
A UML 2.0 Profile for WebML Modeling

Nathalie Moreno
Dept. Lenguajes y Ciencias

de la Computacion.
University of Malaga

Malaga, Spain

vergara@lcc.uma.es

Piero Fraternalli
Dipartimento di Elettronica e

Informazione
Politecnico di Milano

Milano, Italy

piero.fraternali@polimi.it

Antonio Vallecillo
Dept. Lenguages y Ciencias

de la Computacion.
University of Malaga

Malaga, Spain

av@lcc.uma.es

ABSTRACT
In recent years, we have witnessed how the Web Engineering
community considers the use of standard UML notation, te-
chniques and supporting tools for modeling Web systems, in-
cluding the adaptation of their own modeling languages, re-
presentation diagrams and development processes to UML.
This interest for being MOF and UML-compliant arises from
the increasing need to be able to interoperate with other no-
tations and tools, and to exchange data and models, thus
facilitating and improving reuse. WebML, like any other Do-
main Specific Language (DSL), allows to express in a precise
and natural way the concepts and mechanisms of its domain
of reference. However, it cannot fully interoperate with ot-
her notations, nor can it be integrated with other tools. As
a solution to these requirements, in this paper we describe a
UML 2.0 profile for WebML which allows WebML models to
be used in conjunction with other notations and modeling
tools.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—Methodologies,
representation

General Terms
Design, Standardization, Languages

Keywords
WebML, UML, UML Profiles, Metamodels

1. INTRODUCTION
UML is a general purpose visual modeling language for spe-
cifying, constructing and documenting the artefacts of sys-
tems that can be used with all major application domains
and implementation platforms. It has been widely adopted
by both industry and academia as the standard language
for describing software systems. This is reflected by the fact
that it is currently supported by hundreds of model-driven

Copyright held by author/owner(s)
ICWE’06 Workshops, July 10-14, 2006, Palo Alto, CA
ACM 1-59593-435-9/06/07

commercial tools, which have been successfully used in nu-
merous development projects. However, the fact that UML
is a general purpose notation may limit its suitability for
modeling some particular domains (e.g. Web applications),
for which specialized languages and tools may be more ap-
propriate (e.g. WebML/WebRatio [3], UWE/ArgoUWE [8],
OO-H/VisualWade [5], etc).

Up to UML version 2.0 [10], both the lack of precision in the
UML definition and the semantic gap between specific Web
application concepts and the UML constructs hindered its
full application in this context. However, with the advent
of UML 2.0 the situation has changed, since not only its se-
mantics have been defined more precisely , but it also incor-
porates a whole new set of diagrams and concepts which are
more appropriate for modeling the structure and behavior
of Web applications. In addition, UML 2.0 provides enhan-
ced profiling capabilities, which allow the precise definition
of the Meta Object Facility (MOF) based domain-specific
languages. These languages allow the semantics of the ba-
sic UML elements to be extended and refined, and we will
show how they can be successfully used to model WebML
applications.

In general, OMG defines three possible approaches for defi-
ning domain-specific languages. The first one is based on the
definition of a new language, an alternative to UML, using
the mechanisms provided by OMG for defining object-based
visual languages (i.e., the same mechanisms that have been
used for defining UML and its metamodel). In this way, the
syntax and semantics of the elements of the new language
are defined to fit the domain’s specific characteristics. The
problem is that standard UML tools will not be able to deal
with such a new language. The second and third alternatives
are based on the particularization of UML (either a heavy-
weight or a light-weight particularization respectively), by
specializing some of its elements, imposing new restrictions
on them but respecting the UML metamodel, and without
modifying the original semantics of the UML elements (i.e.,
the properties of the UML classes, associations, attributes,
etc., will remain the same, but new constraints will be ad-
ded to their original definitions and relationships). Syntactic
sugar can also be defined in a profile, in terms of icons and
symbols for the newly defined elements.

The first approach is the one followed by languages such as
CWM (Common Warehouse Metamodel), since the seman-
tics of some of the language constructs do not match the

semantics of the corresponding UML model elements. In
order to support the other alternatives, UML provides a set
of extension mechanisms (stereotypes, tag definitions, and
constraints) for specializing its elements, allowing customi-
zed extensions of UML for particular application domains.
These customizations are sets of UML extensions, grouped
into UML profiles.

Probably, the main advantage of UML profiles is not the ex-
tension of the UML metamodel (which is already too large
and cumbersome to be used in full), but that they allow
“restricting” the set of UML elements that need to be used
in a given domain, particularizing the semantics of those
elements in order to capture the semantics of the domain-
specific elements they represent. It is important to notice
that such a particularization can only be done by refine-
ment, and without breaking the original semantics of UML
elements.

In the shorter term, we certainly see an increasing inter-
est in applying MOF, UML and UML profiles in the area
of modeling Web applications. Several authors have pro-
posed interesting approaches in terms of metamodels and
UML extensions as cited in [4, 2, 9, 6]. This interest for
being MOF and UML-compliant arises from the increasing
need to being able to interoperate with other notations and
tools, and to exchange data and models, thus facilitating
and improving reuse. WebML, like any other Domain Spe-
cific Language (DSL), allows us to express in a precise and
natural way the concepts and mechanisms of its domain of
reference. However, it cannot fully interoperate with other
notations, nor can it be integrated with other tools. This is
where the requirements for interoperability come into play,
so for example WebML models can be used in conjunction
with other notations, or users can edit WebML models with
their favorite modeling tools.

As a solution to WebML interoperability requirements, in
this paper we describe a UML 2.0 profile for WebML which
consists of two main parts. First, it defines the WebML
metamodel as well as the semantics, properties and related
elements of each metaclass. Second, WebML concepts are
mapped to UML elements. This mapping contains informa-
tion about every WebML concept, the UML base element
that represents each concept, and the stereotype that ex-
tends the metaclass so that the specific domain terminology
can be used.

The remainder of the paper is organized as follows. Section
2 briefly describes the WebML metamodel. On the basis
of this, Section 3 proposes a UML 2.0 profile for WebML
illustrating how to use it by means of an example. Section 4
disscusses some criteria and principles required for building
a UML-based DSL representation and points to open pro-
blems requiring further investigation in dealing with the use
of UML 2.0 for modeling Web applications. Finally, some
conclusions and future work are outlined in Section 5.

2. METAMODELING WEBML
A metamodel is the “perfect” way to model a dynamica-
lly evolving notation and maintain it in a homogeneous and
comprehensive way [2]. In this sense, the combination of
MOF and the Object Constraint Language (OCL) can re-

WebML

HypertextView

CommonElements

DataView PresentationView

Figure 1: The WebML metamodel packages

present a good starting point in the redefinition of WebML
and therefore it can also be a good starting point for its
implementation in UML 2.0 as we will see in next section.

Mapping a DSL like WebML to MOF involves representing
each element of the domain — its syntax and semantics —
as a MOF artefact and after that performing a refactoring
process in order to introduce further MOF-elements such
as compositions/aggregations or abstract classes that pre-
serve the original semantics of WebML and allow to group
concepts with similar attributes. When there is a formal
description of the language grammar available this task is
relatively simple for the syntax (although the metamodel
generated must be augmented with several OCL constraints
to cover the semantical features of the language). In the
WebML case, a BNF grammar has been defined but only for
the its derivation language (WebML-OQL). Another star-
ting point considered for deriving the metamodel has been
the set of Document Type Definition (DTDs) that WebRa-
tio use for storing WebML projects [1]. However, special
care must be taken with them since they introduce many
auxiliary concepts, some of which do not really correspond
with WebML terms or are no longer used as a consequence
of the language evolution.

Starting from this knowledge, we have represented the whole
WebML concept space by means of four metamodel packa-
ges, as illustrated in Figure 1: CommonElemets, DataView,
HypertextView and PresentationView. Complying with a
package requires to comply with its abstract syntax, well
formedness rules, semantics and notation.

• The CommonElements package comprises core con-
cepts used when metamodeling WebML elements, such
as data types or common features (e.g. name, com-
ment, identifier, properties, etc.). The other packages
have dependencies on the CommonElements package
because of association and generalization relationships.

• The DataView package addresses WebML data mo-
del concepts, such as entities, attributes, relationships,
ISA hierarchies, etc., which are reused by the Hyper-
textView package.

• The HypertextView package establishes the overall struc-
ture of the WebML hypertexts, in terms of site views,
areas, pages, content units, etc., and shows how these
artefacts can be assembled and interconnected to cons-
titute a WebML hypertext model.

• Finally, the PresentationView package is concerned
with how WebML represents pages on the screen. Each
WebML page has associated one or more style sheets
specifying a different way of presenting its instances
on the screen, where style sheets are XML documents
obeying the WebML presentation DTDs mentioned in
[1].

In the next subsections, the contents of each package are
described, until reaching the core WebML concepts: all the
entities, relations and constraints which are instantiated wit-
hin WebML models. We take always advantage of the me-
tamodel to review the essential ideas of WebML.

2.1 The CommonElements package
As shown in Figure 2, the abstract ModelElement metaclass
is the central element of the abstraction. It represents any
WebML modeling element from both the data, hypertext
and presentation models. Its abstract sub-metaclasses state
the fact that an element of WebML may has a name, an
identifier, a comment, a property, a type or a derivation
constraint associated to its definition.

WebML data types, they are are represented by the Type
metaclass. In this way, WebML enumeration types and
their corresponding values have been realized by metaclas-
ses Domain and DomainElement, while WebML primitive
types like Integer or String have been meta-modeled by the
WebMLType metaclass.

CommonElements

ElementWithComment

ElementWithProperty

DerivableElement

IdentifiedElement

+id : IdentifierType

NamedElement

ElementWithType

DerivationConstraint

+derivationQuery : String

DomainElement

ModelElement

Comment

+body : String

WebMLType

Property

Domain

Type

0..*

0..*

0..1

1

1..*

Figure 2: The CommonElements package

2.2 The DataView package
All WebML specifications contain a DataModel describing
the data structure. Content can be modelled using an Entity-
Relationship (E-R) model (or, equivalently, a simplified UML
class diagram) comprising DataModelElements such as En-
tities and Relationships.

Entities are described by means of typed Attributes where

each entity has at least one attribute namely the OID. The
type of an Attribute may be either a WebMLType or a Do-
main defined by the user.

Entities can be organized in generalization hierarchies, which
express the derivation of a specific concept from a more
general one. In particular, single inheritance and binary
Relationships are allowed in the DataModel. Each binary
relationship is characterized by two RelationshipRoles that
can be annotated with minimum and maximum cardinality
constraints.

DataView

ElementWithProperty

ElementWithComment

ElementWithType

NamedElementIdentifiedElement

DataModelElementRelationship

DerivableElement

Attribute

+contentType : String

Entity

+duration

RelationshipRole

+maxCard : Integer
+minCard : Integer

DataModel

Domain

+super_entity
0..1

+sub_entity
0..*

0..*

1

0..*

1..*

2

1

Figure 3: The DataView package

Finally, all DataModelElements must be distinguishable by
means of a unique identifier (the OID). The MOF WebML
metamodel defines this property using a single special pur-
pose metaclass, called IdentifiedElement.

Summarizing the previous requirements, Figure 3 represents
the ER data schema metamodeled from the WebML view-
point. We would like to point out that although there are
other proposals for metamodeling the ER model, they do
not reflect how WebML and WebRatio work. For exam-
ple, if we metamodeled RelationshipRoles as metaatributes
of the Relationship metaclass, we would miss part of the se-
mantics of the WebML approach.

2.3 The HypertextView package
The HypertextView package is further structured in the Core,
SiteView, ServiceView, AreaView, PageView, OperationUnit-
View, ContentUnitView, TransactionView, GLParameter,
ParameterView and LinkView sub-packages (see Figure 4).
The former contains the basic core modeling elements for or-
ganizing the hypertext structure of Web applications. The
latter depends on the Core package and it contains further
sub-packages for exploiting specific hypertext elements.

Due to space limitations, we provide only a brief overview
of the HypertextView package. The interested reader can
download the complete MagicDraw model from [1].

OperationUnitView ContentUnitView

UnitView

HypertextView

Core

SiteView
ServiceView

GLParameter

PageView

LinkView

AreaView TransactionView

ParameterView

Figure 4: Package Structure of the Hypertext
WebML Metamodel

The SiteView package allows the definition of different hy-
pertext models targeted to different types of users or to dif-
ferent access devices upon the same DataModel. The Si-
teView metaclass of this package represents a collection of
Pages, Areas, OperationUnits, GLParameters and Transac-
tions allowing users to perform a set of activities. Pages
can be clustered into Areas, dealing with a homogeneous
subject (e.g., the Amazon Web Store includes a book area,
a music area, and so on). A first kind of navigation, which
does not depend on page content, can be expressed over Si-
teViews, Areas and Pages: if a Page or Area is marked as
“landmark”, it is assumed to be reachable (through suitable
navigation commands) from all the other areas and pages in
the same module; if a Page or Area is marked as “default”,
it is assumed to be displayed by default when the enclosing
module is accessed; if a Page is marked as “home”, it is
displayed by default when accessing the application. These
features are metamodeled as metarelationships between the
participant metaclasses.

Pages comprise ContentUnits, representing atomic compo-
nents for content publishing: the content displayed in a Unit
typically comes from an Entity of the DataModel, and can be
determined by means of a Selector, which is a logical Condi-
tion filtering the entity instances to be published. Instances
selected for displaying can be sorted according to Ordering-
Clause.

In general, Units are connected to each other through Links,
which carry Parameters from one Unit to another and allow
the user to navigate the hypertext. Links express the “wi-
ring” of the application. Five kinds of links are defined:
NonContextualLinks allow only navigation; Transport links
allow only parameter passing and are not rendered as navi-
gation devices; Automatic links are normal links automati-
cally “navigated” by the system on page load; OK and KO
links are output links of operations, followed respectively
after execution success or failure.

Apart from ContentUnits, WebML comprises OperationU-
nits, defined as components for executing arbitrary business
logic. OperationUnits, unlike ContentUnits, do not publish

content and thus are positioned outside pages. Units (Con-
tentUnits and OperationUnits) may have input and output
Parameters (e.g., the OID of the object to be displayed or
modified, the username and password for authenticating the
user, etc.). Parameter passing is expressed as a side effect
of navigation: Units are connected by Links, which have a
threefold purpose: enabling user navigation, supporting the
passage of parameters, and triggering the execution of Units.

Additionally, well-formed rules complete the semantics of
the metamodel and its elements. For example:

• A page cannot be in a SiteView and in an Area at the
same time.

• If a page, area or siteview is marked as “landmark”,
“home” or “default”, it must be contained in its rele-
vant parent element.

• Only a Siteview can be marked as “home”.

3. REPRESENTING WEBML IN UML
Early attempts at encoding WebML in UML 1.X did not
succeed in producing a completely equivalent profile, due
to the lack of appropriate structuring concepts and mecha-
nisms. However, the advent of UML 2.0 is appropriate time
to reconsider the design choices of WebML and assess the
applicability of UML 2.0 to a DSL that has been successfu-
lly proven in the Web Engineering field. Based on the pre-
viously introduced metamodel and new UML 2.0 facilities,
we have evaluated it as a platform for redesigning WebML
seeking two main goals:

1. To provide UML modelers with a UML profile that
can help them structure their Web application specifi-
cations according to a mature Web Engineering propo-
sal. In this way, UML modelers can reuse their know-
ledge of standard UML, any tools that support UML
(at design level) as well as WebRatio for generating a
complete implementation from UML models.

2. To provide WebML modelers with a UML profile for
expressing their specifications in a standard way, de-
coupling the abstract syntax and semantics of the mo-
deling element from its particular representation, hence
allowing its use within any standard UML tool envi-
ronment.

3.1 Running example: The ACME Music Inc.
System

Before discussing the WebML representation in UML and
how the main concepts of WebML are mapped to UML 2.0
concepts, let us introduce a simplified running example to
illustrate of how to use the profile: the product catalogue
and content management system of “ACME Music Inc.”. It
is a simple online shopping cart application for the purchase
of music CDs where the customer uses a web browser to in-
teract with the application’s interface. When the user starts
the application, the home page of this site displays a list of
available music CDs and their associated information: title,
id number, name of the performing artist, price, number of
tracks, reviews, etc. Then, the customer can select CDs for

P
a

r
a

m
e

te
r
V

ie
w

L
in

k
P

a
r
a

m
e

te
r
C

o
u

p
li

n
g

+
lo

o
p

b
a

c
k
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

+
p

a
s
s
in

g
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

P
a

r
a

m
e

te
r

+
lo

o
p

b
a

c
k
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

+
p

a
s
s
in

g
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

A
tt

r
ib

u
te

+
c
o

n
te

n
tT

y
p

e
 :

 S
tr

in
g

R
e

la
ti

o
n

s
h

ip
R

o
le

+
m

a
x
C

a
rd

 :
 I

n
te

g
e

r
+

m
in

C
a

rd
 :

 I
n

te
g

e
r

P
a

g
e

+
la

n
d

m
a

rk
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

+
lo

c
a

li
z
e

d
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

+
s
e

c
u

re
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

P
a

g
e

V
ie

w

C
h

o
r
e

o
g

r
a

p
h

y
S

e
q

u
e

n
c

e

C
u

s
to

m
L

in
k

P
r
o

p
a

g
a

ti
o

n

P
a

g
e

E
le

m
e

n
t

C
h

o
r
e

o
g

r
a

p
h

y

H
y

p
e

r
te

x
tV

ie
w

L
in

k

+
d

e
fa

u
lt
C

o
u

p
li
n

g
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

+
n

e
w

W
in

d
o

w
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

L
in

k
V

ie
w

C
o

n
te

x
tu

a
lL

in
k

N

o
n

C
o

n
te

x
tu

a
lL

in
k

K
O

L
in

k

+
c
o

d
e

 :
 S

tr
in

g

O
k

L
in

k

+
c
o

d
e

 :
 S

tr
in

g

A
u

to
m

a
ti

c

T
r
a

n
s

p
o

r
t

S
e

r
v

ic
e

V
ie

w

+
s
e

c
u

re
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

P
o

r
t

+
s
e

c
u

re
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

S
e

r
v

ic
e

V
ie

w

P
o

r
tE

le
m

e
n

t

S
it

e
V

ie
w

+
p

ro
te

c
te

d
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

+
lo

c
a

li
z
e

d
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

+
s
e

c
u

re
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

S
it

e
V

ie
w

E
le

m
e

n
t

S
it

e
V

ie
w

U
n

it

O
p

e
r
a

ti
o

n
U

n
it

+
s
e

c
u

re
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

C
o

n
te

n
tU

n
it

+
ty

p
e

 :
 S

tr
in

g

U
n

it
V

ie
w

A
r
e

a

+
la

n
d

m
a

rk
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

+
p

ro
te

c
te

d
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

+
lo

c
a

li
z
e

d
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

+
s
e

c
u

re
 :

 b
o

o
le

a
n

 =
 f

a
ls

e

A
r
e

a
V

ie
w

A
r
e

a
E

le
m

e
n

t

H
y

p
e

r
te

x
tM

o
d

e
lE

le
m

e
n

t

H
y

p
e

r
te

x
tM

o
d

e
l

C
o

r
e

G
L

P
a

r
a

m
e

te
r

+
ty

p
e

 :
 W

e
b

M
L

T
y
p

e

G
lo

b
a

lP
a

r
a

m
e

te
r

L
o

c
a

lP
a

r
a

m
e

te
r

G
L

P
a

r
a

m
e

te
r

E
n

ti
ty

+
d

u
ra

ti
o

n

T
r
a

n
s

a
c

ti
o

n
E

le
m

e
n

t

T
r
a

n
s

a
c

ti
o

n
V

ie
w

T
r
a

n
s

a
c

ti
o

n

s
o

u
rc

e
U

n
it
P

a
ra

m
e

te
r

+
ta

rg
e

tP
a

ra
m

e
te

r

ta
rg

e
tU

n
it
P

a
ra

m
e

te
r

+
s
o

u
rc

e
P

a
ra

m
e

te
r

+
in

p
u

tP
a

ra
m

e
te

r

+
o

u
tp

u
tP

a
ra

m
e

te
r

1
..

*

1

1
..

*

1

0
..

*

1

1

+
d

e
fa

u
lt
P

a
g

e

ta
rg

e
tU

n
it

1

0
..

*

s
o

u
rc

e
U

n
it

1

0
..

*

+
li
n

k
P

a
ra

m
e

te
r

1
..

*

1

+
s
o

u
rc

e
P

a
g

e

1

0
..

*

+
ta

rg
e

tP
a

g
e

1

0
..

*

0
..

*

1

0
..

*

+
h

o
m

e
P

a
g

e

1

0
..

1

0
..

*

0
..

1

+
d

e
fa

u
lt
A

re
a

0
..

1

+
d

e
fa

u
lt
P

a
g

e

0
..

1

0
..

1

+
d

e
fa

u
lt
A

re
a

0
..

*

0
..

*

0
..

1

0
..

*

0
..

*

Figure 5: An excerpt of the HypertextView package

purchase by clicking the “Add” button associated with the
item. In the same way, the customer can remove an item
from its shopping cart by clicking the “Delete” button asso-
ciated with the item. User CD selection can be inserted into
a shopping cart or into a wish list associated with it. For
the items inserted into a shopping cart users may issue an
order, for which the payment, shipping method, and address
must be specified. A subclass of CDs is defined, to cluster
the instances recommended to all users at the first access.
At any moment of the user session, the customer can exit
the application or return to the order page to start a new
shopping session.

3.2 The WebML data model in UML 2.0
As illustrated in Figure 3, the data modeling is supported
in WebML by means of the classical ER model with ge-
neralization hierarchies, typed attributes, and cardinality
constraints. The essential elements of the ER model are
entities, defined as containers of structured data, and rela-
tionships, representing semantic associations between enti-
ties. Since the semantic equivalence between the ER model
and its corresponding in UML is very clear, we justify the
selection of UML metaclasses in those cases in which it may
not seem so intuitive for the reader.

Entities. Following a UML-based approach, each Entity of
the WebML data model will be mapped to a UML class. In
UML, classes are classifiers that have a set of features that
characterize their instances. Consequently, each typed at-
tribute of the entity will be considered as a typed structural
feature, i.e., one of its properties. Its associated type may
correspond to a predefined WebML type or a specific type
defined by the user. In this last case, we will consider that
each WebML Domain represents a UML enumeration da-
tatype where the set of possible values are the UML literals
of that datatype.

Relationships. Relationships are characterized by cardi-
nality constraints, which impose restrictions on the number
of relationship instances an object may take part in. WebML
represents N-ary relationships as a combination of entities
and binary relationships. Consequently, all relationships in
the WebML data model are binary relationships characteri-
zed by two relationship roles, each one expressing the func-
tion that one of the participating entities plays in the rela-
tionship.

At first sight we may consider that WebML Relationships
have the same semantics as UML associations given that
they model connections between entities. However, due to
the role that relationships have on both the WebML data
model and the hypertext model this would be a poor solu-
tion (neither behavioral descriptions nor attributes can be
associated with a UML association). Alternatively, UML
association classes could be used to represent WebML Rela-
tionships, which does permit an appropriate semantic defini-
tion to be supplied. However, note the reader that WebML
Relationships may be parameters of a unit, may have deri-
vation constraints sub-setting and/or concatenating existing
relationships, their instances can be created, modified or de-
leted as a consequence of user interactions, etc. Therefore,
defining a ¿RelationshipÀ stereotype for a Class can make
the use of WebML Relationships easier.

Derivation Constraints. The value of some of the attri-
butes or relationships of a WebML entity can be determi-
ned from the value of some other elements of the schema.
The computation rule that defines the derived attribute or
relationship is specified as an expression added to the decla-
ration of the attribute or relationship. UML 2.0 derivation
mechanisms for attributes and associations can be used to
naturally represent WebML derivations.

Applying these correspondences to our running example, Fi-
gure 6 shows a WebML data model for the CD store appli-
cation and its corresponding representation in UML using
our UML profile.

3.3 The WebML hypertext model in UML 2.0
The profile must express three essential aspects of the the
WebML hypertext model: the modularization structure of
site views, the specification of components (content and ope-
ration units), and the interconnection of components th-
rough links supporting parameter passing. For data-centric
content and operation units, it is also important to express
how a component draws or updates the content of the data
model objects.

Modularization. WebML groups hypertext model ele-
ments into site views and areas. The grouping functionality
for better understanding and management of models is sup-
ported in UML by means of packages. Therefore, we will
represent WebML siteviews and areas as UML packages. At
a second level of modularization, pages are also containers
of sub-pages or of units that can involve multiple individual
operations. WebML suggests that the default behavior of a
Web page can be defined only once and reused in the rest
of the projects using it.

Moving WebML page requirements to a UML approach, we
can consider it as an autonomous unit that is replaceable
within its environment and which functionality is provided
and/or required by means of the combination of provided
and/or required funtionalities of the content units nested
inside the page. In this case, we find that this concept
corresponds to the UML concept of component. However,
this is not exactly what represents a page in WebML. Pa-
ges in WebML act not only as containers of units but also
they represent a composition of interconnected WebML ele-
ments, whose instances collaborate at run-time to achieve
some common objective. Therefore, this semantics fits much
better with UML structured classes. Consequently, pages
are more appropriately represented as structured classes,
comprising the content units nested inside them.

Visibility Level. Some properties of siteviews, areas and
pages, like home, default, and landmark properties, allow
the designer to fine-tune the visibility level of these cons-
tructs inside the hierarchical structure of a site view. Ot-
her properties, such as secure, protected or localized provide
information required for code generation. UML stereotypes
have been defined to “mark” the appropriate model elements
with such properties, allowing the annotation of the corres-
ponding models with these characteristics. Alternatively,
we could have considered to represent previous properties as
tag definitions of their corresponding stereotypes. From our
viewpoint the approach selected improves its practical appli-

(a) (b)

<<Entity>>

User

+Password : WebMLType

+OID : IdentifierType

+Username : String

+Email : String

<<Entity>>

CD

+/TracNumber : Integer

+OID : IdentifierType

+ReleaseDate : date

+Artist : String
+Label : String

+Title : String

+Price : float

<<Entity>>

Track

+OID : IdentifierType
+Position : Integer
+Title : String

<<Entity>>

Cart

+/Item-Number : Integer

+OID : IdentifierType
+/Total : float

<<Entity>>

ShippingAddress

+OID : IdentifierType
+Address : String

<<Entity>>

CartItem

+OID : IdentifierType
+/CDTitle : String

<<Entity>>

WishItem

+OID : IdentifierType
+/CDTitle : String

<<Entity>>

ShippingMethod

+OID : IdentifierType
+Name : String
+Cost : float

<<Entity>>

OrderItem

+OID : IdentifierType

<<Entity>>

Order

+OID : IdentifierType
+Total : float

<<Entity>>

CreditCard

+OID : IdentifierType
+ExpireDate : date
+Number : String

<<Entity>>

Review

+OID : IdentifierType
+Text : String

<<Entity>>

RecommendedCD

<<Entity>>

CustomerReview

<<Entity>>

EditorialReview

+Title : String
+Rate : float

<<Relationship>>

Credit2Order

<<Relationship>>

User2WishItem

<<Relationship>>

Order2Shipping

<<Relationship>>

CD2Track <<Relationship>>

CD2OrderItem

<<Relationship>>

Review2CD

<<Relationship>>

Order2Item

<<Relationship>>

CD2CartItem

<<Relationship>>

CD2WishItem

<<Relationship>>

Order2Method

<<Relationship>>

Cart2CartItem

<<Relationship>>

User2Cart

<<Relationship>>

Credit2User

<<Relationship>>

User2Shipping

<<Relationship>>

Order2User
1

1

1

0..*

1..*

1

1

1

1

1

1..*

1 11

1

1

1

1 1

1

11

1

0..*

0..*

1

11

0..*

1

1

1

1

1

0..*

1

11..*

1

0..*

1

1

1

1

1
1

11

11

1

1

1

1

1

0..*

1

0..*

1

1

Figure 6: (a) The WebML data model of the CD store application; (b) The UML 2.0 representation equivalent
to (a).

cation adding more visual clarity to UML4WebML models
as WebML does by means of the (L), (H) and (D) marks.

Content and operation units. Content and operation
units are components that can be assembled together to ob-
tain arbitrary complex hypertext pages. Their essence is
the capability to execute business actions and interoperate
through the exchange of parameters. This notion is most
closely reflected by the concept of UML 2.0 component. As
shown in Table 9, specific stereotypes have been defined for
each type of content and units supported by WebML taking
as base UML element the component notion.

As a UML component, WebML units may optionally have
an internal structure and own a set of ports that formalize
their interaction points. Ports can formalize the input and
output of a unit: one port allows the environment of the
component to supply parameter values; another port allows
the the environment of the component to extract parameter
values.

Links and parameter passing. Pages and units do not
stand alone, but are linked to form a hypertext structure.
Links express the possibility of navigating from one point to
another in the hypertext, and allow the passage of parame-
ters from one unit to another. Several alternatives have been
considering for representing this WebML feature in UML.
Links can be visualized as basic UML associations, depen-
dency relationships, traces, usage relationships, etc. While
they can all be labeled with suitable stereotypes such as

¿TransportLinkÀ, ¿NavigationLinkÀ or ¿KOLinkÀ to
denote the classes of links, a more precise semantic defini-
tion can be provided by the use of UML assembly connec-
tors. An assembly connector is a UML connector between
two components that defines how one component provides
the services that another component requires. It is defined
from a provided port (i.e., an output WebML parameter)
to a required port (i.e., an input WebML parameter) of the
units involved.

Realization of data-centric units. Content and ope-
ration units may operate on objects specified in the data
model. This is represented by specifying the internal reali-
zation structure of components, which may exploit auxiliary
classes to represent a view over the data model entities. At
least, for each content unit there will be two auxiliary clas-
ses: one class stereotyped as ¿focusÀ that defines core
logic or control behavior of the unit and another class that
selects content from the datamodel.

Appropriate OCL invariants in the auxiliary classes repre-
sent the selector condition determining the instances upon
which they operate, and UML delegation connectors link the
input and output ports of the component to the auxiliary
classes, granting parameters flow.

Global and local parameters. WebML parameters de-
note small pieces of information, which can be “recorded”
during the user navigation, to be later retrieved and ex-
ploited in the computation of the content of some page. A

Recommended

Cds

CD List

Recommended CD

CDInfo

CD

CD Detail

Alternate Details

Editorial Review Customer ReviewsTracks

EditorialReview

[CDToReview]

Editorial

Review

Reviews

CustomerReview

[CDToReview]

Tracks

Track

[CDToTrack]

Figure 7: A fragment of the WebML hypertext mo-
del of the CD store application.

parameter will be represented as a singleton UML class that
contains: a public class-scope (static) property, a class cons-
tructor declared as private so that no other object can create
a new instance, and finally a class method that returns a re-
ference to the single instance of the class.

Applying these correspondences, Figure 8 shows the UML
2.0 representation of an excerpt of the running example ex-
pressed using the WebML profile; this should be compared
to the native WebML representation in Figure 7. The List of
CDs page, represented as a structured classifier, contains an
index unit component, linked by an assembly connector to
the ¿AutomaticLinkÀ stereotype. The internal structure
of the index unit is realized by a ¿focusÀ class, compri-
sing methods for sorting the index instances and for selec-
ting one instance. That focus class is connected by a one-
to-many composition association to class RecomCDView1,
which represents a view over the data model entity Recom-
mendedCD. Instances of class RecomCDView1 contain the
Title attribute, which is necessary to build the index, and
the hidden attribute OID, needed for parameter passing. A
delegation connector links the output port of the focus class
to the outport port of the component, and specifies that the
output value of the select() method is emitted by the output
port of the index unit. The parameter associated with the
¿AutomaticLinkÀ connector is received at the input port
of the data unit component, which delegates its treatment
to an inner focus class. That focus class contains an ins-
tance of class CDView1, which represents another view on
the data model entity CD. An OCL invariant in the focus
class enforces the contained instance of class CDView1 to
have the value of the OID attribute equal to the parameter
value received at the input port.

Three alternative structured classifiers (EditorialReview, Tracks
and Reviews) representing Web pages, offer more details
about the CD selected by the user: the editorial review
represented by the ¿DataUnitÀ EditorialDetails, all CD
tracks represented by the ¿IndexUnitÀ TracksDetails and
customer reviews represented by the¿IndexUnitÀ Reviews-
Details. Each classifier is realized by a focus class containing
the instances of a class view over the data model. The re-
lationship between the views an the original entities in the
data model are represented by means of UML dependency
relationships where the attributes of the view classes (Edi-

torialView1, TrackView1 and ReviewView1) are derived at-
tributes in UML. Ports, delegation and ¿AutomaticLinkÀ
connectors, and OCL constrains have been defined as above
to guarantee that pages show only the information related
to the CD selected.

The fact that most WebML concepts can be represented by
UML 2.0 concepts without changing their original seman-
tics (maybe imposing some additional constraints on them,
at most) enables the use of a UML profile as an appropriate
mechanism for our purposes. In summary, Table 9 shows
the most important stereotypes defined in the UML pro-
file for the WebML proposal. Finally, it is important to
notice that the use of profiles to develop applications does
not have any effect on the development process supporting
the original DSL. In our case, the straightforward applica-
tion of the profile to develop a Web application is based
on the same steps being followed to develop a Web appli-
cation using WebML: (1) Create a class diagram (the Data
WebML model) describing the conceptual data organization;
(2) Extend the previous model to enable the specification of
calculated data; (3) Create a composite structure diagram
(the Hypertext WebML model) describing the front-end of
the application; (4) Extend the hypertext model with simple
constructs such as operations and transactions, enabling the
invocation of predefined operations (e.g., insertion, deletion
and modification of objects) and the integration of external
services.

4. DESIGN PRINCIPLES REQUIRED FOR
BUILDING A UML-BASED DSL

Based on our experience defining and using the WebML pro-
file, we agree with [7] that at least four criteria need to
be considered for building a UML-based DSL: 1) Semantic
match between the UML constructs and the features of the
domain; 2) Visual clarity, i.e., the capability to avoid visual
clutter and highlight key details; 3) Completeness, i.e., the
ability to capture all relevant features; and 4) Tool support.

Semantic match. Regarding the semantic match, very few
works address the validation of the semantics equivalence
between UML profiles and the original DSLs from which
they arise. From our point of view, it is necessary to bridge
the gap between these UML profiles and their equivalent
DSLs, in such a way that it is possible to automatically
convert DSL models into their corresponding UML diagrams
and vice-versa. We have addressed this issue by means of a
set of XSLT rules formalizing the correspondences between
the mapped models and comparing how implementations
generated starting from both approaches are equivalent.

Visual clarity. WebML native representations are far more
compact than their UML counterpart. This is obviously
unavoidable, when comparing a general purpose language
like UML and a DSL. However, the disproportion shows that
there is ample room for making UML and OCL expressions
more concise and suitable.

Completeness. The definition of a UML 2.0 profile equi-
valente to WebML demostrates in a practical way the suita-
bility of UML for encoding the requirements and generating
the complete code of complex Web applications.

<<Page>>

kCDInfo

<<DataUnit>>

CDDetails

CDView1

{inv:self.allInstances()->forAll(stv1|Store.allInstances()->
exists(s|s.OID = stv1.OID))}

<<Invisible>>+/OID : IdentifierType

+/TrackNumber : Integer

+/Artist : String

+/Title : String
+/Price : float

<<focus>>

CDFound

{inv:self.CDView1->
select(cd|cd.OID = self.selection.OID) }

selection : RecomCDView1

receivedCD : RecomCDView1

<<Page>>

Tracks

<<Page>>

EditorialReview

<<Page>>

CustomerReviews

<<Page>>

List of CDs

<<Index>>

TrackDetails

TrackView1

{{inv: self.allInstances()->

forAll(trv1|Track.CD2Track.allInstances()->

exists(cdt|cdt.OID = trv1.OID)) }}

<<Invisible>>+/OID : IdentifierType
+/Title : String

<<focus>>

TrackList

{inv:self.TrackView1->

select(t|t.OID = self.p2.OID) }

p2

<<Index>>

ReviewDetails

ReviewView1

{{inv: self.allInstances()->

forAll(crv1|CustomerReview.Review.

Review2CD.allInstances()->

exists(rcd|rcd.OID = crv1.OID)) }}

<<Invisible>>+/OID : IdentifierType
+/Text : String

<<focus>>

ReviewList

{inv:self.ReviewView1->

select(r|r.OID = self.p3.OID) }

p3

<<DataUnit>>

EditorialDetails

EditorialView1

{{inv: self.allInstances()->

forAll(erv1|EditorialReview.Review.

Review2CD.allInstances()->

exists(rcd|rcd.OID = erv1.OID)) }}

<<Invisible>>+/OID : IdentifierType
+/Text : String
+/Title : String

<<focus>>

Editorial

{inv:self.EditorialView1->

select(e|e.OID = self.p1.OID) }

p1

<<Index>>

CDList

RecomCDView1

{inv:self.allInstances()->
forAll(rcdv1|RecommendedCD.allInstances()->

exists(rcd|rcd.OID = rcdv1.OID)) }

<<Invisible>>+/OID : IdentifierType
+/Title : String

<<focus>>

List

+selected() : RecomCDView1
+sort()

rcd : RecomCDView1

<<Entity>>

CustomerReview

<<Entity>>

RecommendedCD

<<Entity>>

EditorialReview

<<Relationship>>

Review2CD
<<Relationship>>

CD2Track

<<Entity>>

CD

<<Entity>>

Track

<<Entity>>

Review

<<AutomaticLink>>

<<AutomaticLink>>

<<AutomaticLink>>

<<AutomaticLink>>

<<delegate>>

1

1..*

1

0..*

<<delegate>>

<<delegate>><<delegate>>

<<delegate>>

0..*

0..*

1
0..*

1

1

1

1

1

Figure 8: The UML 2.0 representation equivalent to the hypertext model of Figure 7.

Tool support. In addition, tool support is interesting not
only during the design stage, but also to assist during the
code generation and deployment phases. Although many
UML-based tools successfully achieve code generation in ot-
her domains such as realtime embedded systems, this is still
to be proven in the case of Web applications, where the
interplay of dynamic behavior and adaptation with user in-
terfaces and business logics is more intricate.

However, there are many different problems that we have
found in representing WebML with UML that need to be
addressed in order to deal with UML 2.0 and OCL in the
context of Web applications like:

• Complexity, the number of concepts that need to be
used to “completely” model and implement a web ap-
plication is not that big (on the contrary, it is rat-
her small). UML contains too many concepts and
mechanisms, a fact which becomes a drawback more
than an advantage. In this sense, we have shown how
UML Profiles provide the right mechanisms for tailo-
ring UML to a specific domain, identifying only the
concepts that are required for that domain.

• Required skills, using UML requires a certain degree
of specialized knowledge about the UML concepts and
mechanisms, which are far from being intuitive in many
cases (e.g., what is a port, a component, a structured
class, a collaboration, etc.);

• Semantics. The semantics of the UML elements and
models are sometimes rather loose. In our approach,
we decided that, in case of variation points of a UML
concept representing an WebML concept, the seman-
tics of the WebML concept should be used.

• Behavior modeling. Modeling the structural aspects
of an application is fine, and can be easily done with
UML because the structuring models and diagrams of
UML have a clear semantics, and can be easily cus-
tomized to fulfill the structural requirements of most
application domains. However, something which is not
completely solved in UML is how to represent (execu-
table) behavior. One of the lessons we have learnt is
that the behavioral semantics can be defined in an im-
plicit and natural way as part of the domain-specific
language concepts. In this way, all the data-centric
content and operation units have a well-defined beha-
vior: they are simply the basic CRUD (Content Read,
Update, Delete) operations familiar to any data desig-
ner, and thus it would make no sense to represent their
behavior in a high-level diagram. The same is true for
user-defined components: their semantics are known
to the developer and need not be explicitly expressed
when specifying their usage in a hypertext model.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a UML profile for represen-
ting WebML models. The definition of a UML 2.0 profile
equivalent to WebML demonstrates in a practical way the

suitability of UML for encoding most requirements of com-
plex Web applications.

Our future work will concentrate on completing the UML
profile of WebML with presentation and architecture fea-
tures, and to adapt the code generation process currently
implemented by WebRatio as a development strategy ba-
sed on MDA. In this way, it will be possible to eliminate
the strong dependencies between the WebML models and
the final implementation technologies (currently Java and
JSP). In addition the existence of the WebML metamodel
will allow us to tackle other objectives such as formal re-
asoning on WebML models in order to validate the event
occurrence and properties on them.

6. ACKNOWLEDGMENTS
This work has been partial supported by Spanish Research
Project TIN2005-09405-02-01 and the Italian grant FAR N.
4412/ICT.

7. REFERENCES
[1] WebML resources.

http://www.webml.org/webml/page5.do.

[2] L. Baresi, F. Garzotto, and M. Maritati. W2000 as a
MOF Metamodel. In Proc. of World Multiconf. on
Systemics, volume 1, 2002.

[3] S. Ceri, P. Fraternali, M. Brambilla, A. Bongio,
S. Comai, and M. Matera. Designing Data-Intensive
Web Applications. Morgan Kaufmann, 2002.

[4] J. Conallen. Building Web applications with UML, 2nd
ed. Addison Wesley, 2002.

[5] I. Garrigós, J. Gómez, and C. Cachero. Modelling
Dynamic Personalization in Web Applications. Proc.
of ICWE’03, LNCS 2722:472–475, 2003. Spain.

[6] J. Gómez and C. Cachero. Information Modeling for
Internet Applications, chapter OO-H Method:
Extending UML to Model Web Interfaces, pages
144–173. Idea Group Publishing, Hershey, PA, USA,
2003.

[7] J. Ivers, P. Clements, D. Garlan, R. Nord, B. Schmerl,
and J. R. O. Silva. Documenting Component and
Connector Views with UML 2.0. Technical Report
CMU/SEI-2004-TR-008, Carnegie Mellon Univ., 2004.

[8] N. Koch and A. Kraus. Towards a common metamodel
for the development of Web applications. Proc. of
ICWE’03, LNCS 2722:495–506, 2003. Oviedo, Spain.

[9] A. Kraus and N. Koch. A Metamodel for UWE.
Technical Report 0301,
Ludwig-Maximilians-Universität München, January
2003.

[10] Object Management Group. UML 2.0 Superstructure
Specification, 2005. http://www.omg.org/cgi-
bin/apps/doc?formal/05-07-04.pdf.

APPENDIX
The following figure shows the main elements of the profile
for WebML.

WebMLConcept UML Base Element Stereotype

DataModel Model <<DataModel>>

Domain Enumeration <<Domain>>

DomainElement EnumerationLiteral <<DomainElement>>

Entity Class <<Entity>>

Attribute Property <<Attribute>>

Relationship Class <<Relationship>>

RelationRole Property <<RelationRole>>

HypertextModel Model <<HypertextModel >>

SiteView Package <<SiteView >>

ServiceView Component <<ServiceView >>

Port Port None

GlobalParameter Class <<GlobalParameter>>

Area Package <<Area>>

Page StructuredClasiffier <<Page>>

HomePage StructuredClasiffier <<HomePage>>

Default StructuredClasiffier , Package,

Component

<<Default>>

LandMark StructuredClasiffier , Package,

Component

<<LandMark>>

Secure StructuredClasiffier, Package,

Component

<<Secure>>

Localized StructuredClasiffier, Package,

Component

<<Localized>>

Protected StructuredClasiffier , Package,

Component

<<Protected>>

DataUnit Component <<DataUnit>>

MultiDataUnit Component <<MultiDataUnit>>

IndexUnit Component <<IndexUnit>>

MultiChoiceIndexUnit Component <<MultiChoiceIndexUnit>>

HierarchicalUnit Component <<HierarchicalUnit>>

Level Class <<Level>>

Index Component <<Index>>

EntryUnit Component <<EntryUnit>>

CustomContentUnit Component <<CustomContentUnit>>

ValidationRule Constaint <<ValidationRule>>

CreateUnit Component <<CreateUnit>>

DeleteUnit Component <<DeleteUnit>>

ModifyUnit Component <<ModifyUnit>>

ConnetUnit Component <<ConnetUnit>>

DisconnetUnit Component <<DisconnetUnit>>

LoginUnit Component <<LoginUnit>>

LogoutUnit Component <<LogoutUnit>>

ChangeGroupUnit Component <<ChangeGroupUnit>>

SendEmailUnit Component <<SendEmailUnit>>

AdapterUnit Component <<AdapterUnit>>

SetUnit Component <<SetUnit>>

OKLink Connector <<OKLink>>

KOLink Connector <<KOLink>>

AutomaticLink Connector <<AutomaticLink>>

TransportLink Connector <<TransportLink >>

LinkParameterCoupling Port <<LinkParameterCoupling>>

Parameter Port <<Parameter>>

Condition Constraint <<Condition>>

SelectorCondition Constraint <<SelectorCondition >>

Property Property <<Property>>

Figure 9: The main elements of the UML Profile for
WebML.

