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Abstract. We consider the use of evolutionary algorithms (EAs) in
byzantine environments in which fitness information can be computed
by malicious agents. The performance of panmictic EAs is analyzed in
this context, measuring the influence of the rate of unreliability of the en-
vironment. It is shown that even for simple problems there is noticeable
performance degradation, highlighting the need for appropriate mecha-
nisms to cope with this issue.
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1 Introduction

Bioinspired optimization is a computationally intensive activity that is very
much in need of abundant computational resources. In this sense, unconven-
tional computational environments such as cloud, volunteer-computing and P2P
networks have received great interest in recent years as adequate platforms to
successfully solve complex problems [3]. The irregular and dynamic computa-
tional landscape that these platforms provide can pose a challenge to bioinspired
algorithms though, thus underlining the need for algorithmic resilience [2]. For-
tunately, bioinspired techniques in general and evolutionary algorithms (EAs)
in particular are inherently quite resilient and are also flexible enough to being
adapted for working in environments plagued with volatility or heterogeneity [6].

In this work we turn our attention to disruptions caused by malicious activ-
ities [8]. This kind of phenomena fall under the umbrella of byzantine failures,
and can be described as cheating faults, whereby a contributor of computational
resources purposefully alters the outcome of the computation by submitting er-
roneous results (aimed to feigning an activity or even to willingly damage the
computation). These faults can have an impact on the algorithm depending
on the components of the algorithm that are affected [4]. Empirically, it has
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been shown that EAs (particularly cellular EAs) can withstand certain types of
byzantine failures [5]. We are here interested in analyzing both qualitatively and
quantitatively what the effect of other types of byzantine failures can be. To this
end, we initially focus on panmictic EAs.

2 Algorithmic Setting

We consider an elitist generational EA with a panmictic population. This algo-
rithm is used to optimize a certain objective function f(·). We will denote the
values returned by this function as the true fitness. Let us further assume that
a master-slave model [1] is used to compute fitness. Thus, we have a (possibly
dynamic) network of computational nodes providing this fitness evaluation ser-
vice. Some of these nodes are cheaters though. Similarly to [5], we consider a
very simple model in which a fitness evaluation request returns an erroneous
result with some probability p (which will be later a control parameter in the

experimentation). We will denote this result f̂ t(·) as the unreliable fitness, where
the superscript t is used to indicate the time t at which this value is returned
(unreliable nodes are not assumed to consistently return the same erroneous re-
sult should the same solution been submitted for evaluation multiple times). Of
course, there is no way of knowing a priori whether the value obtained when eval-
uating an individual is its true fitness or is a misleading value. Now, we consider
two simple models of malicious behavior with regard to unreliable fitness:

– randomizer: the malicious computational node will return a value which is
uncorrelated with the true fitness. This can be a random value within the
range of the function, or -in our implementation- the true fitness value of
another solution evaluated previously. This behavior would be related to
nodes which want to feign an activity, without doing the actual work.

– inverter: in this case, the value returned is negatively correlated with the
true fitness. In our experiments, we keep track of the maximum fitness f t

max

and minimum fitness f t
min computed so far, and return the reflection of the

true fitness within this interval, i.e., f̂ t(x) = f t
max − (f(x) − f t

min). This
behavior would be related to nodes which want to actually inflict damage in
the computation by leading the algorithm in the wrong direction.

3 Experimentation

We have conducted experiments with four objective functions, although due to
space limitations we focus here on two of them, namely OneMax and Leading-
Ones. In both cases, we consider 100-bit solutions. As to the EA, it has a
population of µ = 100 individuals, uses binary tournament selection, single-
point crossover (pX = .9), bit-flip mutation (pM equivalent to a mutation rate
1/ℓ per bit, where ℓ is the genome length), and elitist generational replacement.
The total number of fitness evaluations is 106. As to the unreliability rate p,
since values p > .5 arguably correspond to pathological situations, we focus on
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Fig. 1: Best true fitness of all solutions generated by the algorithm. (a)OneMax
(b) Leading-Ones.

values between 0 and 0.5 in steps of 0.05, and use the results for p = 0 (reliable
scenario) to define the base-performance of the algorithm. We will focus on the
inverter model. We perform 50 runs for each parameter setting and problem.

Figs. 1(a)–(b) show the best true fitness found as a function of the unrelia-
bility probability p. Similarly to what was found in [5] for a scenario analogous
to randomizer, OneMax is barely affected by the unreliability factor p except
in extreme cases. However, and quite distinctly, Leading-Ones is much more
sensitive and not only fails to hit the optimum consistently for p > 0 but signifi-
cantly degrades as p increases too. It must be noted that even though OneMax
seems less affected (ultimately due to its simplicity), the search dynamics of the
EA suffers greatly in the presence of unreliable fitness. If we define the relative
effort of the algorithm for a certain unreliability rate p as the ratio between
the mean number of evaluations required to find a solution whose true fitness is
within some percentage of the optimum for that value of p and for p = 0, we can
see in Fig. 2(a) how this effort noticeably grows up to nearly an order of magni-
tude for the larger values of p, and even precludes reaching fitness values close to
the optimal value. The presence of unreliable fitness information makes the EA
lose focus, as shown in Fig. 2(b) with a much larger population variance due to
the presence of impostors who survive by virtue of malicious fitness assignation.

4 Conclusions

We have here studied the impact that the presence of unreliable (and even ad-
versarial) fitness information has in the performance of panmictic EAs. It has
been shown that even for simple objective functions unreliability can pose se-
rious problems in terms of convergence and the effort required to attain good
quality solutions. We are currently working on mechanisms to cope with this
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Fig. 2: (a) Relative effort of the algorithm to find a certain approximation of
the optimum (lines are discontinued if the approximation cannot be found for a
certain unreliability rate). Note the logarithmic y-axis. (b) Minimum population
entropy during the run. In both cases, the results are for OneMax.

issue. Ideas from noisy environments [7] can be serve as inspiration, although
the nature of the phenomenon considered here is fundamentally different since
uncertain fitness information does not gravitate around true fitness in this case.
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