
1

AspectJ
Aspect Oriented Programming for

Java

Tapani Ojanperä / Turku University of Applied Sciences

What is AspectJ
• A definition from the Wikipedia
• ”AspectJ is an aspect-oriented extension to the Java

programming language created at Xerox PARC by Chris
Maeda, who originally coined the term "aspect-oriented
programming" (no one remembers exactly when).
Gregor Kiczales coined the term "crosscutting". The
Xerox group's work was integrated into the Eclipse
Foundation's Eclipse Java IDE in December 2002,
abandoning support for users of the Netbeans IDE at this
point. This helped AspectJ become one of the most
widely-used aspect-oriented languages”.

• What is the need of AspectJ? Let us look at an example
[PARC02].

good modularity

• XML parsing in org.apache.tomcat
– red shows relevant lines of code
– nicely fits in one box

XML parsing good modularity

• URL pattern matching in org.apache.tomcat
– red shows relevant lines of code
– nicely fits in two boxes (using inheritance)

URL pattern matching

problems like…

• logging in org.apache.tomcat
– red shows lines of code that handle logging
– not in just one place
– not even in a small number of places

logging is not modularized Background

• AOP is based on OOP.
• OOP is inflexible. When the class hierarchy is

chosen, it is difficult to change.
• Class hierarchy is only one view or aspect.
• AOP gives the possibility to include different

views.
• If we think that class hierarchy is vertical, we

may consider aspects horizontal.

2

Background

• We define that concern is the target of interest.
• We may also say that concern is a way to

modularize a group of classes.
• We have two approaches.
• First is asymmetric. Then the class hierarchy is

the most important aspect and the other aspects
(cross-cutting concerns) are less important.

• The symmetric approach provides that all
aspects have equal importance.

Background
• Many programs contain code fragments that are

repetitive in some sense.
• Java has for example exceptions with try and

catch blocks (exception aspect).
• Another example is threads, where we have to

check that many threads cannot use the same
resource at the same time (concurrency aspect).

• Programs need check the types of parameters
(pre-conditions).

• Often the tracing and logging is necessary, too.

Background

• Aspect languages separate aspects into
their own files.

• The code an aspect handle, is usually
neither sequental nor in the same class.

• This kind of code is chosen according to
some criteria.

• This resembles slicing, where code is
sliced with some variables [Weiser84].

An example of workers

Another view of workers A crosscutting example

3

A crosscutting example

• There seems to be two independent class
hierarchies in the picture.

• However, if we think the fruits and gadgets
such products we can sell, then the
existing class hierarchies are not enough.

• Now we draw some cross-cutting
aspects according to packaging and
storing.

A crosscutting example

packaging

storing

Aspect languages
• AspectJ is an aspect extension for Java and at

the moment the most important aspect
language.

• AspectL is an extension for Common Lisp. P.
Costanza has been developing it for some time.

• There are also numerous other extensions:
AspectC++, Aspect#, Pythius and PEAK
(Python), Aspect module (Perl), AspectR (Ruby),
AspectPHP, AspectXML, AspectS (Squeak),
AOP Fun with JavaScript.

Concepts of AspectJ
• Join point is a well-defined point in the execution

of a program.
• Pointcut designator detects the join point.
• For example the designator

call(void Orange.store())
detects the call to the method store in class
Orange.

• Join points are usually related to method calls,
object initialization, field references and
exceptions.

Concepts of AspectJ

• When the join point has detected, the
aspect code is performed.

• The designator has often a name, for
example
pointcut storing() :

call (void Orange.store()) ||
call (void Grapes.store()) ||
call (void Wireless.store()) ||
call (void Wired.store()))

or

Concepts of AspectJ

• A pointcut is a program element that
picks out join points and exposes data
from the execution context of those join
points [eclipseOrg].

• Each join point has three pieces of state
associated with it:
– the currently executing object
– the target object
– an object array of arguments

4

Concepts of AspectJ

• Respectively, there are three state-exposing
pointcuts:
– this
– target
– args

• Pointcut designators can include wildcards.
• call(public * Wired.*(..))
• Every public method in the class Wired can be

selected.

Advices

• When we have join points, we have to
know, what to do in these points.

• An advice is a code, which is related to
join points.

• There are three alternatives for advices:
– before code is executed just before the point.
– after code is executed after the point.
– around code is executed instead of the point.

Comparing with CLOS

• There are the same type of methods in
CLOS (Common Lisp Object System).

• CLOS is based on the Meta Object
Protocol (MOP).

• G. Kiczales has planned MOP and has
also been in the AspectJ team of PARC.

• Obviously some ideas have transported
from CLOS to AspectJ [Seibel05].

Advices

• We had earlier the pointcut storing. So we
may write for example

• after (): storing () {
System.out.println(”Products stored”);
}

• When one of store methods has
performed, the message is written.

• Compare this to advice functions in
Scheme.

Aspects (tracing)
• An aspect is like a class. It can have attributes,

contructors, methods, pointcuts and advices.
• The aspect for tracing is our next example.
• public aspect TraceStored {

pointcut traced ():
call (void *.store ()) ||
call (void *.retrieve ());

before (): traced () {
debug (”Entering: ” + thisJoinPoint)

}
void debug (String str) { //write to stream
}

}

Tracing

• The designator is traced and the join
points are before calling store or retreive
methods. Then the advice runs.

• The variable thisJoinPoint contains the
exposed content of the join point.

• When the program is running, the
messages e.g. ”Entering call (void
Grapes.store()) ” are printed.

5

Checking

• Under developing programs there are
generally situations, where we should add
some checking or print some information
as we saw in the previous example.

• The example below shows, how we can
define pre-conditions.

• Note that the object thisJoinPoint has
different methods that expose something
about the content exposed by join point.

Checking
• Check the arguments of the methods of the classes

in myPackage.
• public aspect NullChecker {

pointcut arguments (): execution (*
myPackage.*.* (..));

before () : arguments () {
for (Object arg : thisJoinPoint.getArgs()) {

if (null == arg) {
throw new IllegalArgumentException

(”The arg is null”);
}

} }
}

Exceptions
• In Java and C++ the logic of the code, which

refers to the exceptions, is possible to
separate from other code with try catch
blocks.

• The aspects go even further. We can add
exceptions without touching an original code.

• The following example handles exceptions
according to [LL00, 418-427].

• Breaking a contract is handled as an
exception.

Exceptions
• public class MyContract {

static void require(boolean pre, Object c) throws
MyContractException { //defined

if (!pre) throw new MyContractException
(”Precondition of ”+c+” violated”);

}
static void ensure(boolean post, Object c)

throws MyContractException {
if (!post) throw new MyContractException

(”Postcondition of ”+c+” violated”);
}

}

Exceptions
• public class Account {

private String owner;
private int accNo;
private double balance;
public Account (String owner, int accNo, double

balance) {
this.owner = owner;
this.accNo = accNo;
this.balance = balance;

}
public void deposit (double amount) {

balance += amount;
}

}

Contract and Account in Java
• import Contract;

public class Account {… //attributes
public Account (String owner, int accNo, double

balance) {
Contract.require (owner != null, this);
Contract.require (accNo > 0 && balance

>= 0, this);
//this.param = param; statements

}
public void deposit (double amount) {

Contract.require (amount > 0, this);
balance += amount;

}
}

6

Contract and Account in Java
• Unfortunately we had to change the original

Account class, when we used the Contract
class.

• Aspects give us an opportunity to write an
aspect AccountContract, which AscpectJ
compiler can include.

• The important notion is again that the original
Account class is untouchable.

• The aspect contains two pointcuts and two
before methods.

Contract and Account in AspectJ
• aspect AccountContract {

pointcut consCheck (Account a, String s, int n,
double bal) : call(Account.new(String,int)) &&
target(a) && args(s,n,bal);
pointcut depositCheck (Account a, double x) : call(
void Account.deposit(double)) && target(a) &&
args(x);
before (Account a, String s, int n, double bal) :

consCheck(a,s,n) {
Contract.require (s != null, a);
Contract.require (n>0 && bal>=0, a); }

before (Account a, double x) : depositCheck(a,x) {
Contract.require (x>0, a); }

}

constructor

Concurrency

• The code related to concurrency handles
mutual excluding of processes and
allocating and releasing common
resources of these processes.

• Normally the code lines concerning
concurrent processes is in the same place
as the other code.

• We can separate these with aspects.

Concurrency

• The example below is taken from
[WBM99].

• The logic is in one file. We have a library
of books and two methods addBook and
numBooks.

• The query, how many books there are in
the library, cannot happen at the same
time as adding a new book to the library.

Concurrency
• public class Query {

Hashtable books;
int bookCount = 0;
public void addBook (Book b, Library lib) {

if (!books.containsKey(b)) {
books.put(b,lib);
bookCount++;

}
}
public long numBooks () {

return bookCount;
}

}

Concurrency

• Mutual excluding the methods can be
presented by:

• coordinator Query {
mutex { addBook, numBooks };

}
• When AspectJ has been developing, the

authors have dropped mutex and some
other reserved words out.

• The more recent situation, see [HG04].

7

Profiling

• aspect MakeSugarCounting {
private int count = 0;
pointcut sugarCount () : withincode (void

makeWine()) && call (void makeSugar());
after () returning () : sugarCount () {

count++;
}

}
• Count the number of callings of sugarCount

method, when we are making wine.

returns normally

Error logging
• aspect PublicErrorLogging {

Log log = new Log ();
pointcut publicMethodCall () :

call (public * Grapes.* (..));
after () throwing (Error e) : publicMethodCall ()

&& !cflow (publicMethodCall ()) {
log.write(e);

}
}

• Write to log any errors caused by public method
calls in Grapes class. Eliminate calls within other
method calls.

parameter

pointcut (Exception)

• pointcut ioHandler () : (within (Orange) ||
within (Grapes)) && handler (
IOException);

• Here the join points are picked out, where
the code belongs to the Orange or Grapes
classes and the IOException is caught
inside the code.

Around advice
• An around advice does not run before or after

the join point but instead of it. The original action
can be invoked by the proceed call, which is
inside the around method.

• In CLOS the respective method is (call-next-
method).

• void around (Grapes g) : target (g) && call (void
makeSugar ()) {
//make honey
}

• Inside Grapes code instead of making sugar
make honey.

Pointcut parameters

• From [eclipseOrg]:
• The example shows two classes Handle

and Partner. Handle objects delegate their
methods to their Partner objects.

• Our aspect HandleLiveness ensures that,
before the delegations, the partner exists
and is alive, or else it throws an exception
DeadPartnerException.

8

Development and production
aspects

• The aspects may be in the development phase.
They includes then tracing and profiling. The
aspects can be ignored easily, when the product
is ready.

• The production aspects are such as extending
the current class hierarchy or adding new
methods to existing classes.

• The use of inter-type declarations in aspects
makes it possible to design production aspects.

• Some speak also reusable aspects, which are
aspects that can be applied quickly to many
different situations.

Inter-type declarations
• Aspects can declare inter-type features,

such as declaring new attributes, contructors
and methods.

• Besides they can implement new interfaces
or extend new classes.

• aspect makeApple {
private double Fruit.price; //new attribute
declare parents: Apple extends Fruit;
private Color Apple.color;

}

Bean aspect
• A class is Point and it has two attributes.

• If Point is a bean, it have to fulfill the
conditions:
– It has getter and setter methods.
– It has a no-argument constructor.
– It implements the interface Serializable.

Clonable aspect
Comparable aspect

9

Comparable aspect

• public aspect ComparablePoint {
declare parents : Point implements Comparable;
public int Point.compareTo (Object object) {

return Math.sqrt(x*x + y*y);
}

}

Hashable aspect

Observer pattern Observer pattern

• This example shows, how to apply an
aspect to a design pattern.

• We have classes MyButton and MyLabel.
• When the aspect has been added, clicking

a button changes a text in a label.
• MyButton and MyLabel have constructor

that defines appearance of these
components. Creating a button adds also
listener to it.

Observer pattern

10

Observer pattern

• Very important:
• Aspects can define interfaces, which have

non-static attributes and methods with
code.

• Also abstract aspects can have methods
with bodies.

Problems with aspects

• Debugging can be difficult,because at run-time
the code is not separated from the other code.

• Complex pointcuts can result in getting a loop.
• Join points with wildcards may cause

unexpected results, because of creating a new
method or renaming methods. We maybe do not
want to apply wildcards to a new method. So we
have to redefine pointcuts.

Compiling aspect files

• The compiler ajc combines compilation and
bytecode weaving.

• ajc HelloWorld.java Trace.java
• hello.lst

HelloWorld.java
Trace.java

• ajc –argfile hello.lst
• Running
• java –classpath ”.;installDir/lib/aspectjrt.jar” hello

• The excellent comparing of AOP tools (by Mik
Kersten) for Java can be found from the link:

• http://www-128.ibm.com/developerworks/library/j-aopwork1/

• There are four primary tools at the moment:
AspectJ, AspectWerkz, JBoss AOP and Spring
AOP.

• According to the latest news AspectJ and
AspectWerkz projects are merging.

• The tools do not yet support refactoring nor UML
views.

• I have selected several tables for the summary
of these tools.

Comparing tools

Table 1. Comparing syntax among the leading AOP tools

Comparing tools
Table 2. Semantics overview of the leading AOP tools

Comparing tools

11

Table 3. AOP tools comparison: development environment integration

Comparing tools
Table 4. IDE support, libraries, and documentation

Comparing tools

Recommended books
• AspectJ in Action: Practical Aspect-Oriented Programming (Paperback)
• by Ramnivas Laddad
• Paperback: 512 pages
• Publisher: Manning Publications (July 1, 2003)
• Language: English
• ISBN: 1930110936

• Eclipse AspectJ : Aspect-Oriented Programming with AspectJ and the Eclipse
AspectJ Development Tools (Paperback)

• by Adrian Colyer, Andy Clement, George Harley, Matthew Webster
• Paperback: 504 pages
• Publisher: Addison-Wesley Professional (December 14, 2004)
• Language: English
• ISBN: 0321245873

• AspectJ Cookbook (Paperback)
• by Russell Miles
• Paperback: 354 pages
• Publisher: O'Reilly Media, Inc.; 1 edition (December 20, 2004)
• Language: English
• ISBN: 0596006543

AspectJ.org is a PARC project
(partially funded by DARPA under contract F30602-97-C0246)

Erik Hilsdale, Jim Hugunin, Wes Isberg,
Mik Kersten and Gregor Kiczales

AJDT Team: Adrian Colyer, Mik Kersten, Andy Clement, Julie
Waterhouse Park

download the tools and docs at: http://aspectj.org

get the eclipse plug-in: http://eclipse.org/ajdt

email the team: support@aspectj.org

find more information on AOP: http://aosd.net

AspectJ.org

References

• [PARC02] OOPSLA 2002, November 4-8, 2002
Tutorial: Aspect-Oriented Programming with
AspectJ™ (1.0.6).

• [Weiser84] M.Weiser. Program slicing. IEEE.
Transactions on Software Engineering, SE-
10(4): 352-357, 1984.

• [eclipseOrg] www.eclipse.org/aspectJ.
• [Seibel05] Seibel Peter, Practical Common Lisp,

Apress (April 11, 2005), ISBN: 1590592395

References
• [LL00, 418-427] M.Lippert and C.V.Lopes. A

study on exception detection and handling using
aspect-oriented programming. In 22nd
International Conference on Software
Engineering (IC-SE 2000), 418-427, Limerick,
Ireland, June 2000.

• [WBM99] R. J. Walker, E. L. A. Baniassad and
G. C. Murphy. An initial assessment of aspect-
oriented programming. In 21th International
Conference on Software Engineering (ICSE´99):
120-130, Los Angeles, California, May 1999.

