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Abstract. Resilience can be defined as a system’s capability for return-
ing to normal operation after having suffered a disruption. This notion
is of the foremost interest in many areas, in particular engineering. We
argue in this position paper that is is a crucial property for bioinspired
optimization algorithms as well. Following a computer system perspec-
tive, we correlate some of the defining requirements for attaining re-
silient systems to issues, features, and mechanisms of these techniques.
It is shown that bioinspired algorithms do not only exhibit a notorious
built-in resilience, but that their plasticity also allows accommodating
components that may boost it in different ways. We also provide some
relevant research directions in this area.

Keywords: Resilience · Bioinspired Optimization · Robustness · Com-
puter Systems

1 Introduction

Stemming from the Latin word resilire (to jump back, or to rebound), dictio-
naries commonly define resilience as (1) the ability of something to return to
its original shape after it has been pulled, stretched, pressed, bent, etc. and (2)
the ability to become strong, healthy, or successful again after something bad
happens. While the first definition is more in line with a literal Material Sci-
ence interpretation, the second one has a more figurative sense that nevertheless
seems more appropriate within a computational context: it captures the ability of
a computer system to deliver again its functionality after a disruptive event takes
place. While we shall revisit the meaning of resilience later on, let us note here
that it is commonly the case within such a computational context that resilience
is identified as a synonym for fault tolerance and safety at critical applications.
However, notice that fault tolerance does not necessarily implies bouncing back
to normal operation, and can simply entail a well-defined behavior after a fault
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[6]. Hence, we can argue that resilience goes beyond fault tolerance, or at least
that it has its own particularities, some significant overlap with fault tolerance
notwithstanding.

Resilience turns out to be a fundamental feature of technological systems.
Our daily life is notoriously dependent on the availability and proper function-
ing of many networks, computing infrastructures, and most importantly on nu-
merous algorithms running on them. Bioinspired optimization methods are no
exception to this, since not only they can be deployed on irregular, dynamic com-
putational environments [8] but they also may have to face challenges of diverse
nature during their regular operation (dynamic environments, uncertain objec-
tives, byzantine faults, etc.). It is therefore of the foremost interest to analyze
these techniques, the challenges they have to cope with, and the way they can
be appropriately designed from a resilience viewpoint. This position is defended
in this work, in which we try to draw some rough lines to map the ground using
some lessons from other engineering fields, as well as identifying some challenges
in pursue of resilience properties. The rest of this paper is organized as follows:
we firstly discuss some general issues about resilience at large (Sect. 2.1), and
dive into the engineering perspective on this property, and the requirements to
achieve it (Sect. 2.2); then, we proceed to discuss these requirements in the con-
text of bioinspired algorithms, i.e., what they typically entail and/or how they
are often approached (Sect. 3); we close the paper with an outlook and a sketch
of some challenges we believe are important in this area (Sect. 4).

2 Background

2.1 What is Resilience?

There are many different definitions of resilience [22]. The United Nations de-
fined it in the General Assembly Resolution 71/276 as “the ability of a system,
community or society exposed to hazards to resist, absorb, accommodate, adapt
to, transform and recover from the effects of a hazard in a timely and efficient
manner, including through the preservation and restoration of its essential basic
structures and functions through risk management,” cf. [49]. In line with this
definition, the potential sources for sudden, disruptive events are numerous, and
they can have natural or anthropogenic causes: natural disasters, malicious hu-
man activity, health crises, economic meltdowns, and so on [55]. If we consider
a physical, a computational, or a technosocial system [51], the specificities of
the disruptive events can be different. However, the bottom-line remains: they
expose vulnerabilities in the corresponding systems (and in a meta-level, so can
they also do in higher systems that use the former). In response and –most
importantly– in anticipation of this, it is necessary to foster resilience.

Building resilience allows reverting to normal conditions after a shock. Con-
versely, a lack of resilience prevents the restoration of these conditions. In this
sense, it is essential to distinguish between resilience and the related notion of
robustness: while the former refers to the capacity to withstand shocks dynami-
cally, the latter sometimes denote the ability to resist shocks without adapting
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[7]. For example, it is possible to make a system robust by endowing it with
redundant components to ensure continuous operation even if some of them fail.
On the other hand, a system could be resilient by reconfiguring some components
to keep delivering the required functionality after a shock (perhaps, having to
endure a transient period of degraded performance until the reconfiguration is
effective). Of course, these two possibilities are not mutually exclusive and can
be ideally combined cost-effectively.

Resilience is essential to ensure sustainability (and conversely, absence of
resilience results in unsustainability and adverse feedback loops after a crisis).
Quite counterintuitively, sustainability can also be related to risk-exposure, in a
phenomenon known as the volatility paradox [25], whereby systems with a low
systemic risk build-up increasingly fragile, ultimately undermining sustainabil-
ity; much like the immune system requires being confronted with pathogens to
build up defenses, a system that endures crises at a higher frequency will develop
resilience over time. Furthermore, disruptions (temporary shocks notwithstand-
ing) are the catalysts of growth and innovation, which are essential for sustained
progress instead of stagnation (biologists and evolutionary computation practi-
tioners will identify a common theme here).

2.2 Resilience from an Engineering Perspective

Beyond the general definition of resilience provided in the previous subsection,
it is possible to include more specific definitions within the context of Engineer-
ing and more particularly in the context of Information, and Communications
Technology. This will pave the way for attaining a better characterization of
resilience in the domain of bioinspired optimization techniques. To this end, we
will also indicate anthropogenic issues and malicious activities that generate a
lack of trustworthiness in popular deep-learning methodologies. Also, we will
provide examples in robotic technologies and machine learning industries for the
interested reader.

According to [9], a resilient system acting within time, environmental, and
operating conditions is that which is ready to perform its intended function,
guaranteeing the absence of improper system alterations with the ability to an-
ticipate and accommodate changes while executing and conducting servicing and
inspection so that in case of a fault, quick restoration to a specified working con-
dition must be achieved, or otherwise discontinue of the operation in a safe way.
Fig. 1 shows different attributes and measures of resilience relevant to this goal.
Let us briefly discuss these:

• Reliability is a measure of the extent to which a system can provide a con-
tinued service up to a certain time. It is therefore particularly relevant to
safety critical system in which service discontinuation is not an acceptable
possibility.

• Security encloses a subset of attributes, including integrity, maintainability,
and availability.
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Fig. 1. Resilience is a term with multiple aspects such as reliability, security, safety,
performability, robustness, and evolvabiliy.

– Integrity refers to absence of improper system states (be these states
physical or –as it is usually the case in algorithms– logical). Keeping
integrity thus refers to preventing improper alterations to the state.

– Maintainability captures the extent to which a system that has been
damaged/compromised can be repaired.

– Availability refers to the readiness for service. It could be defined as a
measure of how often a certain system is functional.

• Safety amounts to the system’s ability to avoid catastrophic failures, under-
stood as any failure that causes damage to others systems and/or compro-
mises the safety of these. It is thus a measure of the fail-safe capabilities of
the system.

• Performability measures the extent to which a system performs above spe-
cific functioning requirements (be these, speed, accuracy, resource consump-
tion, etc.). It is therefore an indicator of interest for systems whose perfor-
mance can be determined in a quantitative way, as it is the case of bioinspired
optimization algorithms.

• Robustness captures whether the system can deliver correct service con-
ditions beyond the typical domain of operation, and without fundamental
changes to the original system (cf. Sect. 2.1).

• Evolvability measures the extent to which the system can perform changes
on itself, be it decreasing its level of performance or reliability for a specific
time range to compensate for faults or during exceptional circumstances
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(graceful degradation) or by adapting any aspect of its functioning in order
to ensure appropriate (or even improved) performance. It is therefore related
to the notions of elasticity and adaptability. Specifically, engineers consider
that a resilient system must have the ability to be adaptable (which is to be
understood as the ability to evolve while executing; Therefore, adaptability
is a subset of evolvability and may require anticipating changes prior to the
resulting damage, or simply taking actions reacting to such changes).

As we may observe, resilience encompasses important attributes and mea-
sures that people use across science and engineering. Such concepts help to con-
ceptualize different aspects needed to explain resilience. For example, resiliency
naturally appears in robotics and machine learning in connection to malevolent
external actions. Regarding the former, malicious attacks represent a challenging
issue and preventing security vulnerabilities due to human factors is a significant
subject aiming to implement and maintain effective countermeasures [53]. As to
the latter, security is indeed an open issue since the technology is susceptible to
adversarial attacks from hackers [1]. From the viewpoint of evolutionary com-
putation we argue that human and data modeling are two aspects that need
higher attention from the research community with interest in the development
of bioinspired resilient systems.

3 Bioinspired Algorithms as Resilient Systems

Having laid out a general view of resilience in the previous section, as well as
the requirements to attain this property in a computer system, let us discuss
how these apply to the particular case of bioinspired optimization algorithms.
Of course, this particular algorithmic paradigm has its own specifities, which
render some of the issues defined before as only tangentially applicable to these
techniques. This fact notwithstanding, the core requirements for resilience are
relevant in this domain and can be actually quantified, as we shall see. Indeed, it
is possible to group these requirements in a natural way into a number of feature
sets which are described next.

3.1 Integrity and Safety

While integrity and safety may appear to be in principle some of the least ap-
plicable resilience features in this case, they actually characterize an important
issue that has been extensively studied in this domain. These features can be
seen as natural sides of a common issue in bioinspired optimization techniques:
the normal operation of the system should not result in damage in its own state
(let alone catastrophic damage), even accounting for potential external factors.
Leaving aside the latter for a moment, it turns out there is indeed an internal
operational factor that can cause damage to the algorithm state, namely con-
vergence to suboptimal regions of the search space. This is typically due to the
presence of deceptive features [52] in the search landscape, whereby the algo-
rithm is led to local optima which may be in some cases far from the actual
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global optimum [24]. As mentioned before, the issue of premature convergence
and deceptiveness has been one of the major topics studied in the literature,
both from theoretical and experimental perspectives. The use of populations is
widely regarded as one of the primary safeguards of bioinspired optimization
techniques with respect to deceptive local optima, though their ability to escape
from these will greatly depend on the effective maintenance of diversity. For-
tunately, there are numerous mechanisms whereby diversity can be promoted,
either proactively (e.g., use of non-panmictic populations [18], ad-hoc operators
[11, 16], etc. – see also [31]) or reactively (e.g., random immigrants [48], trig-
gered hypermutation[29], etc. – cf. Sect. 3.2). This also means that it is possible
to capitalize on the knowledge available on convergence metrics (see, e.g., [12])
in order to measure the integrity I(t) of the algorithm.

If external factors come into play, integrity and safety become more promi-
nent features. Consider for example the case of volunteer computing (VC) net-
works. The existence of malicious agents who operate within these networks
providing false results (i.e., cheaters) has been long documented [42]. Research
suggests that distributed evolutionary algorithms running in this kind of hostile
environments can indeed tolerate some degree of cheating, and would theoret-
ically converge to the optimum given enough time [30]. Needless to say, these
malicious agents can exert some other pernicious influence on distributed appli-
cations, but most of these are either implementation-dependent (e.g., overflowing
buffers, injecting code, etc.) or can be better dealt with by other resilience re-
quirements (e.g., crashes – see Sect. 3.3).

3.2 Evolvability and Adaptability

Evolvability and adaptability are flagship features of bioinspired optimization
techniques, and surely one of their raisons d’être. Indeed, parameter adaptation
is deeply rooted as a core principle of some bioinspired computation flavors (e.g.,
evolution strategies), and was taxonomized well before the turn of the century
[21]. Of course, adaptation (and self-adaptation) does not limit to parameter
control in bioinspired methods. As a matter of fact, it can be found in other
components such as population structures [15], or the definition of variation op-
erators (e.g., local search mechanisms in memetic algorithms [44]), just to name a
few. This is not surprising, since one of the keystones in practical (meta)heuristic
problem-solving is the fact that tuning the optimization technique to the prob-
lem under consideration is paramount for achieving top performance, and that
transferring a part of this tuning/customization effort from the human designer
to the algorithm itself –i.e., by endowing it with smart mechanisms to self-adapt
to the problem– has been a long pursued goal in the field of metaheuristics [10].
To a large extent, this is something that lies precisely at the root of the notion
of memetic computing [32] (which is understood as the harmonic coordination
of complex computational structures composed of interacting modules –memes–
for problem solving, whose representation is stored and manipulated by the al-
gorithm itself) and hyperheuristics [14] (which comprise heuristic techniques for
intelligently selecting or generating a suitable heuristic for a given situation).
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The previous examples underpin the amenability of bioinspired optimization
methods for accommodating (self-)adaptive components and effectively taking
advantage of them. From a broader perspective, these components are respon-
sible for endowing the algorithm with self-⋆ properties, namely any property
whereby a certain system can exert advanced control on its own functioning
and/or structure [4], ultimately contributing to the resilience of the former.
Such properties may include self-organizing, self-healing, self-configuring or self-
scaling among many others [5], and they turn out to be essential to cope with
some major environmental disruptions as shown next. Before proceeding to that,
let us note that evolvability is multi-faceted, and therefore quantifying E(t) may
depend on the particular feature subject to study (see, e.g., [45, 46]).

3.3 Performability, Recoverability and Robustness

Performability and recoverability arguably capture the quintessential features
required to develop resilience in this context. As anticipated before, it is very
common that from a computational perspective resilience is equated to (or at
least strongly connected to) fault tolerance. There is a large truth in this con-
nection, at least to the extent that fault tolerance is understood as the ability
to keep delivering the expected performance in the presence of failures (maybe
tautologically so). Then again, fault tolerance can be more broadly assumed to
mean well-defined behavior in the presence of failures [6]. Furthermore, even if
we assume that delivering uninterrupted service is what defines a fault-tolerant
system, an argument could be done as to whether this is achieved by means of
some built-in robustness (i.e., the system is capable to withstand failures without
needing to adapt or change its behavior), or by developing resilience (i.e., the
system recovers its performance after a transient degradation phase, by means
of some internal adaptation or reconfiguration), cf. Sect. 2.1. As we shall see,
bioinspired optimization methods can achieve fault tolerance under either inter-
pretation, although in one case they may simply rely on its intrinsic architecture,
whereas in the other the inclusion of appropriate mechanisms may be required.

Focusing on evolutionary algorithms in particular, basic fault-tolerance has
been analyzed from different perspectives. It has been established that the use
of populations provides some intrinsic redundancy, whereby moderate losses of
individuals do not result in major performance degradation in master-slave pan-
mictic models [27], fine-grained (cellular) decentralized models [26], and coarse-
grained (island-based) decentralized models [20], and this robustness can be
enhanced via standard fault-tolerance mechanisms such as checkpointing [33]. A
more interesting perspective from the resilience viewpoint can be attained by en-
dowing the algorithm with self-⋆ properties, as mentioned in Sect. 3.2. Relevant
properties in this context are self-scaling (i.e., exerting internal reconfiguration
in response to changes in the computational substrate) [34] and self-healing (i.e.,
performing actions to correct any damage infringed by external disruptions) [35].
Performability is approached from a different angle in brain programming [39], a
symbolic paradigm that uses the power of genetic programming combined with
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neuroscientific modeling and that is aimed at purposive vision. Therein, gener-
ality is a designed property where models are constantly trained in one problem
and tested on a different problem, not only changing the dataset but the whole
visual task [38].

The bottom-line is here that –as mentioned in Sect. 3.2– these methods can
naturally accommodate self-adaptive and reactive components that enable sensi-
bly responding to failures in a resilient way. Furthermore, the very quantitative
nature in which the performance of bioinspired optimization methods can be
measured leads in turn to an amenable quantification of performability P (t) at
time t, by comparing to regular undegraded performance values, or by determin-
ing the maximum level at which the algorithm yielded acceptable performance
up to time t (i.e., P (t) = max(L | ∀t′ ⩽ t : ψ(t′) ⩾ L), where ψ(t) is the
algorithm’s performance at time t).

3.4 Reliability and Availability

Reliability and availability have in this particular context a significant overlap
with the features previously discussed. If service continuity (understood as the ef-
fective fulfillment of the optimization purposes of the specific bioinspired method
considered) is pursued in the presence of computational failures, we would be in
the scenarios depicted in previous section. The previous setting is not the only
possible one in order to assess reliability. In fact, there is a very interesting and
relevant subfield of research that deals with dynamic optimization, namely the
use of these methods in scenarios in which the optimization target changes along
time [2]. Needless to say, this poses great challenges to any optimization tech-
nique, and require the use of appropriate mechanisms (such as using archives
of previous solutions, diversity-preservation policies, and control mechanisms to
anticipate, detect, or react to to changes in the optimization target – see [28,
54]) in order to be able to provide trustworthy operation in this kind of envi-
ronments. From a different perspective, reliability aspects also appear in vision
metrology systems (where thousands of simulation evaluations using complex
nonlinear least-squares analysis are required, often relying in surrogate models)
[37] and in the analysis of corner extraction [36].

In either case, it must be noted that reliability is often a property used to
characterize systems where failures are unacceptable (e.g., safety critical sys-
tems) [9], which means that in this particular bioinspired optimization context
adequate thresholds would have to be defined to characterize when the transient
degraded performance does not render the optimization service discontinued.
From a more quantitative point of view, the reliability R(t) could be here de-
fined as the probability of the algorithm delivering acceptable functionality at
time t, which could be approximated as the proportion of runs in which accept-
able behavior is observed. Likewise, the availability A(t) could be approximated
as the fraction of the time in which the algorithm delivered correct performance.
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3.5 Sustainability

Sustainability refers to the ability to maintain a trend or a process in the long
run. It is a concept that is frequently brought up in connection to human activ-
ities and the impact that these have on the environment and the toll they exert
on future resource availability. As indicated in Sect. 2.1, sustainability is one of
the natural consequences of resilient operation. In this sense, sustainability is not
just an application goal of bioinspired methods (and any other AI method, for
that matter), but also an operational requirement of these techniques. Unsurpris-
ingly, AI methods have been identified as having a significant carbon footprint
[47]. While a standard of measurement is still absent for quantifying energy con-
sumption and carbon emission in the life cycle of AI methods [13], it is clear
that monitoring the emission level of these techniques, and prioritizing energeti-
cally efficient computational platforms and algorithms is crucial. This has led to
the notions of red AI and green AI [43]. The former refers to AI research that
seeks to obtain state-of-the-art results through the use of massive computational
power, and particularly applies to scenarios in which the computational effort
scales at a substantially larger pace than the gains obtained in the results [19],
whereas green AI research provides novel results without increasing computa-
tional cost or even reducing it. This is a topic that is gaining momentum in the
context of machine-learning, but for which some seminal works notwithstanding,
e.g., [17, 3], requires further analysis in the context of bioinspired optimization.

4 Outlook and Challenges

Resilience in engineering and computer science is a well-established research
area, and we found a rich connection with bioinspired approaches in most aspects
typically studied in other domains. We identified five research axes, namely (i)
integrity and safety, (ii) evolvability and adaptability, (iii) performability and
recoverability, (iv) reliability and availability, and (v) sustainability. We give a
first account of the kind of problems researchers study in each compound set of
attributes. An important lesson learned is that bioinspired methods have a great
deal of intrinsic resilience and –most importantly– are flexible enough to admit
being augmented with components to boost resilience in their different aspects.

We envision that future research will not just focus on studying the resilience
of bioinspired optimization methods, but should also exploit resilience as a stim-
ulus for optimization. In this sense, it must be noted that exposure to disruptions
is very often the catalyst for breakthroughs. This has been observed in many
systems, including bioinspired methods (e.g., see [50, 34]), and lies in the spirit of
some long-known approaches such as competitive coevolution [41] and, more re-
cently, adversarial attacks (e.g., [23, 40]). The latter have a longer history in the
area of computer vision and machine learning, and are bound to have an impor-
tant impact in bioinspired optimization as well. Needless to say, these strategies
are targeted to disrupt evolutionary equilibrium, hence exerting a continuous
and directed selective pressure, but analogous strategies aimed to strategically
attack other aspects of the algorithm are not inconceivable, and would provide
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the playground for the evolution of resilience, and indirectly for the improve-
ment of the underlying optimization process. Another line of research which we
envision will gain momentum in the near future is the development of green
bioinspired optimization methods, following the trend of the machine-learning
community.
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10. Cotta, C., Sevaux, M., Sörensen, K. (eds.): Adaptive and Multilevel Metaheuristics,
Studies in Computational Intelligence, vol. 136. Springer-Verlag, Berlin Heidelberg
(2008)

11. Cotta, C., Troya, J.: Using dynastic exploring recombination to promote diversity
in genetic search. In: Schoenauer, M., et al. (eds.) Parallel Problem Solving From
Nature VI, Lecture Notes in Computer Science, vol. 1917, pp. 325–334. Springer-
Verlag, Paris (2000)
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