1 DYNASTICALLY OPTIMAL RECOMBINATION (DOR)

Let \(x \) and \(y \) be two individuals from a solution space \(S \). A recombination operator \(X \) can be defined as a function \(X: S \times S \times S \rightarrow [0, 1] \), where \(X(x, y, z) \) is the probability of generating \(z \) when recombining \(x \) and \(y \) using \(X \). Clearly,

\[
\forall x \in S, \forall y \in S : \sum_{z \in S} X(x, y, z) = 1 \quad (1)
\]

The Dynamic Potential of \(x \) and \(y \) is defined as

\[
\Gamma_{(x,y)} = \{ z | \forall \xi \in \Xi : z \in \xi \Rightarrow (x \in \xi) \land (y \in \xi) \} \quad (2)
\]

where \(\Xi \) is the set of basic formae.

A recombination operator is said to be transmitting iff \(\{z|X(x, y, z) > 0\} \subseteq \Gamma_{(x,y)} \). Now, let \(\phi : S \rightarrow R^+ \) be the target function (minimization is assumed). DOR is a transmitting recombination operator for which:

\[
\text{DOR}(x, y, z) > 0 \Rightarrow \forall w \in \Gamma_{(x,y)} : \phi(w) \geq \phi(z) \quad (3)
\]

Thus, no other solution in the dynastic potential is better than any solution generated by DOR. According to this definition, the use of DOR implies performing an exhaustive search in a small subset of the solution space. Such an exhaustive search can be efficiently done by means of a subordinate A*-like mechanism.

DOR uses optimistic estimations \(\hat{\phi}(\Psi) \) of the fitness of partially specified solutions \(\Psi \) (i.e., \(\forall z \in \Psi : \hat{\phi}(\Psi) \leq \phi(z) \)) for directing the search to promising regions. These solutions are incrementally constructed using the formae to which any of the parents belong. More precisely, let \(\Psi_0 = S \). Subsequently,

\[
\Psi_{t+1}^{2i} = \Psi_t^i \cap \Sigma(\Psi_t^i, x), \quad (4)
\]

\[
\Psi_{t+1}^{2i+1} = \Psi_t^i \cap \Sigma(\Psi_t^i, y) \quad (5)
\]

are considered. Whenever \(\bar{\phi} < \hat{\phi}(\Psi) \) (where \(\bar{\phi} \) is the fitness of the best-so-far solution generated during this process), the macro-forma \(\Psi \) is closed (i.e., discarded), hence pruning dynastically suboptimal solutions. Otherwise, the process is repeated for open macro-formae. Each \(\Sigma(\Psi, w) \) is termed a construction unit. These construction units are defined as

\[
\Sigma(\Psi, w) = \cap_{1 \leq i \leq g} \xi_j, w \in \xi_j, \quad (6)
\]

and their structure depends on the problem considered. The parameter \(g \) is called the granularity of the representation. It can be seen that the size of the set of solutions in which DOR searches is \(O(2^n/g) \), where \(n \) is the dimensionality of the representation.

The minimal value of \(g \) for a given representation is termed the basic granularity (e.g., \(g = 1 \) when the representation is orthogonal). If the computational complexity of DOR is too high for this basic granularity, \(g \) can be increased so as to make DOR combine larger portions of the ancestors.

Experimental results on the Brachystochrone design problem and the Rosenbrock function show a nearly-linear relation between the granularity of the representation and the reduction of the computational effort. Furthermore, it is shown that intermediate granularity values are better since low \(g \) is computationally prohibitive and high \(g \) reduces the chances for information interchange during recombination. This is verified on orthogonal and non-orthogonal separable representations exhibiting epistasis [2].

References