
Enhancing Evolutionary Optimization
Performance under Byzantine Fault Conditions⋆

Carlos Cotta1,2[0000−0001−8478−7549]

1 Dept. Lenguajes y Ciencias de la Computación, ETSI Informática,
Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain

2 ITIS Software, Universidad de Málaga, Spain
ccottap@lcc.uma.es

Abstract. We evaluate the performance of panmictic evolutionary al-
gorithms (EAs) in Byzantine environments, where fitness values are un-
reliable due to the potential presence of malicious agents. We investigate
the impact of this phenomenon on the performance of the algorithm con-
sidering two different models of malicious behavior of different severity,
taking the unreliability rate of the environment as a control parame-
ter. We observe how there can be a significant toll in the quality of the
results as the prevalence of cheating behavior increases, even for sim-
ple functions. Subsequently, we endow the EA with mechanisms based
on redundant computation to cope with this issue, and examine their
effectiveness. Our findings indicate that while a mechanism based on
statistical averaging can be an effective approach under a relatively be-
nign fault model, more hostile environments are better tackled via an
approach based on majority voting.

Keywords: Evolutionary algorithms · Byzantine faults · Panmixia · Resilience

1 Introduction

Emerging computational environments such as peer-to-peer networks and vol-
unteer computing (VC) platforms [10,11] have become promising ecosystems for
running computationally intensive tasks. This is for example the case of evolu-
tionary algorithms (EAs) [7,21]. Needless to say, when deploying any complex
computing task on this kind of environments numerous challenges arise due to
the dynamic nature and irregularity of the resulting computational landscape
[1], thus highlighting the need for algorithmic resilience. Fortunately, EAs are
not just inherently resilient [5] but also flexible enough to incorporate mecha-
nisms to cope with perturbations caused by the volatility or heterogeneity of the
environment [15,16].

⋆ This work is supported by Spanish Ministry of Science and Innovation under project
Bio4Res (PID2021-125184NB-I00 – http://bio4res.lcc.uma.es) and by Universidad
de Málaga, Campus de Excelencia Internacional Andalucía Tech.

http://bio4res.lcc.uma.es

2 Carlos Cotta

This work is primarily concerned with another source of disruption not re-
lated to the irregularities of the computational substrate but to logical failures of
malicious nature [19]. Specifically, we consider cheating faults, a kind of Byzan-
tine failure whereby one or more contributors of computational resources do
not provide trustworthy results but do however purposefully alter the compu-
tation by submitting wrong results. This can be done with the mere purpose
of feigning an activity (for instance, in order to obtain any rewards associated
with the participation in the VC platform) or even with the malicious aim of
damaging the computation itself. Previous research has shown that these faults
can have an impact on EAs which will depend on the precise components of
the algorithm targeted or affected by such faults [13]. Distributed EAs can re-
tain global asymptotic convergence under some conditions [20] (see also [12]),
and EAs with fine-grained spatial structure can withstand certain mild types
of Byzantine faults [14]. More hostile faults seem to quickly degrade the perfor-
mance of EAs on some problems though [3], when the evaluation of fitness is
targeted by malicious agents.

Our analysis in this work aims to examine this performance drop more qual-
itatively, and to study some countermeasures to cope with these faults. To this
end, we will start by providing a description of the algorithmic setting in which
Byzantine faults can take place (Sect. 2). Then, two types of Byzantine faults of
different severity are considered, as described in Sect. 2.1, and two strategies for
coping with these are provided in Sect. 2.2, making use of redundant computa-
tion in order to handle the uncertainty in fitness values associated to such faults.
Subsequently, we report the experimental results attained when using either of
these strategies in Sect. 3. We close the paper with an outlook of these results
and an outline of future work in Sect. 4.

2 Algorithmic Setting

Let us consider an EA with a panmictic population aiming to optimize a certain
objective function f(·), which we shall term the true fitness function. In order
to evaluate this function for the individuals in the population, the EA relies on
a number of helpers. For instance, this is consistent with the use of master-slave
models [2], whereby individuals are distributed among a collection of computa-
tional nodes that provide this fitness evaluation service. These helpers may vary
dynamically and are not directly traceable by the EA, e.g., imagine they are be-
hind some cloud or VC service layer, and hence the EA as a client has no control
–nor even knowledge– on where the computation is done (i.e., it cannot pinpoint
the particular source of each fitness value computed either). Now, the issue under
study here arises when some of these helpers are cheaters, which provide wrong
results. As a crucial consideration, notice that in the scenario considered here
fitness evaluation is never uncheatable, that is, there is no trusted helper which
could be eventually used to check whether a particular fitness result is correct or
not. Therefore, any coping mechanism has to work under the assumption that
invocations to the objective function might be always subject to failure.

Enhancing Evolutionary Optimization under Byzantine Faults 3

2.1 Modelling Byzantine Faults

As a starting point, we focus a very simple model whereby fitness evaluation
requests get an erroneous result with some probability ρ (c.f. [19,20]). We shall
denote this wrong result f̂ t(·) as the unreliable fitness, where the superscript t
represents the current time and is used to denote the fact that cheaters do not
necessarily return the same wrong result if the very same solution is submitted
for evaluation at different times. Obviously, it is impossible to know beforehand
whether the value obtained after an evaluation request is its actual true fitness
or an incorrect value, as mentioned before.

In order to quantitatively represent the cheating behavior we are going to
consider two simple models of malicious computation:

(i) randomizer, whereby cheaters return a value which is uncorrelated with the
true fitness, e.g., a random value within the range of the function (this be-
havior would correspond to nodes which want to merely feign an activity);
in this work, we have considered cheaters that return a previously observed
fitness value (randomly selected, and thus lacking any logical relation with
the solution submitted for evaluation).

(ii) inverter, whereby cheaters return a value which is inversely correlated with
the true fitness (as it would happen if there were computational actors which
wanted to inflict damage on the optimization process). In this work, we have
considered the following inverter function:

f̂ t(x) = f t
max − (f(x)− f t

min), (1)

where f t
max and f t

min are respectively the maximum and minimum fitness
observed so far.

2.2 Strategies for Handling Byzantine Faults

In order to tackle this kind of faults in an optimization setting, some inspira-
tion can be drawn from noisy environments [9,17]. However, it must be noted
that the unreliable fitness does not gravitate in this case around some under-
lying true fitness (as it is commonly assumed in many scenarios with uncer-
tainty or noisy fitness functions). For this reason, the phenomenon tackled here
has a fundamentally different nature. To scrutinize this issue, we are going to
consider mechanisms to handle unreliable fitness based on redundant compu-
tation: firstly, each new solution will be re-evaluated k times for some k > 1;
Let F t(x) = [f̂ t

1(x), . . . , f̂
t
k(x)] be the sequence of so obtained unreliable fitness

values. Subsequently, we will try to extract an approximation f̃ t(x) of the true
fitness (ideally, an perfect estimation thereof) from these k fitness values by us-
ing some appropriate function. To this end, we have considered two possibilities
here:

(i) averagek, namely the average of the k fitness values, i.e.,

f̃ t(x) =
1

k

k∑
i=1

f̂ t
i (x). (2)

4 Carlos Cotta

Table 1. Results (mean deviation from the optimum) of the EA with no unreliability
handler. In all tables, symbols next to numerical values indicate statistical significance
– check the main text of Sect. 3 (p. 5) for details.

inverter
ρ OneMax Trap MMDP Leading-Ones

0.00 0.00 ± 0.00 ⋆ 5.02 ± 0.52 ⋆ 0.00 ± 0.00 ⋆ 0.00 ± 0.00 ⋆
0.05 0.00 ± 0.00 ⋆ 5.24 ± 0.45 ⋆ 0.00 ± 0.00 ⋆ 2.80 ± 0.69••
0.10 0.00 ± 0.00 ⋆ 5.04 ± 0.41 ⋆ 0.00 ± 0.00 ⋆ 10.94 ± 1.00••
0.15 0.00 ± 0.00 ⋆ 3.76 ± 0.36◦⋆ 0.00 ± 0.00 ⋆ 18.88 ± 0.80••
0.20 0.00 ± 0.00 ⋆ 4.64 ± 0.39 ⋆ 0.00 ± 0.00 ⋆ 26.32 ± 0.90••
0.25 0.00 ± 0.00 ⋆ 6.02 ± 0.35•⋆ 0.00 ± 0.00 ⋆ 36.94 ± 0.58••
0.30 0.00 ± 0.00 ⋆ 6.98 ± 0.33•⋆ 0.71 ± 0.21•• 45.12 ± 0.61••
0.35 0.00 ± 0.00 ⋆ 8.48 ± 0.28•⋆ 6.40 ± 0.73•• 53.02 ± 0.71••
0.40 0.00 ± 0.00 ⋆ 10.46 ± 0.27•⋆ 13.86 ± 1.01•• 64.74 ± 0.42••
0.45 1.22 ± 0.85 10.88 ± 0.26•⋆ 17.01 ± 1.08• 75.64 ± 0.40••
0.50 16.80 ± 2.41• 19.60 ± 1.94•⋆ 20.64 ± 1.27•⋆ 83.08 ± 0.39•⋆

randomizer
ρ OneMax Trap MMDP Leading-Ones

0.00 0.00 ± 0.00 ⋆ 5.02 ± 0.52 ⋆ 0.00 ± 0.00 ⋆ 0.00 ± 0.00 ⋆
0.05 0.00 ± 0.00 ⋆ 5.36 ± 0.60 ⋆ 0.00 ± 0.00 ⋆ 0.60 ± 0.34••
0.10 0.00 ± 0.00 ⋆ 4.78 ± 0.53 ⋆ 0.00 ± 0.00 ⋆ 1.42 ± 0.48••
0.15 0.00 ± 0.00 ⋆ 4.98 ± 0.51 ⋆ 0.00 ± 0.00 ⋆ 1.70 ± 0.57••
0.20 0.00 ± 0.00 ⋆ 3.58 ± 0.34•⋆ 0.00 ± 0.00 ⋆ 2.60 ± 0.64••
0.25 0.00 ± 0.00 ⋆ 2.88 ± 0.32•⋆ 0.00 ± 0.00 ⋆ 8.18 ± 1.19••
0.30 0.00 ± 0.00 ⋆ 1.54 ± 0.18•⋆ 0.00 ± 0.00 ⋆ 13.18 ± 1.34••
0.35 0.00 ± 0.00 ⋆ 1.22 ± 0.19•⋆ 0.13 ± 0.07◦◦ 15.88 ± 1.16••
0.40 0.00 ± 0.00 ⋆ 1.38 ± 0.12•⋆ 1.30 ± 0.17•• 19.64 ± 1.06••
0.45 0.00 ± 0.00 ⋆ 2.14 ± 0.18•⋆ 2.62 ± 0.28•• 22.76 ± 1.52••
0.50 0.00 ± 0.00 ⋆ 3.26 ± 0.17•⋆ 4.31 ± 0.30•• 28.94 ± 1.33••

(ii) majorityk (cf. [4]), namely keeping the most repeated value (or an average of
the most repeated values if there was a tie). More precisely, let σ : R×Rk →
{0, . . . k} be defined such that σ(f,F) is the number of occurrences of value
f in vector F , and let σ∗(x, t) = max{σ(f,F t(x)) | f ∈ F t(x)}. Now, we
consider

f̃ t(x) =
1

|F ′|
∑
f∈F ′

f (3)

where F ′ = {f ∈ F t(x) | σ(f,F t(x)) = σ∗(x, t)}.

3 Experimental Results

The experiments have been conducted with an EA that uses binary tournament
selection, single-point crossover (pX = .9), bit-flip mutation (pM equivalent to a

Enhancing Evolutionary Optimization under Byzantine Faults 5

Table 2. Results (mean deviation from the optimum) of the EA with majority3.

inverter
ρ OneMax Trap MMDP Leading-Ones

0.00 0.00 ± 0.00 ⋆ 9.46 ± 0.34•• 0.00 ± 0.00 ⋆ 0.00 ± 0.00 ⋆
0.05 0.00 ± 0.00 ⋆ 9.62 ± 0.47•• 0.00 ± 0.00 ⋆ 0.32 ± 0.21◦◦
0.10 0.00 ± 0.00 ⋆ 9.66 ± 0.50•• 0.00 ± 0.00 ⋆ 2.26 ± 0.62••
0.15 0.00 ± 0.00 ⋆ 9.48 ± 0.39•• 0.00 ± 0.00 ⋆ 6.22 ± 0.91••
0.20 0.00 ± 0.00 ⋆ 10.08 ± 0.46•• 0.00 ± 0.00 ⋆ 12.98 ± 1.04•⋆
0.25 0.00 ± 0.00 ⋆ 9.90 ± 0.41•• 0.08 ± 0.06 23.12 ± 0.92•
0.30 0.00 ± 0.00 ⋆ 9.96 ± 0.42•• 0.17 ± 0.08•⋆ 33.28 ± 0.86•⋆
0.35 0.00 ± 0.00 ⋆ 10.40 ± 0.35•• 0.89 ± 0.17•⋆ 44.20 ± 0.61•⋆
0.40 0.00 ± 0.00 ⋆ 12.44 ± 0.33•• 5.34 ± 0.58•⋆ 57.44 ± 0.63•
0.45 0.00 ± 0.00 ⋆ 12.96 ± 0.35•• 14.77 ± 0.70•⋆ 72.78 ± 0.48•⋆
0.50 16.52 ± 2.37•⋆ 22.30 ± 1.81•• 22.67 ± 1.05•◦ 84.76 ± 0.35••

randomizer
ρ OneMax Trap MMDP Leading-Ones

0.00 0.00 ± 0.00 ⋆ 9.46 ± 0.34•• 0.00 ± 0.00 ⋆ 0.00 ± 0.00 ⋆
0.05 0.00 ± 0.00 ⋆ 10.16 ± 0.45•• 0.00 ± 0.00 ⋆ 0.00 ± 0.00 ⋆
0.10 0.00 ± 0.00 ⋆ 8.82 ± 0.41•• 0.00 ± 0.00 ⋆ 0.20 ± 0.20
0.15 0.00 ± 0.00 ⋆ 9.60 ± 0.49•• 0.00 ± 0.00 ⋆ 0.12 ± 0.12
0.20 0.00 ± 0.00 ⋆ 9.34 ± 0.48•• 0.00 ± 0.00 ⋆ 0.60 ± 0.44
0.25 0.00 ± 0.00 ⋆ 9.04 ± 0.39•• 0.00 ± 0.00 ⋆ 0.50 ± 0.25••
0.30 0.00 ± 0.00 ⋆ 9.82 ± 0.39•• 0.00 ± 0.00 ⋆ 1.52 ± 0.56••
0.35 0.00 ± 0.00 ⋆ 9.46 ± 0.52•• 0.00 ± 0.00 ⋆ 2.12 ± 0.70••
0.40 0.00 ± 0.00 ⋆ 8.86 ± 0.42•• 0.04 ± 0.04 6.20 ± 1.25••
0.45 0.00 ± 0.00 ⋆ 8.84 ± 0.39•• 0.13 ± 0.07◦⋆ 9.22 ± 1.22••
0.50 0.00 ± 0.00 ⋆ 9.92 ± 0.34•• 1.61 ± 0.22•• 17.20 ± 1.53••

mutation rate 1/ℓ per bit, where ℓ is the number of bits), and elitist generational
replacement. The population size is µ = 100 individuals, and the total number of
fitness evaluations is 106 (including redundant computations). The unreliability
rate ρ ranges from 0 to 0.5 in steps of 0.05 (the results for ρ = 0 can be used
for gauging the basal performance of the EA). We consider a raw EA that uses
no unreliability handling mechanism in addition to the majorityk and averagek
handlers. For the latter two, the value k = 3 is considered. Four objective func-
tions are used in the experiments, namely OneMax (using ℓ = 100 bits), Deb’s
4-bit fully deceptive function [6] (Trap, using 25 blocks of 4 bits), Goldberg et
al.’s Massively Multimodal Deceptive Problem [8] (MMDP, using 17 blocks of
6 bits), and Rudolph’s Leading-Ones [18] (using ℓ = 100 bits). We perform 50
runs for each handler and problem.

Table 1–3 show the numerical results attained. Each entry in these tables
indicates the mean relative error (percentage distance from the optimum) and
the standard error of the mean, measured from the best true fitness of any solu-
tion generated during each run. In addition, two symbols indicate the statistical
significance (according to a Wilcoxon test) of the difference with respect to the

6 Carlos Cotta

Table 3. Results (mean deviation from the optimum) of the EA with average3.

inverter
ρ OneMax Trap MMDP Leading-Ones

0.00 0.00 ± 0.00 ⋆ 9.46 ± 0.34•• 0.00 ± 0.00 ⋆ 0.00 ± 0.00 ⋆
0.05 0.00 ± 0.00 ⋆ 9.30 ± 0.37•• 0.00 ± 0.00 ⋆ 0.00 ± 0.00 ⋆
0.10 0.00 ± 0.00 ⋆ 9.02 ± 0.41•• 0.04 ± 0.04 0.14 ± 0.11 ⋆
0.15 0.00 ± 0.00 ⋆ 9.04 ± 0.33•• 0.13 ± 0.07◦◦ 3.00 ± 0.77•⋆
0.20 0.00 ± 0.00 ⋆ 10.50 ± 0.32•• 0.41 ± 0.14•• 15.16 ± 1.50•
0.25 0.00 ± 0.00 ⋆ 10.78 ± 0.35•• 1.23 ± 0.18•• 22.82 ± 1.08•⋆
0.30 0.00 ± 0.00 ⋆ 11.56 ± 0.35•• 2.70 ± 0.25•• 36.00 ± 0.94••
0.35 0.00 ± 0.00 ⋆ 12.24 ± 0.33•• 4.37 ± 0.31•• 47.62 ± 0.68••
0.40 0.00 ± 0.00 ⋆ 12.92 ± 0.34•• 9.56 ± 0.37•• 56.88 ± 0.57•⋆
0.45 0.00 ± 0.00 ⋆ 13.62 ± 0.32•• 17.17 ± 0.69•• 73.30 ± 0.40•
0.50 19.10 ± 2.33•• 28.26 ± 1.95•• 26.17 ± 0.80•• 85.26 ± 0.30••

randomizer
ρ OneMax Trap MMDP Leading-Ones

0.00 0.00 ± 0.00 ⋆ 9.46 ± 0.34•• 0.00 ± 0.00 ⋆ 0.00 ± 0.00 ⋆
0.05 0.00 ± 0.00 ⋆ 9.52 ± 0.51•• 0.00 ± 0.00 ⋆ 0.00 ± 0.00 ⋆
0.10 0.00 ± 0.00 ⋆ 9.50 ± 0.47•• 0.00 ± 0.00 ⋆ 0.00 ± 0.00 ⋆
0.15 0.00 ± 0.00 ⋆ 9.46 ± 0.51•• 0.00 ± 0.00 ⋆ 0.00 ± 0.00 ⋆
0.20 0.00 ± 0.00 ⋆ 8.74 ± 0.42•• 0.00 ± 0.00 ⋆ 0.00 ± 0.00 ⋆
0.25 0.00 ± 0.00 ⋆ 9.54 ± 0.42•• 0.00 ± 0.00 ⋆ 0.00 ± 0.00 ⋆
0.30 0.00 ± 0.00 ⋆ 10.02 ± 0.37•• 0.00 ± 0.00 ⋆ 0.00 ± 0.00 ⋆
0.35 0.00 ± 0.00 ⋆ 10.06 ± 0.36•• 0.00 ± 0.00 ⋆ 0.00 ± 0.00 ⋆
0.40 0.00 ± 0.00 ⋆ 10.48 ± 0.41•• 0.00 ± 0.00 ⋆ 0.00 ± 0.00 ⋆
0.45 0.00 ± 0.00 ⋆ 10.62 ± 0.38•• 0.17 ± 0.08• 0.00 ± 0.00 ⋆
0.50 0.00 ± 0.00 ⋆ 11.12 ± 0.35•• 0.21 ± 0.09•⋆ 0.02 ± 0.02 ⋆

base case (no handler, ρ = 0) and to the best result for all three scenarios (using
averagek, majorityk, or no handler) and the same ρ and cheating model (en-
try marked with ⋆) respectively. In either case, • and ◦ indicate significance at
α = .05 and α = 0.1 respectively, and absence of a symbol indicates no statistical
significance of the corresponding difference. Analyzing firstly the results corre-
sponding to the raw EA (Table 1) it is evident that in general the unreliability
of the environment has a clear toll on the performance of the EA, whose results
markedly degrade for increasing values of ρ. There is an interesting anomaly for
the Trap function, in which moderate values of ρ provide a subtle improvement
in the results. Clearly, the slightly misleading fitness information seems to be
carrying the EA out of some of the deceptive local optima. On a more general
note, it is clear that the randomizer model provides a milder disturbance than the
inverter model across all problems. This is consistent with the lower population
diversity attained during the run (compare the curves labelled as none in Fig. 1
and Fig. 2 for each problem, which indicate a more more focused search for the
latter model).

Enhancing Evolutionary Optimization under Byzantine Faults 7

(a) (b)

(c) (d)

Fig. 1. Minimum population entropy as a function of the unreliability rate for the
inverter model. The data points are the average of 50 runs, the error bars span the
standard error of the mean, and the solid lines are visual guides. (a) OneMax (b)
Trap (c) MMDP (d) Leading-Ones.

Focusing on this inverter model, observe now the results of majority3 and
average3 (Tables 2 and 3 respectively). The majority3 handler provides a clear
improvement for this harder unreliability model. The OneMax problem is quite
simple and therefore the EA seems to be less sensitive to ρ, but still this handler
matches the best results and improves these for the largest value of ρ. The
result for the Trap function are slightly worse due to the previously mentioned
anomaly, which the majority3 actually ameliorates. This can be also seen in Fig. 1,
in which the lowest diversity of the population is depicted for the inverter model.
Note how the majority3 handler manages to reach a lower entropy, which indicates
greater convergence of the population. Unfortunately, for the Trap function this
implies falling into suboptimal regions. Note also in Table 3 that for low values
of ρ the average3 handler is actually more competitive in the Leading-Ones

8 Carlos Cotta

(a) (b)

(c) (d)

Fig. 2. Minimum population entropy as a function of the unreliability rate for the
randomizer model. The data points are the average of 50 runs, the error bars span the
standard error of the mean, and the solid lines are visual guides. (a) OneMax (b)
Trap (c) MMDP (d) Leading-Ones.

function. The reason for this may be found in the nature of this particular
objective function: the worst values (typically those of random solutions in the
initial population) are close to 0, and therefore tend to be out-weighted when
averaged with high true fitness values, therefore providing valuable information
to be exploited by the EA.

Finally, the randomizer model seems to provide a less challenging scenario,
and this is where the average3 handler seems to excel. The results for the One-
Max and the Leading-Ones functions are markedly superior, and this can be
basically attributed to the same reason mentioned before with regard to the
structure of fitness values and the possibility for high true fitness values to drag
the average upwards, supplying guidance to the EA. This is also true for the
MMDP function in which the signal-to-noise ratio is lower but the diversity

Enhancing Evolutionary Optimization under Byzantine Faults 9

balance seems to fit well to the EA. Indeed, it can be observed in Fig. 2 that the
search is much more focused under this failure model, as reflected by the smaller
population entropy attained by the EA.

4 Conclusions

The presence of cheaters can have a noticeable impact in the performance of
panmictic EAs, even for simple objective functions. As the unreliability of the
environment increases, the performance of the EA (as measured by the aver-
age fitness attained after a fixed number of invocations to the fitness function)
drops in general. We have considered two mechanisms to cope with this issue
on the basis of performing redundant computations. A handler based on averag-
ing (reminiscent of the approaches commonly used in noisy environments) can
work well in a relatively benign scenario in which cheaters provide random yet
unbiased values. We hypothesize the reason lies in the possibility of marginally
exploiting some fitness gradient information via the aggregate average. However,
dealing with malevolent agents that actively try to provide fitness information
manipulated to direct the algorithm in the opposite direction is better dealt with
using a handler based on majority voting (defaulting to the average if no major-
ity is obtained), which imposes a more strict criterion for assigning fitness, and
relies of the observation that for unreliability rates less than 0.5 (and therefore
non-pathological) the chances of obtaining a majority vote for the real fitness is
higher than the opposite. Further research is required to optimize the computa-
tional tradeoffs involved in these mechanisms. We are currently working along
this line, as well as towards the development of more sophisticated handling
mechanisms and their deployment in more complex scenarios.

Acknowledgments

The author thanks Daan van den Berg (VU Amsterdam) for interesting discus-
sions arising from a previous work [3].

References

1. Camacho, D., et al.: From ephemeral computing to deep bioinspired algorithms:
New trends and applications. Future Generation Computer Systems 88, 735–746
(2018)

2. Cantú-Paz, E.: Master-slave parallel genetic algorithms. In: Efficient and Accurate
Parallel Genetic Algorithms, pp. 33–48. Springer US, Boston, MA (2001)

3. Cotta, C.: On the performance of evolutionary algorithms with unreliable fitness
information. In: Mora, A.M. (ed.) EvoStar 2023 Late Breaking Abstracts. Brno,
Czech Republic (2023)

4. Cotta, C.: Tackling adversarial faults in panmictic evolutionary algorithms. In:
Genetic and Evolutionary Computation Conference Companion (GECCO’23 Com-
panion). ACM Press, New York, NY (2023), 2 pages, In press

10 Carlos Cotta

5. Cotta, C., Olague, G.: Resilient bioinspired algorithms: A computer system design
perspective. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds.) Ap-
plications of Evolutionary Computation, Lecture Notes in Computer Science, vol.
13224, pp. 619–631. Springer, Cham (2022)

6. Deb, K., Goldberg, D.: Analyzing deception in trap functions. In: Whitley, L.
(ed.) Second Workshop on Foundations of Genetic Algorithms. pp. 93–108. Morgan
Kaufmann Publishers, Vail, Colorado, USA (1993)

7. Fernández de Vega, F.: Evolutionary algorithms: Perspectives on the evolution of
parallel models. In: Novais, P., Camacho, D., Analide, C., El Fallah Seghrouchni,
A., Badica, C. (eds.) Intelligent Distributed Computing IX. pp. 13–22. Springer
International Publishing, Cham (2016)

8. Goldberg, D., Deb, K., Horn, J.: Massive multimodality, deception and genetic
algorithms. In: Männer, R., Manderick, B. (eds.) Parallel Problem Solving from
Nature - PPSN II. pp. 37–48. Elsevier Science Inc., New York, NY, USA (1992)

9. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments – A sur-
vey. IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)

10. Lavoie, E., Hendren, L.: Personal volunteer computing. In: Proceedings of the 16th
ACM International Conference on Computing Frontiers. pp. 240–246. ACM, New
York NY (2019)

11. Mengistu, T.M., Che, D.: Survey and taxonomy of volunteer computing. ACM
Computing Surveys 52(3) (2019)

12. Muszynski, J.: Cheating-Tolerance of Parallel and Distributed Evolutionary Algo-
rithms in Desktop Grids and Volunteer Computing Systems. Ph.D. thesis, Univer-
sity of Luxembourg (2015)

13. Muszyński, J., Varrette, S., Bouvry, P., Seredyński, F., Khan, S.U.: Convergence
analysis of evolutionary algorithms in the presence of crash-faults and cheaters.
Computers & Mathematics with Applications 64(12), 3805–3819 (2012)

14. Muszyński, J., Varrette, S., Dorronsoro, B., Bouvry, P.: Distributed cellular evolu-
tionary algorithms in a byzantine environment. In: 2015 IEEE International Par-
allel and Distributed Processing Symposium Workshop. pp. 307–313. IEEE Press,
Hyderabad, India (2015)

15. Nogueras, R., Cotta, C.: Self-healing strategies for memetic algorithms in unstable
and ephemeral computational environments. Natural Computing 16(2), 189–200
(2017)

16. Nogueras, R., Cotta, C.: Analyzing self-⋆ island-based memetic algorithms in het-
erogeneous unstable environments. The International Journal of High Performance
Computing Applications 32(5), 676–692 (2018)

17. Rakshit, P., Konar, A., Das, S.: Noisy evolutionary optimization algorithms – A
comprehensive survey. Swarm and Evolutionary Computation 33, 18–45 (2017)

18. Rudolph, G.: Convergence properties of evolutionary algorithms. Verlag Dr. Kovač
(1997)

19. Sarmenta, L.F.: Sabotage-tolerance mechanisms for volunteer computing systems.
Future Generation Computer Systems 18(4), 561–572 (2002)

20. Varrette, S., Tantar, E., Bouvry, P.: On the resilience of [distributed] EAs against
cheaters in global computing platforms. In: 25th IEEE International Symposium
on Parallel and Distributed Processing Workshop Proceedings. pp. 409–417. IEEE,
Anchorage AK (2011)

21. Xiong, N., Molina, D., Ortiz, M.L., Herrera, F.: A walk into metaheuristics for engi-
neering optimization: Principles, methods and recent trends. International Journal
of Computational Intelligence Systems 8, 606–636 (2015)

	Enhancing Evolutionary Optimization Performance under Byzantine Fault Conditions

