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Abstract Memetic Algorithms provide one of the most effective and flexible meta-
heuristic approaches for tackling hard optimization problems. Memetic Algorithms
address the difficulty of developing high performance universal heuristics by en-
couraging the exploitation of multiple heuristics acting in concert, making use of all
available sources of information for a problem. This approach has resulted in a rich
arsenal of heuristic algorithms and metaheuristic frameworks for many problems. In
this chapter we discuss the philosophy of the Memetic paradigm, lay out the struc-
ture of a Memetic Algorithm, develop several example algorithms, survey recent
work in the field and discuss the possible future directions of Memetic Algorithms.

1 Introduction

The effectiveness and efficiency of (meta)heuristics — and we may view Memetic
Algorithms as particularly good heuristics in this sense — rests upon their ability
to explore the solution space thoroughly while avoiding exhaustive or near exhaus-
tive searching. If we take polynomial-time computability as an approximation of
tractability, then we can view a polynomial-time algorithm as a very clever search
procedure; in these cases we have a small search space or can reduce the search
space drastically. In dealing with intractable problems however, reducing the search
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space to a reasonable size is a much more difficult task. Most centrally we face the
problem of local versus global improvement; an improvement to a solution does not
give us any guarantee that we are in fact moving towards the optimum. Actually,
depending upon the problem under consideration we may be moving away from it
(hence the notion of deception in search algorithms [263]) or at the very least we
may be getting closer to being trapped in a non-optimal solution for which no simple
modification can lead to an improvement (i.e., a local optimum).

Thus many (meta)heuristic methods include techniques for allowing non-
improving alterations to a solution or for non-local moves across the search space1

in order to be able to escape from local optima [28]. Perhaps the most archetypical
example of such a metaheuristic is the Genetic Algorithm (GA) [109, 98]: inspired
by the principles of natural evolution, GAs maintain a population (i.e., a multiset)
of solutions that are subject to successive phases of selection, reproduction (via re-
combination and mutation) and replacement. The use of a population of solutions
provides a better chance of avoiding local optima than maintaining a single solu-
tion: on one hand, the search is driven by operators that (1) allow the search to
take non-improving steps, most notably in the case of mutations, and (2) allow the
search to move to significantly different portions of the search space, particularly
by virtue of recombination. On the other hand, selection and replacement typically
work on a global (population-wise) scale, meaning that non-improving solutions
have a chance of persisting for a non-trivial amount of time, hence allowing escape
from local optima. However, although this heuristic structure has proven quite effec-
tive, it relies almost entirely upon recombination mechanisms to improve solution
quality and evolutionary processes are slow. In particular, they are also less capa-
ble of fine-tuning solutions, that is, the progress towards a fully-optimized solution
once the algorithm has located its basin of attraction (i.e., the region of the search
space from which a series of small —local— improvements can lead to a certain
local optimum – see [129, 223]) is often sluggish. This is precisely in contrast to
local-search (single-solution or trajectory-based) techniques which can readily lo-
cate local optima (and hence are more sensitive to them).

To address this weakness, researchers began developing hybridised metaheuris-
tics [29, 31], that is, metaheuristics which combine ideas from different search
paradigms and/or different algorithms altogether. The underlying idea in such ap-
proaches is obviously trying to achieve some synergetic behavior whereby the de-
ficiencies of a certain search technique are compensated by the combination with
other techniques and their advantages are boosted due to this very same combi-
nation. This strict interpretation of the term hybrid has been broaden with time to
encompass all forms of non-blind (that is, not domain-independent) metaheuris-
tics. Under this broad interpretation, hybridization is the process of augmenting a
generic (problem-independent) metaheuristic with problem- (or problem-class, that
is, domain-) knowledge. Since this augmentation is often achieved via the blend of
different metaheuristic components, both interpretations are equivalent in most situ-
ations. The broad interpretation has, in any case, the advantage of fitting better into

1 Of course there is some notion of locality that would put any two given solutions to a problem
nearby, but we shall slip quietly past this semantic wrangling.
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theoretical results such as those of Hart and Belew [106] and –most conspicuously–
those of Wolpert and Macready [265] in the so-called No-Free-Lunch Theorem,
which state that search algorithms perform strictly in accordance with the amount
and quality of the problem knowledge they incorporate. While these results spurred
controversy in their time and have been refined [68, 69], the bottom-line still holds.

Memetic algorithms (MAs) championed this philosophy. The denomination
memetic algorithm2 was coined in [174] to characterise and codify these hybrid
approaches. The use of the term meme was intended to capture the fact that in-
formation traits in human culture are subject to periods of lifetime learning and
therefore they are different when transmitted to what they were when first acquired.
This bears a strong resemblance with the Larmarckian model of evolution, whereby
traits acquired during the lifetime of an individual are transmitted to its offspring. It
is therefore not surprising that MAs are sometimes disguised under other denomi-
nations featuring the terms “Lamarckian” or “hybrid”.

While the initial conception of memetic search did not include the idea of GAs or
evolutionary algorithms (EAs) whatsoever [177], it turned out that these techniques
were ideal recipients for exploiting the metaphor of MAs, namely, having a collec-
tion of “agents” alternating periods of self-improvement with phases of cooperation
and competition, cf. [176]. Indeed, early MAs mixed GAs and EAs with simulated
annealing and tabu search [197, 179], eventually developing the idea that MAs are
EAs endowed with some kind of local search (LS) technique, leading to the restric-
tive definition MA = EA + LS [217]. Note however that the central concept of MAs
is not to tie ourselves to a particular heuristic approach or metaphor, but to provide a
coherent structure for employing several heuristics (including exact methods [30])
that deploy complementary heuristics exploiting all available knowledge. We can
thus state that EA + LS ⊂MA as a consequence of this broader definition of MAs,
cf. [50]. The next section will explore in more detail the structure of an MA with
particular emphasis on the classical characterization of the paradigm.

2 Structure of a Memetic Algorithm

As mentioned above, early definitions of MAs envisioned the paradigm as a prag-
matic integration of ideas from different metaheuristics. These were orchestrated in
terms of a collection of search agents carrying out individual explorations (i.e., life-
time learning) of the space of solutions, and engaging in periodic phases of coopera-
tion and competition [197]. An abstract formulation of such an approach is provided
in Algorithm 1. This pseudocode matches the initial conception of MAs as an inher-
ently parallel approach whereby a collection of local searchers (simulated annealing
in early developments [177]) run either concurrently or physically in parallel, and
establish synchronization points in which information was exchanged among them.

2 The term “memetic” was developed from Dawkin’s [62] notion of a ‘meme’ (from the Ancient
Greek μίμημα, meaning “imitated thing”) as a unit of cultural inheritence (and hence cultural evo-
lution) — the cultural analogue of a gene.
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Algorithm 1 A Generic Memetic Algorithm
1: parfor j := 1 to µ do . Initialise population Pop of search agents
2: popi := new SearchAgent
3: end parfor
4: repeat
5: parfor j := 1 to µ do . individual learning phase
6: popi.learn()
7: end parfor
8: Pop.cooperate() . cooperation phase
9: Pop.compete() . competition phase

10: until Termination condition is true.

This said, this depiction of MAs is still generic enough to encompass most actual
incarnations of the paradigm as shown later, as it captures the essential feature of
MAs, namely the carefully-crafted interplay between global (population-based) and
local (individual-based) search3.

2.1 Skeleton of a Classical Memetic Algorithm

Following early works in which the population-based aspect of MAs, namely the
collection of agents and the synchronized stages of cooperation and competition,
were captured by a genetic algorithm [179], the classical memetic model coalesced.
The basic skeleton of such an MA is relatively straightforward, adding little addi-
tional complexity beyond that of a GA. Algorithm 2 gives a pseudcode sketch of
the salient structure, using local-search as an placeholder for any particular indi-
vidual improvement heuristic including, for instance, a complete exact algorithm
like Branch-and-Bound, and others that guarantee optimality of the final solution
obtained when they stop. Although a small structural change to a typical GA, the in-
clusion of the individual improvement phase can dramatically alter its performance.
This mix allows the metaheuristic to benefit from the solution diversity engendered
by the evolutionary approach, but to avoid the lethargic pace of improvement via
more directed optimization: instead of relying random processes subjected to fitness
based selection alone, each individual solution is optimized before the evolutionary
mechanism are applied, significantly increasing rate at which individual solutions
converge to an optima.

The structure of an MA is quite flexible and the performance of the implemen-
tation, both in terms of solution quality and speed, can be affected by a number
of factors. As an evolutionary, population based metaheuristic, the typical issues

3 It must be noted that we are always using the terms global and local in connection to the me-
chanics of the search rather than to the ability of eventually (or asymptotically) finding the global
optimum. It is certainly the case that many local-search approaches (simulated annealing, tabu
search, etc.) are capable of escaping from local optima and navigate the search space in order to
find the global optimum. The distinctive feature of these techniques (as opposed to, e.g., genetic
algorithms) is that they do this following a trajectory-based approach though.
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Algorithm 2 A Local-Search Based Memetic Algorithm
1: Pop := new Solution [popsize] . Create population Pop
2: for i ∈ Pop do
3: i.initialise() . Generate initial solution
4: i.local-search() . Individual improvement. Comprises solution evaluation
5: end for
6: repeat
7: for j := 1 to #recombinations do . Recombination phase
8: Parents := Pop.select(numparents) . Select parent set Parents⊆ Pop
9: c := Parents.recombine() . Recombine parents to create child c

10: c.local-search()
11: Pop.update(c) . Inserts new solution in the population
12: end for
13: for j := 1 to #mutations do . Mutation phase
14: i := Pop.select(1);
15: im := i.mutate() . Mutate solution i
16: im.local-search()
17: Pop.update(im)
18: end for
19: if Pop.converged() then . Refresh population upon convergence
20: Pop.restart()
21: end if
22: until Termination condition is true.

regarding choice and implementation of mutation and recombination operators are
inherited from the GA paradigm. For those familiar with Genetic AlgorithmGAs
however, it should be readily apparent that the individual improvement phase is
most likely to be the computational bottleneck — the improvement of every indi-
vidual and the subsequence evaluation of every individual is inherently expensive
simply because it is done for every individual (as shown in [165] it can easily take up
to 95% of the computational cost of the algorithm). The tradeoff is that with a good
choice of individual improvement heuristic, far fewer generations of mutation and
recombination are required. The careful reader will also notice that the local search
procedure (and typically, any individual improvement heuristic) is highly amenable
to parallelisation. This helps to ameliorate the cost of the individual improvement,
but more importantly lends the MA approach a high degree of scalability.

From the point of view of the different components into which a classical MA
can be dissected, all of them are susceptible of encapsulating some portion of prob-
lem knowledge. Consider for instance recombination. This is the component that
captures most appropriately the idea of agent cooperation. Such a cooperation is
typically established between a pair of agents but can in general involve an arbitrary
number of parents [75] (notice nevertheless that in this case some forms of heuris-
tic recombination can be very complex [53]). The generic idea of a knowledge-
augmented recombination operator is to combine in an intelligent way informa-
tion pieces contained in the parents. How these information pieces are defined is
a problem-dependent issue that arises from the issue of representation in EAs. The
underlying objective of an appropriate representation would be to have solutions de-
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scribed by some structured collection of objects whose values truly capture solution
features of relevance (i.e., ultimately responsible for determining whether a solution
is good or not). This is a substantial topic for which the interested reader is referred
to, e.g., [225]. Focusing on the smart manipulation of these information units (how-
ever they are defined), that is, processing them in a problem-specific way instead
of using domain-independent templates (such as those in [216]), the goal is picking
the right combination of such units from either parent. Of course, this is easier said
than done (and in fact, doing it is in general provably hard for arbitrary problems
and/or definitions of right combination — see the discussion on the polynomial
merger complexity class in [176, 178]) but there are numerous heuristics ideas in
the literature that can be used to this end. In many cases —and following design
advice already present in classical texts of hybridization pioneers, e.g., [61]— these
ideas are based on the use of problem-specific heuristics such as greedy algorithms
[130, 184], backtracking [48], dynamic programming [122], or branch-and-bound
[55] just to mention a few.

Mutation is another other classical operator, well-known for its role of maintain-
ing a continuous supply of genetic diversity that can be subsequently exploited by
the remaining operators. Even more so, in certain EA models such as evolutionary
programming [85] it is actually bears sole responsibility for driving the search. Note
that while this latter philosophy can be also used in an MA context —see Section
3.2— it is typically the case that MAs use sophisticated recombination operators
such as those described before, and hence the criticism of recombination being just
a disguised form of macro-mutation would not apply to them. Moreover, due to the
presence of a local search stage in the main evolutionary cycle, one has to be careful
to pick a mutation operator whose effects on solutions cannot be trivially undone
by the local search, since that would defeat the very purpose of mutation. Following
this line, in some cases there are MAs that even refrain from using mutation, e.g.,
[260, 160]. While such a decision could be further vindicated by the fact that MAs
usually feature a population-restart procedure (see line 20 in Algorithm 2) and hence
premature convergence is not so troublesome, this is not the most common course
of action. An appropriate mutation operator (i.e., one using a sufficiently different
neighborhood to that used by the local searcher) is often utilized. In fact, it is not
unusual to have more than one such mutation operator, e.g., [150, 229], much like
in metaheuristic approaches such as variable neighborhood search [104] (VNS). In
some cases, these multiple mutation operators are used with the purpose of exerting
different degrees of perturbation (i.e., light and heavy mutations) depending on the
convergence of the population [86].

As to the local search component, it can take the form of any stand-alone method
such as hill climbing, simulated annealing, tabu search, variable neighborhood
search, etc. [198]. The choice of a particular technique must take into account two
major issues, namely its parameterization and its interaction with the remaining
components of the algorithm. Regarding the latter, and in addition to the issues
discussed above in connection to the mutation operator, one has to consider the in-
terplay between the local searcher and the recombination operator. For example,
a highly intensive local search procedure may be better suited to interact with a
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more diversification-oriented recombination operator — see, e.g. [87]. This heuris-
tic recipe does not necessarily conflict with the use of a powerful recombination
operator (see, e.g., [90]) but underlines that the knowledge embedded in either com-
ponent, recombination operator and local search heuristic, must be complementary
in terms of the effect they produce in the search dynamics (much like it was dis-
cussed for the mutation operator). An interesting analysis of these issues from the
point of view of fitness landscapes is provided in [169]. Whatever the definition
of the neighborhood is (and notice that it can be complex, even combining several
simpler neighborhood schemes), it is often crucial for performance reasons to be
able to evaluate solutions incrementally [105], that is, without having to resort to a
full evaluation but only recomputing the fitness contribution of the solutions compo-
nents that were modified. This may require the use of appropriate data structures and
is normally associated to discrete optimization (the high non-linearity —and some-
times even the lack of a closed fitness function— often makes this complicated in
continuous optimization).

The parameterization of the local search heuristic is another complex issue. We
can include here both high-level algorithmic aspects such as when to apply local
search, to which solutions it should be applied, which local search operator to apply
(if there are several of them), as well as low-level parameters such as the breadth
(number of neighbours explored in each iteration of the local search heuristic) and
depth (how many iterations of local search will be performed) — see [243]. Deter-
mining an adequate setting for these parameters is crucial for the performance of
the algorithm since it has been shown theoretically that small parameter changes
can turn a problem from being polynomial time solvable with high probability to
requiring super polynomial (even exponential) time [142, 242]. Unfortunately, a
priori design guidelines to provably avoid this kind of behavior are ruled out by in-
tractability results [243]. Thus, design by analogy and empirical testing seem to be
the handiest tools to approach this endeavor (although self-parameterization is an
appealing alternative that is increasingly gaining relevance — see Section 4). In this
regard, it has been for example shown in several contexts that partial Lamarckism
[111], that is, not applying local search to every individual but just applying it some
probability pLS, can produce notably better results than a fully Lamarckian approach
[49, 125] although the best value of this parameter is problem dependent. On a re-
lated note with regard to the depth of the local search, it has been also proposed in
the literature to save the store of the local search together with the solution it was
applied to, so as to resume the process from that point if required [172, 173].

The restarting procedure is another important element in an MA. The goal of this
procedure is to perform a warm reinitialization of the population when the search
is deemed stagnated (i.e., the population has converged to a suboptimal state). Of
course, that stagnation can be hindered by taking preventive measures such as the
light/heavy mutation scheme mentioned before, the use of spatial structure in popu-
lations [248] (see also next subsection), or some other diversity-preservation policy
[234] — see also [187]. A more drastic measure may be eventually required though.
For that purpose, a common approach is to keep a certain percentage of the current
population and use the solution creation mechanism (the one used to create the ini-
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tial population — line 3 in Algorithm 2) to complete the new population. Regarding
the former, they constitute a seed that allows keeping a part of the search momentum
without having to start from scratch. As to the latter, notice that they need not be
purely random solutions but any available constructive heuristic can be used for this
purpose.

2.2 A Note on More Complicated Memetic Algorithms

Although Algorithms 1 and 2 lay out a basic MA framework, the structure can be
made significantly more complex. As the central motivation of MAs is to exploit all
available information, the restriction of any particular component would be antithet-
ical. Apart from employing different heuristics, we can employ multiple heuristics in
concert. We can easily combine different individual improvement heuristics, apply-
ing them to different individuals, different populations, in parallel, in sequence, or
even in competition. Similarly the population based heuristic can employ multiple
improvement techniques — such approaches are well known in the GA community.

Moscato & Tinetti [180] demonstrate a more complicated MA that uses a number
of heuristics in concert and to achieve different goals within the algorithm. The
algorithm employs a tree-structured population where the population is divided into
subpopulations of size 4, composed in a ternary tree structure.

1. Each subpopulation divided into a leader node and three supporters. The sup-
porters are stored one level bleow their leader.

2. The intermediate nodes in the tree hold an individual that is part of two popula-
tions; it is the leader of the three supporters lower in the tree, and a support of its
leader, higher in the tree.

3. The number of subpopulations can be manipulated by adding levels to the tree.

Each individual can be optimized using a local search procedure that selects
from a variety of local optimization moves; approximate 2-OPT, One-City Inser-
tion and Two-City Insertion [132, 154]. Genetic recombination occurs “normally”
within each subpopulation with the leader individual representing the best tour in
the subpopulation (note the overlap of subpopulations ensures improvement propa-
gates up the tree), however the small subpopulation size can quickly lead to a lack
of diversity, in which case the recombination mechanism switches to an external
recombination procedure for the lowest level of the tree.

In this example we can see a number of variations on the basic structure of a
MA: multiple local search variants, a multipopulation variation of a GA which itself
employs multiple recombination procedures. Another example of a more complex
improvement strategy is given by Moscato [175], where a small population of in-
dividuals is maintained (only 16 individuals, each a binary vector), with a Tabu
Search procedure for individual improvement. Again, in a small population, a loss
of diversity is a potential drawback. To combat this, each individual notes the 16 best
single-bit-flip moves available. When diversity falls below a given threshold, instead
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of following a simple Tabu Search approach, individual i makes move i from its list
of best moves. This deliberate (potentially) non-optimal has the effect of spread-
ing the individuals further across the configuration space, increasing diversity. Once
diversity is restored, the normal Tabu Search search optimization is restored.

The continuation of these ideas has led to the development of what are now called
self adaptive Memetic Algorithms, which allow the context specific, dynamic appli-
cation of different heuristics or tuning of search parameters by the algorithm itself.
See Section 4.

3 Memetic Algorithms in Practice

In this section we present two extended examples of Memetic Algorithms for spe-
cific problems — NETWORK ALIGNMENT and WEIGHTED CONSTRAINT SAT-
ISFACTION PROBLEMS — and survey recent interesting applications of Memetic
Algorithms in different fields.

3.1 An Example Memetic Algorithm for NETWORK ALIGNMENT

The optimization version of the basic NETWORK ALIGNMENT problem takes as in-
put two networks G1 and G2, and asks for an injective partial mapping f : V (G1)→
V (G2) between the vertices of the two networks that maximises ∑u,v∈V (G1) τ f (u,v)
where

τ f =

{
1 if uv ∈ E(G1) and f (u) f (v) ∈ E(G2)

0 otherwise

We may in fact assume that the mapping is total and bijective by adding “dummy”
vertices to the smaller network. Of course τ f is open to variation as are the precise
details of f , leading to many variants of NETWORK ALIGNMENT. The decision
variant of NETWORK ALIGNMENT is NP-complete [136] and W[1]-complete [163],
suggesting, subject to standard complexity assumptions, that no suitably efficient
exact algorithm for NETWORK ALIGNMENT exists, making it a prime candidate for
heuristic methods.

In developing a Memetic Algorithm for this (and any) problem, we must (at a
minimum) select an individual solution representation, mutation and recombination
operators and an individual improvement heuristic and its attending concerns.

For NETWORK ALIGNMENT, the most direct individual representation is the
mapping itself. Assuming we have already added any necessary dummy vertices,
we can represent the mapping by (for example) an array of size |V (G1)| storing
a permutation of V (G2). For ease of representation it is sufficient to assign each
vertex a unique integer in the range [0, |V (G1)|]. An alternative representation suit-
able for NETWORK ALIGNMENT would be to store the the alignment of the edges,
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making computing the basic fitness function simple, but the individual could be
polynomially larger, impacting the efficiency of mutation, recombination, individ-
ual improvement and even evaluation. Moreover care would need to be taken as to
how to determine which vertices were aligned.

With this individual representation, a simple, reasonable mutation operator is
that of a random shuffle, where each element of an individual is randomly swapped
with another, randomly chosen element, with a given probability. A naı̈ve recom-
bination operator is, given two parent individuals, to select a linear segment of the
individual (i.e. a set of contiguous indices) and swap the mappings for those in-
dices between the parents (with adjustment to take care of duplication of elements
etc.), producing two children. This recombination is commonly know as a Partially
Matched crossover [99]. However considering the problem we are trying to solve, it
is easy to see that this choice may be somewhat inefficient. The NETWORK ALIGN-
MENT problem, in essence, seeks to preserve as much topological structure (i.e.
edge matchings) as possible — in this sense it is a relaxed GRAPH ISOMORPHISM
problem. Swapping a set of arbitrarily chosen indices is unlikely to preserve interest-
ing structure, contrary to the goal of a recombination operator, which is to produce
children of higher quality than their parents by mixing the better parts of the par-
ents, aiming to place the child solution closer to the global optima. For NETWORK
ALIGNMENT, it is much more interesting to preserve neighbourhoods of vertices in
this regard. So a better choice of recombination operator is to select a vertex and its
2-neighbourhood (all vertices at distance at most 2) as the set of indices which will
be swapped.

To complete the GA component we employ a tournament selection process to
choose the individuals included in the new generation and a restart mechanism
whereby the best solution is recorded and the population is restarted if no improve-
ment has been observed after a given number of generations.

For individual improvement we employ a Local Search heuristic where the neigh-
bourhood of each individual is the 2-swap neighbourhood — the set of individuals
obtained by swapping any two elements. The search is implemented by selecting an
element in the individual and taking the optimal swap in the local neighbourhood.
If this is not the identity mapping, we place the neighbours of the preimage of the
swapped vertex into a list of vertices to swap. If no initial swap is found, we repeat
the process with a new starting point until a swap is found or all vertices have been
tested.

In combination with the skeletons given by Algorithms 1 and 2, these compo-
nents assembled constitute an MA for NETWORK ALIGNMENT, however the reader
will notice that, even without considering more complicated approaches, there are
a number of tuneable parameters present, namely, the probabilities and frequencies
which control mutation and recombination (as in GAs), and more specifically for
MAs, the frequency and application régime of the individual improvement step. We
may choose to apply the individual improvement, at essentially one extreme, regu-
larly, to all individuals, or at the other extreme, only when the evolutionary progress
slows and to a select few individuals, or of course in some intermediate régime.
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As discussed in Section 2.2, we could also take an adaptive approach, allowing the
algorithm to adjust these parameters itself.

3.2 An Example Memetic Algorithm for WEIGHTED
CONSTRAINT SATISFACTION PROBLEMS

WEIGHTED CONSTRAINT SATISFACTION PROBLEMS (WCSPs) are a general class
of combinatorial problems in which (i) solutions are assignment of values to a col-
lection of variables, each of them taken from a possibly different domain, (ii) there
are hard constraints making some particular combinations of variable values infea-
sible and (iii) there are some soft constraints establishing preferences among solu-
tions. We can for example think of a school timetabling problem in which courses
have to be fit into different time slots: no two courses can use the same time slot
if they are taught by the same lecturer (a hard constraint) and lecturer preferences
(e.g., teaching in the morning or in the afternoon) have to be respected if possible.
In essence, both types of constraints can be represented by defining a collection
of integer functions fi, one for each constraint; these functions are used to weight
the fulfillment/violation of the corresponding constraint and therefore an objective
function F (to be minimized, without loss of generality) can be built by summing
them. Thus, it will be typically the case that hard constraints have a much larger
weight (even infinite if violated) than soft constraints.

Formally, we can characterize a WCSP as a triplet 〈X ,D ,F ), where each
xi ∈ X , 1 6 i 6 n is a problem variable whose domain is Di ∈ D . Each func-
tion f j ∈ F , 1 6 j 6 m has signature f j : Vj → N, where Vj ∈ 2X is the subset
of variables involved in the j-th constraint. With this formulation, a naı̈ve evolution-
ary approach can be defined by using the Cartesian product S = D1×·· ·×Dn as
search space, taking the fitness function to be F(x) =∑ j f̂ j(x) (where f̂i is a function
that picks from its argument the variables in Vj and feeds them to f j), and utilizing
standard operations for recombination and mutation. Such an approach is however
going to perform poorly in general due to the lack of problem-specific knowledge. A
much more sensible approach can be built on the basis of (i) a smart recombination
operator and (ii) a powerful local search technique.

Regarding recombination, it is very easy to define a greedy recombination mech-
anism for WCSPs: (1) start from a solution s with all variables unassigned, (2) sort
constraints in some particular order (arbitrary or heuristically selected) j1, · · · , jm
and (3) traverse this ordered list of constraints, checking for each jk the variables in
Vjk that are still unassigned in s, constructing two (or as many as parents) candidate
sets using the assigned values in s plus the values that the remaining variables in Vjk
take in either parent, and keeping the candidate set v minimizing f jk(v) (which is
subsequently used to expand the solution s). This procedure has been used for ex-
ample in [57] for the construction of Golomb rulers and in [224] for the construction
of balanced incomplete blocks, to cite just two examples.
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It is possible to define a more intensive recombination approach by taking ideas
from complete techniques [59]. More precisely, a complete technique can be used
to explore the set of potential solutions that can be created using a given collection
of parents, returning the best solution attainable. Different possibilities can be used
for this purpose such as branch and bound [55] or integer linear programming tech-
niques [161]. A more WCSP-specific approach can be found in the use of bucket
elimination (BE) [63]. BE can be regarded as a dynamic programming approach
based on the successive elimination of variables and the use of an auxiliary table
to store the best value of the fitness function for specific variable combinations.
More precisely, BE considers some ordering of the variables (again, arbitrarily or
heuristically selected — it must be noted that while the particular choice ordering
is irrelevant for correction purposes, it can have a huge impact in the computational
complexity of the algorithm though) i1, · · · , in. Then, it traverses this sequence and
for each variable xik (1) determines the constraints C ⊆F in which xik is involved,
(2) computes the bucket

Bik =
(
∪ f j∈C Vj

)
\{xik},

namely the collection of variables related to xik in any constraint, (3) determines
for each combination t of values for variables in Bik the value v∗t for xik such that
w = ∑ f j∈C f̂ j(t · (xik = v)) is minimal, and (4) removes C from F and adds a new
constraint f ′ with domain V ′ = Bik defined as f ′(t) = ∑ f j∈C f̂ j(t · (xik = v∗t )). When
all variables have been eliminated the optimal cost w is found and one only has
to trace back the process (using the auxiliary table) to determine the best variable
assignment [92]. This procedure has been used with great success in [90] for solving
the MAXIMUM DENSITY STILL LIFE PROBLEM in conduction with a local-search
procedure based on Tabu search.

A potential drawback of recombination schemes such as those defined above is
scalability: the use of an exact technique for recombination is less costly than using
it to solve the problem completely from scratch, but its cost will nevertheless grow
with the problem size until becoming impractical at some point. To alleviate this
problem we can play with the granularity of the representation [54], that is, grouping
variables in larger chunks which are subsequently used as basic units for the pur-
poses of constructing solutions (hence reducing the number of potential solutions
attainable and therefore the computational cost of the exact technique). In the con-
text of the BE method described before this approach is termed mini-buckets [64]
and can be readily applied to the recombination mechanism described above [92].
Another source of difficulties is the existence of symmetries or partial isomorphisms
between solutions. This scenario is typical in many WCSPs in which variables or
groups thereof can be relabeled without altering the solution. In such a situation re-
combination can reduce to macromutation unless it is effectively capable of identify-
ing correspondences between variables in different parents. This is for instance done
with success in [170] in the context of clustering genomic data. Of course, it may
be very complex in general to find a perfect matching between variables in an arbi-
trary WCSP with symmetries. In problems for which this is deemed too complicated
or time-consuming it must be noted that a recombination-less MA —essentially a
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population of local searchers subject to interleaved phases of self-improvement and
competition via selection/replacement, much in the line of go-with-the winner ap-
proaches [8]— can also provide acceptable results. This is for example the case of
the SOCIAL GOLFER PROBLEM, a WCSP with a large degree of symmetry that was
successfully attacked using a memetic evolutionary programming approach [56] (a
MA propelled by selection, mutation and local improvement).

3.3 A Brief Survey of Recent Memetic Algorithm Applications

In recent years, MAs have become a significant part of the optimization toolkit and
have become particularly well used in recent years. As a rough gauge, the number
of academic papers4 published has risen to over 300 per year since 2011, with thou-
sands of academic publications in total since 1998. Possibly the most interesting
aspect of this expanding interest in Memetic Algorithms is the diversity of tech-
niques and application areas.

3.3.1 Memetic Algorithms in the Wild

While many algorithms developed in the areas of Computer Science and Optimiza-
tion are demonstrated via application to practical problems drawn from a variety of
areas, a more reliable indicator of the effectiveness of a technique is the adoption of
the technique as a tool within the communities from which the problems are drawn.
Here we briefly survey some of the areas in which Memetic Algorithms have been
successfully applied. Table 1 gives an overview of the breadth of application areas
for Memetic Algorithms, with recent references. Of course this table is far from ex-
haustive, even within the application areas mentioned. As a matter of fact, in some
areas the number of memetic applications has deserved individualized treatment in
specialized surveys, e.g., scheduling and timetabling [50], engineering and design
[37], bioinformatics [24], etc. — see also [188] for a recent general application
survey. The breadth of the application areas suggests a significant generality and
flexibility in the Memetic paradigm.

3.3.2 Memetic Speciation

Along with a wide set of application areas, Memetic Algorithms have also embraced
many forms, employing a wide variety of combinations of population based heuris-
tics and individual improvement heuristics. Table 2 lists some of the more promi-
nent combinations, with example references for each. Not only are different combi-
nations of population based heuristic and individual improvement heuristic extant,

4 Found via searching DBLP and ISI Web of Science for relevant papers with the word “memetic”
in their title, abstract or keywords.
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Application Area References

Biology [88, 89, 185, 186, 196, 200, 237, 236, 238, 239,
267, 268]

Chemistry [77, 79, 78, 76, 107, 193]
Chemical Engineering [47, 74, 138, 139, 148, 156, 240, 254, 255, 251,

253, 252]
Data Compression [273, 167, 269, 278, 244, 144]
Drug Design [103, 190, 191, 250, 249, 128, 159, 108]
Electronic Engineering [133, 270, 100, 204, 41, 96, 199, 206, 46, 97, 117,

205, 113, 116, 112, 209, 115, 213, 114]
Finance [15, 70, 45, 241]
Geoscience [256, 36]
Materials Science & Engineering [14, 25, 124, 258, 123, 221]
Microarray Analysis [19, 72, 12, 13, 93, 146, 181, 276, 207, 165, 235]
Computer Networking [16, 246, 214, 215, 274, 259]
Oncology [228, 131, 279, 164, 39, 73, 250, 249, 1, 277]
Operations Research [10, 22, 162, 218, 2, 6, 40, 67, 94, 110, 127, 157,

158, 208, 211, 212, 226, 257, 264, 266, 272, 275]
Physics [137, 271, 5, 102, 262]
Power Engineering [66, 230, 18, 17, 26, 120, 134, 145, 147, 155, 219,

119, 149, 166, 182, 222, 194]

Table 1 Some recent publications reporting on Memetic Algorithm applications by field of appli-
cation.

more exotic Memetic Algorithms that use heuristics of only one type, or multiple
heuristics of each type exist. The adaptability of Memetic Algorithms to parallel
implementation also encourages the use of multiple different types of heuristics si-
multaneously — the exploitation of all available knowledge is, after all, the central
idea of the Memetic paradigm.

4 Future-Generation Memetic Algorithms

Back in the days when MAs were just a nascent approach for optimization, different
visions of what MAs would be in the future were foreseen. Among these, maybe the
one which has come closest to reality refers to the self-? capabilities [23] of the
paradigm and more precisely to self-generation properties. Early works envisioned
that the algorithm could work on two timescales, one in which solutions would be
optimized and another one in which the problem solving strategies used to optimize
solutions would be themselves optimized [176]. In essence, this has been a long
standing goal in metaheuristics. It is widely acknowledged that the design of an
effective problem solving technique is in itself a hard task. Attempting to transfer
a part of this design effort to the actual metaheuristic is just the logical course of
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Population Based Heuristic Individual Improvement
Heuristic

References

Ant Colony Optimization Local Search [44, 71, 83, 152]

Bee Colony Optimization — [32, 34]
Random Optimization [21]

Nelder-Mead Simplex [84]

— Nelder-Mead Simplex with
Bidirectional Random Opti-
mization

[4]

Binary Differential Evolution Tabu Search [101]

Continuous Differential Evo-
lution

pool of strategies [247, 121]

Hooke-Jeeves-like [210]
Stochastic local search [189]

Cross-Entropy Hill-Climbing, Tabu Search [11]

Genetic Algorithm Local Search [22, 15]
Tabu Search [27, 33, 91, 151, 153, 261]
Mathematical Programming [252]

Genetic Algorithm with Par-
ticle Swarm Optimization

— [26, 118]

Particle Swarm Optimization Local Search [20, 35, 65, 120, 272]
Variable Neighbourhood
Search

[9]

Sequential Quadratic Pro-
gramming

[220]

Particle Swarm Optimization
with Differential Evolution

Nelder-Mead Simplex with
Rosenbrock Algorithm

[38]

Table 2 Some varietal combinations of heuristics forming Memetic Algorithms.

action [58] — see for example the corpus of research in hyperheuristics [60, 42].
This latter approach is actually related to what has been termed ‘meta-Lamarckian’
learning [201], a memetic approach in which a collection of local searchers is avail-
able and there is a decision-maker that decides which of them should be applied
to specific solutions based on different criteria (e.g., the past performance of each
local searcher, the adequacy of the current solution for being improved by a certain
local searcher according to past experience, etc.). A much more general approach
was provided by multi-memetic or multimeme algorithms [140, 141, 143]. In this
approach an encoding of a local searcher (ranging from the definition of the neigh-
borhood or pivot rule used up to a full algorithmic description of the procedure) is
attached to each solution and evolves alongside it. Thus the algorithm not only looks
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for improved solutions but also for algorithmic structures capable of improving the
latter. The next natural step is detaching these memes from the genes and have them
evolve in separate populations [231, 232, 233], paving the way for the emergence of
complex structures of interacting memes [43]. An overview of adaptation in MAs
is provided in [202]. This view of memes as explicit representations of problem
solving strategies that interact in a complex and dynamic way within an evolution-
ary context for optimization purposes leads to the notion of memetic computing
[192, 203] — see [188] for a literature review on memetic computing. A further
iteration of this concept is to apply metaheuristic approachs to develop worst-case
instances of a problem, which can then be fed back into the process of optimizing
the algorithm. This technique has been explored in regards to sorting [51] and the
TRAVELLING SALESMAN PROBLEM [3].

Another dimension along which some early ideas (far-fetched at their time) about
MAs may become a reality is parallel computing. The deployment of metaheuristics
in parallel and/or distributed environments is by no means new [7], and has been
extensively used since the late 1980s, see for example [183, 245]. However, the
continuous evolution of computational platforms is dragging these parallel modes
along, forcing them to adapt to new scenarios. Thus, whereas early works often as-
sumed dedicated local area networks, we nowadays have emerging computational
environments such as peer-to-peer networks [171] and volunteer computing net-
works [227], which are much more pervasive, of a larger scale and inherently dy-
namic. Coping with the complex, dynamic structure of the computational substrate
is undoubtedly a challenge. Fortunately, population-based metaheuristics have been
shown to be intrinsically robust at a fine-grain scale [126] and can be endowed with
appropriate churn-aware strategies if required [195]. They are therefore ripe for be-
ing deployed on these platforms to exploit the possibilities they offer. In this line
—and connected to the previous discussion on meme evolution and interaction—
some initial concepts revolving around “meme pools”, that is, repositories of prob-
lem solving methods to be used synergistically, acquire a new scope more akin to
service-oriented architectures [95]. Furthermore, to build on the idea of automated
self-design of the MA requires the ability to keep or gather some sort of distributed
knowledge about the state of the search and make design decisions on its basis.
Some ideas from multi-agent systems and epistemic logic were proposed as poten-
tial tools this purpose [52] but the concept still remains largely unexplored.

There are also opportunities for the development of MAs (and GAs) at the small
scale. Any use of recombination operators is naturally limited by the expectation
that the recombination step will be performed many, many times during a run of
the algorithm. This leads to the requirement that a recombination operator must be
able to be implemented very efficiently. Traditionally this would mean at most lin-
ear or close to linear time in the size of the individual (of course, ideally constant
time). This immediately rules out the possibilty of optimal recombination strategies
for many problems, as typically such strategies would be NP-hard. Parameterized
Complexity, for example, offers some opportunity to exploit the naturally arising
parameters in many recombination strategies. If such parameters are small, or can
be made small, then we may effectively reduce the complexity of optimal recom-
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bination to polynomial time [53, 80, 81, 82]. For further reading on the challenges
raised by evolutionary approaches to optimization, many of the problems posed
in [52] remain open.

5 Conclusion

Since their primordial conception in the late 90s, Memetic Algorithms have de-
veloped to become one the most adaptable and flexible metaheuristic approaches
available. While many heuristic techniques perform well for some problems, the
No-Free-Lunch theorem [265] guarantees that their performance falters on the ma-
jority of problems. Memetic Algorithms, with their insistence on adaptability and
utilitarianism (both on the part of the algorithm and the implementer), are free to
exploit the performance of multiple approaches and choose the best suited for the
problem at hand.

This adaptability, efficiency and amenability to the current availability of large-
scale parallelism, including traditional parallel architectures along with GPU com-
puting and cloud and peer based approaches, along with a tendency towards mod-
ularity in implementation, has lead to their adoption across a broad range of fields
with excellent results. The field of Memetic Algorithms research has grown dramat-
ically since 1998. With over 2000 academic papers published at a current rate of
over 300 per year the field is vibrant and dynamic. The importance and influence
of Memetic Algorithms has grown such that Thomson Reuters selected it as one of
the top ten research fronts in Mathematics, Computer Science and Engineering in
2013 [135]. To put it simply, Memetic Algorithms are one of the most flexible and
effective tools in the heuristic toolbox and a key techique for anyone involved in
combinatorial optimization to learn.
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F, Garcı́a Arenas M, Merelo Guervós JJ, Fernandes CM (2014) Designing
robust volunteer-based evolutionary algorithms. Genetic Programming and
Evolvable Machines 15(3):221–244

[127] Jolai F, Tavakkoli-Moghaddam R, Rabiee M, Gheisariha E (2014) An en-
hanced invasive weed optimization for makespan minimization in a flexible
flowshop scheduling problem. Scientia Iranica 21(3):1007–1020

[128] Jones G, Willett P, Glen R, Leach A, Taylor R (1997) Development and val-
idation of a genetic algorithm for flexible docking. Journal of Molecular Bi-
ology 267(3):727–748

[129] Jones T (1995) Evolutionary algorithms, fitness landscapes and search. PhD
thesis, University of New Mexico

[130] Julstrom BA (1995) Very greedy crossover in a genetic algorithm for the
traveling salesman problem. In: Proceedings of the 1995 ACM Symposium
on Applied Computing, ACM, New York, NY, USA, pp 324–328

[131] Kalantzis G, Apte A, Radke R, Jackson A (2013) A reduced order memetic
algorithm for constraint optimization in radiation therapy treatment plan-
ning. In: Takahashi S, Leo R (eds) 14th ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking And Paral-
lel/Distributed Computing (SNPD 2013), IEEE, Honolulu, HI, pp 225–230

[132] Kernighan B, Lin S (1972) An Efficient Heuristic Procedure for Partitioning
Graphs. Bell Systems Journal 49:291–307

[133] Khan SU, Qureshi IM, Zaman F, Shoaib B, Naveed A, Basit A (2014) Correc-
tion of faulty sensors in phased array radars using symmetrical sensor failure
technique and cultural algorithm with differential evolution. Scientific World
Journal 2014, article ID 852539

[134] Kim J, Kim CS, Geem ZW (2014) A memetic approach for improving min-
imum cost of economic load dispatch problems. Mathematical Problems in
Engineering 2014, article ID 906028

[135] King C, Pendlebury DA (2013) Web of knowledge research fron-
tiers 2013: 100 top ranked specialties in the sciences and social
sciences. URL http://sciencewatch.com/sites/sw/files/
sw-article/media/research-fronts-2013.pdf

[136] Klau GW (2009) A new graph-based method for pairwise global network
alignment. BMC Bioinformatics 10(Suppl 1):S59

[137] Kleeman MP, Lamont GB, Cooney A, Nelson TR (2007) A multi-tiered
memetic multiobjective evolutionary algorithm for the design of quantum
cascade lasers. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T (eds)
Proceeedings of the 4th International Conference on Evolutionary Multi-



28 Carlos Cotta, Luke Mathieson, and Pablo Moscato

Criterion Optimization (EMO 2007), Springer Berlin, Matsuhima, Japan,
Lecture Notes in Computer Science, vol 4403, pp 186–200

[138] Kononova AV, Hughes KJ, Pourkashanian M, Ingham DB (2007) Fitness di-
versity based adaptive memetic algorithm for solving inverse problems of
chemical kinetics. In: IEEE Congress on Evolutionary Computation, IEEE,
Singapore, IEEE Congress on Evolutionary Computation, pp 2366–2373

[139] Kononova AV, Ingham DB, Pourkashanian M (2008) Simple scheduled
memetic algorithm for inverse problems in higher dimensions: Application to
chemical kinetics. In: IEEE Congress on Evolutionary Computation, IEEE,
Hong Kong, China, IEEE Congress on Evolutionary Computation, pp 3905–
3912

[140] Krasnogor N (2004) Self generating metaheuristics in bioinformatics: The
proteins structure comparison case. Genetic Programming and Evolvable Ma-
chines 5(2):181–201

[141] Krasnogor N, Gustafson S (2004) A study on the use of “self-generation” in
memetic algorithms. Natural Computing 3(1):53–76

[142] Krasnogor N, Smith J (2008) Memetic algorithms: The polynomial local
search complexity theory perspective. Journal of Mathematical Modelling
and Algorithms 7(1):3–24

[143] Krasnogor N, Blackburne B, Burke E, Hirst J (2002) Multimeme algorithms
for protein structure prediction. In: [168], pp 769–778

[144] Krishna K, Ramakrishnan K, Thathachar M (1997) Vector quantization us-
ing genetic k-means algorithm for image compression. In: 1997 International
Conference on Information, Communications and Signal Processing, IEEE
Press, New York, NY, vol 3, pp 1585–1587

[145] Kumar JV, Kumar DMV (2014) Generation bidding strategy in a pool based
electricity market using shuffled frog leaping algorithm. Applied Soft Com-
puting 21:407–414

[146] Kumar PK, Sharath S, D’Souza RG, Chandra K (2007) Memetic nsga - a
multi-objective genetic algorithm for classification of microarray data. In:
15th International Conference on Advanced Computing And Communica-
tions (ADCOM 2007), IEEE, Guwahati, India, pp 75–80

[147] Kumle AN, Fathi SH, Broujeni ST (2014) Harmonic optimization in
multi-level inverters by considering adjustable DC sources using memetic
algorithm. In: 11th International Conference on Electrical Engineer-
ing/Electronics, Computer, Telecommunications and Information Technol-
ogy (ECTI-CON 2014), IEEE, Nakhon Ratchasima, Thailand

[148] Lam AYS, Li VOK (2012) Chemical reaction optimization: a tutorial.
Memetic Computing 4(1):3–17

[149] Li YF, Pedroni N, Zio E (2013) A memetic evolutionary multi-objective op-
timization method for environmental power unit commitment. IEEE Trans-
actions on Power Systems 28(3):2660–2669

[150] Liaw CF (2000) A hybrid genetic algorithm for the open shop scheduling
problem. European Journal of Operational Research 124:28–42



Memetic Algorithms 29

[151] Liefooghe A, Verel S, Hao JK (2014) A hybrid metaheuristic for multiobjec-
tive unconstrained binary quadratic programming. Applied Soft Computing
16:10–19

[152] Lim KK, Ong YS, Lim MH, Chen X, Agarwal A (2008) Hybrid ant colony
algorithms for path planning in sparse graphs. Soft Computing 12(10):981–
994

[153] Lin G, Zhu W, Ali MM (2014) A tabu search-based memetic algorithm
for hardware/software partitioning. Mathematical Problems in Engineering
2014, article ID 103059

[154] Lin S, Kernighan B (1973) An Effective Heuristic Algorithm for the Travel-
ing Salesman Problem. Operations Research 21:498–516

[155] Linda O, Wijayasekara D, Manic M, McQueen M (2014) Optimal placement
of phasor measurement units in power grids using memetic algorithms. In:
23rd IEEE International Symposium on Industrial Electronics (ISIE 2014),
IEEE, Istanbul, Turkey, pp 2035–2041

[156] Liu B, Wang L, Liu Y, Qian B, Jin YH (2010) An effective hybrid particle
swarm optimization for batch scheduling of polypropylene processes. Com-
puters & Chemical Engineering 34(4):518–528

[157] Liu S, Chen D, Wang Y (2014) Memetic algorithm for multi-mode resource-
constrained project scheduling problems. Journal of Systems Engineering
and Electronics 25(4):609–617

[158] Liu T, Jiang Z, Geng N (2014) A genetic local search algorithm for the multi-
depot heterogeneous fleet capacitated arc routing problem. Flexible Services
and Manufacturing Journal 26(4, SI):540–564

[159] Lorber D, Shoichet B (1998) Flexible ligand docking using conformational
ensembles. Protein Science 7(4):938–950

[160] Maheswaran R, Ponnambalam SG, Aranvidan C (2005) A meta-heuristic ap-
proach to single machine scheduling problems. International Journal of Ad-
vanced Manufacturing Technology 25:772–776
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