
Tackling Adversarial Faults in Panmictic Evolutionary Algorithms
Carlos Cotta

∗

ccottap@lcc.uma.es

ITIS Software, University of Málaga

Málaga, Spain

ABSTRACT

We analyze the performance of panmictic evolutionary algorithms

in byzantine environments in which fitness can be computed by

malicious agents. We measure the influence of the rate of unrelia-

bility of the environment, and the effect that a simple mechanism

based on redundant computation can have on the results attained.

CCS CONCEPTS

• Computing methodologies→ Genetic algorithms; Random-

ized search; • Theory of computation → Design and analysis

of algorithms.

KEYWORDS

Evolutionary Algorithms, Byzantine faults, Panmixia, Resilience

ACM Reference Format:

Carlos Cotta. 2023. Tackling Adversarial Faults in Panmictic Evolutionary

Algorithms. InGenetic and Evolutionary Computation Conference Companion
(GECCO ’23 Companion), July 15–19, 2023, Lisbon, Portugal. ACM, New York,

NY, USA, 2 pages. https://doi.org/10.1145/3583133.3596426

1 INTRODUCTION

When using emerging computational environments such as peer-to-

peer networks and volunteer computing networks [5] for running

computationally intensive tasks –such as evolutionary algorithms

(EAs)– challenges are manifold due to the dynamic nature and

irregularity of the resulting computational landscape [1], hence

underpinning the need for algorithmic resilience [3]. In this work

we focus on another hazard source, namely malicious activities [9].

More precisely, we consider cheating faults, whereby a contributor

of computational resources alters the outcome of the computation

by purposefully submitting wrong results. It has been shown that

these faults can have an impact on EAs depending on which com-

ponents of the algorithm are affected by such faults [6], and that

cellular EAs can withstand certain types of byzantine failures [7].

We focus here on analyzing the effect on EAs of other types of

cheating faults, and how to counter them.

∗
This work is supported by Spanish Ministry of Science and Innovation under project

Bio4Res (PID2021-125184NB-I00 – http://bio4res.lcc.uma.es) and by Universidad de

Málaga, Campus de Excelencia Internacional Andalucía Tech.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0120-7/23/07.

https://doi.org/10.1145/3583133.3596426

2 ALGORITHMIC SETTING

Let us consider an EA with a panmictic population. This algorithm

optimizes a certain objective function 𝑓 (·), which we will denote

as the true fitness function. In order to evaluate this function for the

individuals in the population, let us further assume that a master-

slave model is used, i.e., the task is distributed among a network of

computational nodes that provide this fitness evaluation service,

some of which are cheaters. As a initial step, we consider a very
simple model in which a fitness evaluation request returns a wrong

result with some probability 𝜌 (similarly to [7]). Let this wrong

result
ˆ𝑓 𝑡 (·) be termed the unreliable fitness, where the superscript

𝑡 is used to denote the fact that cheaters are not assumed to consis-

tently return the same wrong result at any time evaluation of the

same solution is attempted. Needless to say, we cannot determine a

priori whether the value obtained when evaluating an individual is

its true fitness or is a wrong value.

Following [2], we are going to consider a simple model of mali-

cious behavior (termed inverter), whereby cheaters return a value

which is negatively correlated with the true fitness in order to

purposefully damage the optimization process. In our experiments,

ˆ𝑓 𝑡 (𝑥) = 𝑓 𝑡
max

−(𝑓 (𝑥)− 𝑓 𝑡
min

), where 𝑓 𝑡
max

and 𝑓 𝑡
min

are the maximum

and minimum fitness observed by cheaters so far. Optimization in

the presence of this kind of failures has some resemblance with

the case of noisy environments [4, 8] although it must be noted

that the fact that the unreliable fitness does not gravitate around

some underlying true fitness (as it is commonly assumed in many

scenarios with uncertainty) makes the nature of the phenomenon

be fundamentally different. As an initial step, we consider a simple

handling mechanism which we term majority𝑘 . This mechanism

is based on redundant computation: each individual is evaluated 𝑘

times, keeping the most repeated value (or an average of the most

repeated values if there was a tie).

3 RESULTS

We have experimented with four objective functions, namely 100-

OneMax, (25,4)-Trap, 17-MMDP, and 100-Leading-Ones. As to

the EA, it has a population of 𝜇 = 100 individuals, uses binary

tournament selection, single-point crossover (𝑝𝑋 = .9), bit-flip

mutation (𝑝𝑀 equivalent to a mutation rate 1/ℓ per bit, where ℓ is
the number of bits), and elitist generational replacement. The total

number of fitness evaluations is 10
6
(redundant computations are

accounted for in this budget). As to the unreliability rate 𝜌 , we focus

on values between 0 and 0.5 in steps of 0.05, and use the results

for 𝜌 = 0 to define the base-performance of the algorithm. We

will focus on the majority3 handler. We perform 50 runs for each

parameter setting and problem. Table 1 shows the results obtained.

Notice firstly that while OneMax is barely affected due to its sim-

plicity, other problems result in noticeably different performance.

This is more clearly seen for the Leading-Ones problem in which

https://orcid.org/0000-0001-8478-7549
https://doi.org/10.1145/3583133.3596426
http://bio4res.lcc.uma.es
https://doi.org/10.1145/3583133.3596426


GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Carlos Cotta

(a) (b) (c) (d)

Figure 1: Minimum population entropy as a function of the unreliability rate. The data points are the average of 50 runs and

the error bars span the standard error of the mean. (a) OneMax (b) Trap (c) MMDP (d) Leading-Ones

Table 1: Results for the inverter model using no handler (four leftmost columns) and using the majority3 handler (four

rightmost columns). Each entry in the table indicates the mean and standard error of the mean of the best true fitness generated

for the corresponding problem and unreliability rate, and two symbols indicating the the statistical significance (according to a

Wilcoxon test) of the difference with respect to the base case (no handler, 𝜌 = 0) and to the corresponding case (same 𝜌) with no

handler. •, ◦ and no symbol indicate significance at 𝛼 = .05, 𝛼 = 0.1 and no statistical significance respectively.

none majority3

𝜌 OneMax Trap MMDP Leading-Ones OneMax Trap MMDP Leading-Ones

0.00 100.00 ± 0.00 23.75 ± 0.13 17.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 22.64 ± 0.09•• 17.00 ± 0.00 100.00 ± 0.00

0.05 100.00 ± 0.00 23.69 ± 0.11 17.00 ± 0.00 97.20 ± 0.69• 100.00 ± 0.00 22.59 ± 0.12•• 17.00 ± 0.00 99.68 ± 0.21◦•
0.10 100.00 ± 0.00 23.74 ± 0.10 17.00 ± 0.00 89.06 ± 1.00• 100.00 ± 0.00 22.59 ± 0.12•• 17.00 ± 0.00 97.74 ± 0.62••
0.15 100.00 ± 0.00 24.06 ± 0.09◦ 17.00 ± 0.00 81.12 ± 0.80• 100.00 ± 0.00 22.63 ± 0.10•• 17.00 ± 0.00 93.78 ± 0.91••
0.20 100.00 ± 0.00 23.84 ± 0.10 17.00 ± 0.00 73.68 ± 0.90• 100.00 ± 0.00 22.48 ± 0.11•• 17.00 ± 0.00 87.02 ± 1.04••
0.25 100.00 ± 0.00 23.50 ± 0.09• 17.00 ± 0.00 63.06 ± 0.58• 100.00 ± 0.00 22.52 ± 0.10•• 16.99 ± 0.01 76.88 ± 0.92••
0.30 100.00 ± 0.00 23.25 ± 0.08• 16.88 ± 0.04• 54.88 ± 0.61• 100.00 ± 0.00 22.51 ± 0.10•• 16.97 ± 0.01•• 66.72 ± 0.86••
0.35 100.00 ± 0.00 22.88 ± 0.07• 15.91 ± 0.12• 46.98 ± 0.71• 100.00 ± 0.00 22.40 ± 0.09•• 16.85 ± 0.03•• 55.80 ± 0.61••
0.40 100.00 ± 0.00 22.39 ± 0.07• 14.64 ± 0.17• 35.26 ± 0.42• 100.00 ± 0.00 21.89 ± 0.08•• 16.09 ± 0.10•• 42.56 ± 0.63••
0.45 98.78 ± 0.85 22.28 ± 0.06• 14.11 ± 0.18• 24.36 ± 0.40• 100.00 ± 0.00 21.76 ± 0.09•• 14.49 ± 0.12• 27.22 ± 0.48••
0.50 83.20 ± 2.41• 20.10 ± 0.49• 13.49 ± 0.22• 16.92 ± 0.39• 83.48 ± 2.37• 19.42 ± 0.45•• 13.15 ± 0.18•◦ 15.24 ± 0.35••

there is a very marked degradation. For this problem and MMDP

majority3 provides a statistically significant improvement for a

broad range of values of 𝜌 . Quite interestingly, the performance

of the raw EA improves for Trap when 𝜌 is moderately low. This

is due to a boost in diversity that allows the algorithm escaping

from local optima. Indeed, as seen in Figure 1, the use of the major-
ity3 handler keeps the search more focused (which is reflected in a

lower population diversity), and this seems counterproductive in

this particular problem.

4 CONCLUSIONS

We have here studied the impact that the presence of adversar-

ial cheaters has in the performance of panmictic EAs. It has been

shown that these can pose a problem even for simple objective

functions. A simple model based on redundant computation can

provide improved results in terms of solutions attained, albeit the

computational tradeoffs involved deserve further study. We are cur-

rently working towards more sophisticated handling mechanisms

and algorithmic models. More realistic problems will be considered

as well.

REFERENCES

[1] David Camacho et al. 2018. From ephemeral computing to deep bioinspired

algorithms: New trends and applications. Future Generation Computer Systems 88
(2018), 735–746.

[2] Carlos Cotta. 2023. On the Performance of Evolutionary Algorithms with Unre-

liable Fitness Information. In EvoStar 2023 Late Breaking Abstracts, Antonio M.

Mora (Ed.). Brno, Czech Republic, 4 pages.

[3] Carlos Cotta and Gustavo Olague. 2022. Resilient Bioinspired Algorithms: A

Computer System Design Perspective. In Applications of Evolutionary Computa-
tion, Juan Luis Jiménez Laredo et al. (Eds.). Lecture Notes in Computer Science,

Vol. 13224. Springer, Cham, 619–631.

[4] Yaochu Jin and Jürgen Branke. 2005. Evolutionary Optimization in Uncertain

Environments – A Survey. IEEE Transactions on Evolutionary Computation 9, 3

(2005), 303–317.

[5] Tessema M. Mengistu and Dunren Che. 2019. Survey and Taxonomy of Volunteer

Computing. Comput. Surveys 52, 3, Article 59 (2019), 35 pages.
[6] Jakub Muszyński et al. 2012. Convergence analysis of evolutionary algorithms

in the presence of crash-faults and cheaters. Computers & Mathematics with
Applications 64, 12 (2012), 3805–3819.

[7] Jakub Muszyński et al. 2015. Distributed Cellular Evolutionary Algorithms in

a Byzantine Environment. In 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop. IEEE Press, Hyderabad, India, 307–313.

[8] Pratyusha Rakshit, Amit Konar, and Swagatam Das. 2017. Noisy evolutionary

optimization algorithms – A comprehensive survey. Swarm and Evolutionary
Computation 33 (2017), 18–45.

[9] Luis F.G. Sarmenta. 2002. Sabotage-tolerance mechanisms for volunteer computing

systems. Future Generation Computer Systems 18, 4 (2002), 561–572.


	Abstract
	1 Introduction
	2 Algorithmic Setting
	3 Results
	4 Conclusions
	References

