
a particular component. Also, we must specify the interac-
tions among the components in terms of the messages they
can send to each other.

Relational Implementation It is not uncommon to im-
plement the information base as a relational database and

to have the business logic code written in a non-object-
oriented fashion (e.g. using JDBC instead of Hibernate,
say). Then how would we proceed from the specification
to the implementation?

In this case, we need to convert the object-oriented model
into a relational model. That is, we convert the class di-
agram into a relational schema, and each atomic use case
must be expressed as a method that acts on the relational
schema. The first task (to obtain the relational schema) is
rather straight forward and many mapping rules have been
suggested. The second task (to capture the behavior), at the
intuitive level is very straight forward. Moreover, we only
need to be concerned with a small number of expressions
(that are used to express the pre- and postconditions) pre-
sented earlier.

Alternatively, we could choose to write the behavioral
specification based on the relational model from the out-
set. In this case, standard Z notation is not quite suitable
for practical use (as witnessed by history). We have exper-
imented with an extension of Z, which we call ‘RZ’, ‘R’
for ‘relational’. It does not have (yet) a formal semantics,
though intuitively the meanings of the additional constructs
are clear. As a kind of ’formal pseudo code’, RZ works re-
ally well (quite unambiguously) in expressing the intentions
of the modeler. In addition, for the consumption of those
who do not want to use mathematical notations, we have
added a few features to SQL to form a pseudo code language
to express the atomic use cases (i.e. their pre- and post-
conditions) in a highly (but not formally) precise manner.
We are currently investigating the use of an object-oriented
specification language (such as Object-Z, OCL) for specify-
ing pre- and postconditions against a relational schema by
representing tuples of a relation as simple objects where all
the attributes are publicly accessible for manipulation. The
use of Maude [1] could be quite suitable for this task as well.

6. Atomic Use Cases and Events in Web Appli-
cations

The relationships between the atomic use cases and the
events generated by graphical user interfaces (considered
earlier) indicate how atomic use cases can be applied to the
analysis, modeling and specification of web applications.
An event generated by the user’s actions on a web-based in-
terface can be conceived as a contract (to be fulfilled in most
cases by the method that handles the event on the server
side). This contract consists of

– The input data (they normally come from the HTML
forms or cookies or the session object);

– The output (in the contract for a web event, we define
the output to be data that we need to pass to the returned
web page – see example below);

– The precondition (to specify the conditions that the in-

put data must satisfy);
– The postcondition (to specify actions such as updating

of the cookies or session object, performing query or update
action against the business logic layer, i.e. invoking atomic
use cases);

– The returned page (the page is divided into one or more
“blocks”, and for each block, we specify the input data that
it receives and displays and the events it may generate; for
each event, we specify its parameters).

The content of such a contract for a web event can be
formally specified. As an example, consider the screen for
an online bulletin board shown in Figure 4. Several events
can be generated by this screen and the specification for the
“View Messages” event, for example, is shown below (the
boolean expressions are in OCL):

Event ViewMessages
Input:

// topic? is the name of the selected topic
Request topic?: String

Output:
// set of messages to be displayed by the
// returned web page
messages!: Set(String)
// the topic needs to be passed to the
// returned web page
topic!

Pre:
// name of selected topic must exist in the
// information base
bulletinBoardFnCore.

getTopics.name ->includes(topic?)
Post:

// retrieve the messages and pass the topic
// along to the returned web page
messages! =

bulletinBoardFnCore.
getMessages(topic?).text

topic! = topic?
Returned Page:

Block 1:
Input:

message! : Set(String)
topic!: String

Next Events:
DisplayTopics(Session topic: String)

where topic = topic!

Notice that (a) In the Post section, a call is made to
the business logic layer; and (b) The returned page con-
tains the Display Topics event whose argument is the topic
received by the View Messages event by virtue of two
constraints: topic! = topic? in the Post section, and
topic = topic! in the Next Events subsection of the Re-
turned Page section.

7. Exploring the Application of Atomic Use
Cases to UWE

UWE (UML-based Web Engineering) [6] is a methodol-
ogy for web application development with ArgoUWE [5] as

1

2 3

4

1 selection list of topics obtained from topics!

2

3

4

event: View Messages

event: Post Message

event: Exit

Figure 4. Layout for Display Topics Event

a supporting CASE tool. One of the motivations for UWE
is to provide support for complex business processes. Let
us explore how we can apply the concept of atomic use case
to UWE.

Example The example of an e-shop given in [5]. This
example illustrates the basic steps and the basic models of
UWE. The example shows four basic UWE models: the
conceptual model, the navigation model, the (business) pro-
cess structure model, and the process flow model. Part of
the navigation model for the e-shop example is reproduced
in Figure 5. It shows the navigation nodes, process nodes,
navigation links (between navigation nodes), and process
links (between navigation nodes and process nodes). One
of the process nodes is the Checkout node, whose details
are shown in the process flow model in Figure 6.

Analysis of the Checkout Process From the atomic
use case point of view, we would perceive this Checkout
node as consisting of two “aspects” which are associated
with two different kinds of concerns: the first is about an
atomic use case and the second is about the user interface
design to support this atomic use case.

The atomic use case is the one that takes details about
an order submitted by the user (such as customer name,
address, credit card number, whether they want the items
wrapped, etc.) and accordingly updates the underlying in-
formation base of the e-shop. We can call this the “Take Or-
der” atomic use case (or “Place Order” from the customer’s
viewpoint).

With the Take Order atomic use case in mind, we can
see that the essential role of the Checkout process model

in Figure 6 (possibly apart from the “send invoice” action)
is to obtain the details needed as input for the Take Order
atomic use case. This is the second aspect we mentioned
above. Viewing it this way, a question arises: How should
we model this second aspect?

Instead of the process model in Figure 6, we could model
the second aspect by a graphical user interface. For exam-
ple, we can have a screen with two screen “blocks” that the
user can interact with simultaneously:

– One block to confirm the items in the shopping cart and
to select the wrapping options and

– One block to set the payment method.
The screen also has buttons to cancel or to place order. Such
a screen would allow us to get the information we need, but
it does not constraint us to the flow pattern described in the
Checkout process flow in Figure 6. The process flow model
is an over-specification: It is one way to get information to
support the atomic use case but it is not the only one.

Possible Modifications to the UWE Models For the
above Checkout process, it could be argued that the crucial
point is the content of the information, rather how we obtain
it. That is, the actual process in this case seems to play a
secondary role.

For that reason, we could introduce to the UWE naviga-
tion model a new type of process node (through the stereo-
type mechanism) to represent processes with characteristics
similar to those of the Checkout process above. We may call
them “Use Case Process Nodes”. A use case process node
can be modeled by

– An activity diagram with a branching fork which has
a number of alternatives: one of which leads to a “cancel”,
and each of the rest leads to an atomic use case (which rep-
resents the point where we update the information base)

– The specifications of the atomic use cases (we normally
would have them already)

– A screen (which can be taken to be a part of presen-
tation model) to indicate how the user can interact with the
system to effect the atomic use case.

The suggested specification appears to be much simpler
than what we currently have in UWE, and it avoids the prob-
lem of over-specification (which in most cases contains an
element of arbitrariness on the part of the modeler).

By introducing the Use Case Process Node and by mod-
eling it the way suggested above, we may bring about sev-
eral advantages. First, there may be many instances of such
processing nodes in an application, and it is clearer concep-
tually to single them out (to distinguish them from other
kinds of processing nodes). Second, having singled them
out, we can model them in a standard way as suggested
above, which would simplify the specifying process.

Incidentally, another advantage is brought about by the
act of modeling the atomic use cases itself. With current

Figure 5. Navigation Model for the e-shop. Source: Knapp et al. [5]

UML modeling tools, the atomic use cases can be speci-
fied (more or less completely) with the help of OCL, and
code (e.g. Java) can be generated out of the model. This
generated code can quickly be enhanced to be a working
prototype. This feature could be very attractive as a means
to induce the average software engineer to apply OCL for
rigorous modeling, which is an essential part of the MDE
approach.

The admission of atomic use cases into the UWE model
may open up a way to classify the typical business processes
into various kinds of different grains of granuality. Some
would be the use case process nodes described above. Some
may represent external processes, which may be modeled
by specifying the inputs and outputs. Still some may involve
interactions with the user or external sources, which would
require many of the UWE features for modeling.

8. Atomic Use Cases and the Travel Agency
Case Study

Consider the Travel Agency Case Study described in [9].
We will give a sketch as to how one may approach this case
study using atomic use cases. We will view the application
as made up of the following types of components: the Per-
sonal Agent Assistant, the Broker Agent, the Transportation

Company and the Finance Company.
The Personal Agent Assistant (or Assistant for short) is

responsible for processing requests from the customers. To
process a request, the Assistant maintains a list of Broker
Agents, a list of Financial Companies, and data about the
customer bookings and payment details. It would also need
to store the current request and the list of current offers. We
can think of the Assistant as a finite-state machine whose
actions, which take place when transitions occur (some of
which may be triggered by time constraints), would be the
following atomic use cases:

– Enter Request (to store a user’s request). Input: A re-
quest; Output: None; Pre: The request is valid; Post: Store
the request.

– Get Offers (to send messages to Broker Agents to re-
quest offers) Input: The request data; Output: A list of of-
fers; Pre: None; Post: Store the list of offers. (Note that
we cannot impose the condition that the offers match the re-
quirements of the request, though we do expect that to be
the case.)

– Present Offers (to take the offers from the previous use
case and to make the valid offers available to the user). In-
put: The set of offers (denoted by “InOffers”); Output: A
set of offers (denoted by “OutOffers”); Pre: The request id
exists; Post: OutOffers = the set of offers in InOffers that

Figure 6. The Checkout Process Model. Source: Knapp et al. [5]

match the request.
– Make Booking (to take a booking (or bookings) on be-

half of the user). Input: The offer identification, payment
details; Output: Booking confirmation messages; Pre: The
selected offer is one of the valid offers; Post: Validate pay-
ment details with Financial Company AND send messages
to confirm the bookings for the selected offer and cancel the
rest.

– Cancel Request (to cancel the request). Input: None;
Output: None; Pre: None; Post: Delete current request and
and cancel all offers

The Broker Agent would maintain a list of Transporta-
tion Companies. The main atomic use case it has are:

– Provide Offers (to take a request from the Assistant and
to respond with a list of offer). Input: A request; Output: A
list of offers; Pre: None; Post: The offers match the request
AND store the offers.

– Confirm Booking (to confirm the booking of an offer
which were previously temporarily booked). Input: The se-
lected offer identification; Output: confirmation messages;
Pre: The selected offer is in the current list of offers; Post:
Send message to confirm bookings for selected offer and
cancel the rest.

For the Transportation Company and the Finance Com-
pany, essentially we need to define the interface and the as-

sumptions about the contracts related to the messages.

Having identified those atomic use cases, we can pro-
ceed to specify them formally, and construct the concep-
tual model (perhaps in the process of formalizing the atomic
use cases), the navigation model, and the business process
model.

9. Conclusion

In this paper, we have introduced the concept of atomic
use case. It is a natural concept and therefore easy to grasp.
In fact, it has appeared in various guises in the systems de-
velopment literature. However, to really benefit from it, we
need to have a clear understanding of the concept. Toward
this end, we provided a definition (one that aims to assist
us in identifying the atomic use cases). We showed how
we can identify the atomic use cases and specify them, and
how we can build a complete business layer with them. Fi-
nally, we explored how we can incorporate the concept into
UWE for web application development, which could lead to
a more definite choice of granularity for the process nodes
and clearer relationships between the various models.

References

[1] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet,
J. Meseguer, and J. Quesada. Maude: specification and
programming in rewriting logic. Theoretical Comput. Sci. ,
285:187-243, Sept. 1995.

[2] Alistaire Cockburn Writing Effective Use Cases, Addison-
Wesley, 2001.

[3] R. Duke and G. Rose (2000) Formal Object-Oriented Specifi-
cation Using Object-Z, MacMillan.

[4] Jacobson J., Ericsson M. and Jacobson P. (1992) Object-
Oriented Software Engineering: A Use Case Driven Ap-
proach, Wokingham:Addison-Wesley.

[5] Alexander Knapp, Nora Koch, Gefei Zhang, and Hanns-
Martin Hassler. Modeling Business Processes in Web Appli-
cations with ArgoUWE, In 7th International Conference on
the Unified Modeling Language (UML2004), LNCS 3273, 69-
83, Springer Verlag, October 2004.

[6] Nora Koch and Andreas Kraus. The expressive Power of
UML-based Web Engineering. In Second International Work-
shop on Web-oriented Software Technology (IWWOST02), D.
Schwabe, O. Pastor, G. Rossi, and L. Olsina, editors, CYTED,
105-119, June 2002.

[7] Kinh Nguyen, Tharam Dillon, Atomic Use Case: A Concept
for Precise Modelling of Object-Oriented Information Sys-
tems, in OOIS’03, The Ninth International Conference on
Object-Oriented Information Systems, Geneva, Switzerland,
2003

[8] Kinh Nguyen. A Semi-Formal Object-Oriented Method for
Analysis and Modelling of the Functional Requirements of
Information Systems, PhD Thesis in Computer Science, La
Trobe University, 2003.

[9] A Travel Agency System, Case Study for Workshop
on model-driven Web Engineering (MDWE 2005),
http://www.lcc.uma.es/ av/mdwe2005/TheTAEexample

