
A Comparison of Several Evolutionary Heuristics
for the Frequency Assignment Problem

Carlos Cotta, José M. Troya
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Abstract. The Frequency Assignment Problem (FAP) is a very im-
portant problem of practical interest. This work compares several evo-
lutionary approaches to this problem, based both in the forma analysis
framework, and in the decoder paradigm. All approaches are studied from
the point of view of two different quality measures of assignments: the
number of distinct frequencies, and the frequency span. It is shown that
using decoders as embedded heuristics is more adequate than performing
a direct search in the feasible solution space. Furthermore, despite the
apparent symmetry of the problem, a recombination operator based on
multiple-emitter-to-frequency preservation performs better than focusing
on multiple-frequency-to-emitter preservation.

1 Introduction

The term Frequency Assignment Problem (FAP) comprises a number of opti-
mization problems of great difficulty (NP-hard in general). Although presented
under different flavors, all FAPs essentially consist of finding an assignment of
a set of frequencies to a set of emitters fulfilling some specific constraints (e.g.,
avoiding interference between closely located emitters). The actual proliferation
of cellular phone networks, local television stations, etc. clearly underpins the
practical interest of these problems.

The above mentioned NP-hardness of most FAPs imply that exact techniques
are inherently limited for solving these problems. For this reason heuristic tech-
niques such as tabu search, simulated annealing or genetic algorithms (GAs)
are frequently used for the resolution of FAPs [3, 4, 8]. This work focuses on the
application of GAs for this purpose. To be precise, we compare two evolution-
ary approaches to this problem, a direct search in feasible space via specifically
designed operators, and an indirect search via permutation decoders.

The remainder of the paper is organized as follows. First, Section 2 provides a
formal definition of the FAPs considered in this work. Next, the two approaches
are presented in Section 3, describing some different variants of each one. Sub-
sequently, empirical results are reported in Section 4. Finally, some conclusions
are extracted and future work is outlined in Section 5.



2 Frequency Assignment Problems

As mentioned in the previous section, there exist a number of FAP variants, so it
is necessary to give a precise definition of the particular FAPs considered in this
work. As with any optimization problem, three elements must be given in order
to define a FAP: a characterization of problem instances, a characterization of
problem solutions, and a quality measure.

Definition 1 (FAP Instance). An instance of the FAP is a tuple FAP(E ,F ,D,
R, I) where

– E = {e1, · · · , en} is a set of emitters.
– F = {f1, · · · , fm} is a set of available frequencies.
– D : E × E → IR is a function such that D(e, e′) is the distance between

emitters e and e′.
– R : E → IN is a function such that R(e) is the number of frequencies required

by emitter e.
– I : IR → IN is a function such that I(d) is the frequency separation needed

to avoid interference between two emitters separated by a distance d.

According to this definition, it is easy to see that there exist two central
constraints in a FAP instance that must be satisfied: the number of frequencies
assigned to an emitter must be equal to the number of frequencies it demands,
and these frequencies must not interfere with frequencies assigned to other emit-
ters. This is formalized below:

Definition 2 (FAP Solution). A solution for a FAP instance I(E ,F ,D,R, I)
is a vector α = 〈α1, · · · , αn〉 ∈ [2F ]n such that

– |αe| = R(e), i.e., each emitter is assigned the number of different frequencies
it demands.

– ∀e, e′ ∈ E @f, f ′ ∈ F : f ∈ αe, f ′ ∈ αe′ , |f − f ′| < I(D(e, e′)), i.e., no
interfering frequencies are assigned to two emitters.

For the purposes of this work, we will consider that |F| is high enough to
allow the existence of FAP solutions as shown in the previous definition. An
upper bound for the cardinality of F is thus I(0) ·∑e∈E R(e), assuming that I
is monotonically decreasing, as usual.

A quality function must be defined now, in order to quantify the goodness
of a particular FAP solution. In this work, we will consider two different quality
measures. The first one is termed the frequency span, and is defined below.

Definition 3 (Frequency Span). The frequency span F (α) of a FAP solution
α is

F (α) = max
e,e′∈E

[
max

f∈αe,f ′∈αe′
(|f − f ′|)

]
, (1)

i.e., the maximum separation between assigned frequencies.



Thus, the optimal solution with respect to this quality measure is the one
that satisfies the problem constraints within the smallest frequency interval. This
is important in situations in which the frequency spectrum is partitioned into
disjoint compact sets (e.g., a set of frequencies per city or province), and we
require to fit the frequency demand of a group of emitters within one of these
sets. A related, but generally different measure of FAP solution is its size:

Definition 4 (Assignment Size). The size S of a FAP solution α is

S(α) = |∪e∈Eαe| , (2)

i.e., the number of different frequencies assigned to emitters in E .

Hence, the above quality measure tries to promote frequency re-utilization
(notice that this re-utilization does not necessarily result in lower frequency
spans).

3 Two Evolutionary Approaches for the Frequency
Assignment Problem

This section will describe two different approaches for tackling FAP instances.
Both mechanisms are based on restricting the search to the feasible space, but
differ in the way they achieve this. On one hand, FAP solutions can be directly
manipulated during recombination and mutation. On the other hand, this manip-
ulation can be done indirectly via a construction heuristic. These two approaches
are discussed below.

3.1 Direct Manipulation in Feasible-Space

As mentioned above, the first approach consists of directly manipulating fre-
quency assignments. It is thus necessary to define the information units that
will be subject to this manipulation. Let us consider the set of equivalence re-
lations Ψ = {ψef | e ∈ E , f ∈ F}, where ψef (α, α′) = TRUE if, and only if,
frequency f is assigned to emitter e both in α and α′ or in neither of them.
Subsequently, each equivalence relation ψef induces two equivalence classes, re-
spectively comprising solutions assigning f to e (ψ1

ef ) or not (ψ0
ef ). Each of these

equivalence classes is termed a basic forma [6].
Ψ can be shown to be an independent set covering the feasible space, so it

can be used to induce a representation of solutions, i.e., α = 〈α1, · · · , αn〉 ≡⋂n
i=1

⋂
f∈αi

ψ1
eif

. On the basis of this representation, three different information
units can be processed: partial emitter assignments (i.e., formae φF

e , e ∈ E ,
F ∈ 2F , defined as φF

e =
⋂

f∈F ψ1
ef ), partial frequency assignments (i.e., formae

ηE
f , f ∈ F , E ∈ 2E defined as ηE

f =
⋂

e∈E ψ1
ef ), and single emitter-frequency

assignments (i.e., single formae ψ1
ef , e ∈ E , f ∈ F).

In order to manipulate these information units, it must be taken into account
that none of them are orthogonal, although they are separable. This is formally
established below.



Proposition 1. Single emitter-frequency assignments are not orthogonal.

Proof. The proof is straightforward. Given two formae ψ1
ef and ψ1

e′f ′ , their in-
tersection is empty if |f − f ′| < I(D(e, e′)). This is true for many values of
e, e′, f , and f ′ unless R(d) = 0 for all d (a trivial situation without interest from
an optimization point of view). ¤

Since partial emitter-assignments and partial frequency-assignments are de-
fined as the intersection of single emitter-frequency assignments, it follows as a
corollary that none of these units is orthogonal.

Proposition 2. Single emitter-frequency assignments are separable.

Proof. It must be shown that given ψ1
ef and ψ1

e′f ′ (ψ1
ef ∩ ψ1

e′f ′ 6= ∅), no α ∈
ψ1

ef , α′ ∈ ψ1
e′f ′ exist such that ψ1

ef ∩ ψ1
e′f ′ ∩Ω = ∅, where Ω is the intersection

of all basic formae common to α and α′. For this latter intersection to be empty,
it must be that either f or f ′ (or both) interfere with some frequency assignments
in Ω. But this is impossible because the existence of α and α′ respectively implies
that ψ1

ef ∩Ω 6= ∅ and ψ1
e′f ′ ∩Ω 6= ∅. ¤

This separability result implies that the information common to two assign-
ments α and α′ can be respected and, simultaneously, compatible information
can be assorted. Nevertheless, this is generally incompatible with forma trans-
mission, i.e., it may be necessary to introduce some exogenous information -not
present either in α or α′- in the assignment produced during recombination.
This new information could be selected at random, or by means of a heuristic.
In this work we consider the latter approach, which falls within the patching
model termed locally optimal completion [7] (the precise heuristics used for this
purpose will be described in the next subsection).

3.2 The Decoder Approach

The decoder approach is a completely different way of carrying out the search in
the feasible region. In this case, assignments are not directly manipulated. On
the contrary, some external structures are processed, being a so-called decoder
used to translate these structures into feasible assignments in order to perform
evaluation. A very typical situation is the use of permutation decoders, due
to the fact that permutations are a well-known structure for which different
reproductive operators are available (a good survey can be found in [2]). This is
the approach considered in this work.

Before defining the particular decoders considered in this work, notice that
FAPs are closely related to coloring problems, as pointed out in [5]. A FAP
instance can be represented as a labeled graph G(V,E), where V ≡ E , and
(e, e′, δ) ∈ E ⇔ I(D(e, e′)) = δ (δ > 0). A FAP solution would then be a
multicoloring of the graph, such that each vertex is assigned as many colors
as frequencies demands, and the colors assigned to adjacent vertices satisfy the
separation constraint δ of the edge connecting them. An algorithm for obtaining
such a coloring of the graph is shown in Fig. 1.



First-Available-Frequency Heuristic

1. Let P = 〈ei1 , ei2 , · · · , ein〉 be a permutation of the vertices in V .
2. For all j ∈ {1, · · · , n} do Aj ← F .
3. For all j ∈ {1, · · · , n} do

(a) Let αeij
← ∅.

(b) For all k ∈ {1, · · · ,R(eij )} do
i. Let f ← minf ′∈Aj

f ′.
ii. Let αeij

← αeij
∪ {f}.

iii. For all j′ ∈ {j, · · · , n}, (eij , eij′ , δ) ∈ E do

Aej′ ← Aej′ − {f ′ | δ > |f − f ′|}.

Fig. 1. Pseudocode of the First-Available-Frequency heuristic.

Notice now that associated to the mentioned labeled graph, there exists a
dual graph in which the vertices are frequencies, and edges are labeled with
subsets of E . In this dual graph, the edge (f, f ′, σ) means that frequencies f and
f ′ cannot be simultaneously assigned to nodes e, e′ ∈ σ. Hence, a FAP solution
can be also obtained by multicoloring this graph. This can be done using the
algorithm depicted in Fig. 2.

First-Available-Emitter Heuristic

1. Let P = 〈ei1 , ei2 , · · · , ein〉 be a permutation of the vertices in V .
2. For all j ∈ {1, · · · , n} do

(a) Let αeij
← ∅.

(b) Let Aj ← F .
3. Let T ←P

e∈E R(e).
4. Let f ← minf ′∈F f ′.
5. While T > 0 do

(a) For all j ∈ {1, · · · , n} do

If
h
|αeij

| < R(eij )
i
∧ (f ∈ Aej ) then

i. Let αeij
← αeij

∪ {f}.
ii. For all (eij , eij′ , δ) ∈ E do

Aej′ ← Aej′ − {f ′ | δ > |f − f ′|}.
iii. Let T ← T − 1.

(b) Let f ← f + 1.

Fig. 2. Pseudocode of the First-Available-Emitter heuristic.

Both algorithms can be used as a decoders in a permutation-based GA. This
allows the utilization of classical recombination/mutation operators during the
reproductive stage.



4 Experimental Results

The test suite used in this work is composed of eight 21-emitter FAP instances.
These eight instances correspond to the combination of two emitter layouts and
four frequency-demand vectors. The first layout is a random distribution of emit-
ters within a 6 × 6 plane, and the second one is the well-known Philadelphia
layout [1], based on a cellular-phone network. Both frequency-demand vectors
and interference constraints are taken from [8].

The first experiments consist of a fitness-variance analysis. The goal of these
experiments is estimating which of the two views of the problem (emitter-based
or frequency-based) carries more significant fitness information. This is impor-
tant from the perspective of both the direct approach and the decoder approach.
The results of this analysis are shown in Fig. 3. As it can be seen, the fitness
variance is lower (and hence the fitness information is more significant) when pro-
cessing frequency-based units (i.e., manipulating partial frequency assignments,
or using the First-Available-Emitter heuristic).

Fig. 3. Fitness variance for emitter-based units, and for frequency-based units. (Left)
Frequency span (Right) Number of frequencies.

To confirm these results, the four random-layout instances are used. To be
precise, the two decoder variants have been tested, using an elitist generational
genetic algorithms (popsize = 100, pc = .9, pm = 0.013, maxevals = 100.000)
utilizing ranking selection (η+ = 2.0). Three different recombination opera-
tors have been used: cycle crossover (CX), order crossover (OX), and partially
mapped crossover (PMX). In all cases, mutation is done via the swap operator.
The results are shown in Table 1.

As it can be seen, the First-Available-Emitter heuristic is globally better that
the First-Available-Frequency heuristic, confirming the hypothesis extracted from
the fitness-variance analysis. Hence, the former heuristic will be used as the
patching algorithm in subsequent experiments. These are done on the Philadel-
phia instances, using the same experimental setup mentioned above. The results
are shown in Table 2.

The obtained results are conclusive. On one hand, FX (frequency crossover)
performs better than EX (emitter crossover) or EFX (emitter-frequency crossover).



Table 1. Comparison of different genetic operators in the decoder approach (random-
layout instances). All results correspond to series of twenty runs.

IR1 IR2 IR3 IR4
CX OX PMX CX OX PMX CX OX PMX CX OX PMX

Frequency Span (mean)

FAF 421.0 421.0 421.0 295.8 295.8 295.6 288.8 288.6 289.6 846.0 846.0 846.0
FAE 421.0 421.0 421.0 295.0 295.0 295.0 219.1 219.0 219.1 846.0 846.0 846.0

Number of Frequencies (mean)
FAF 301.2 299.7 300.8 261.0 258.4 259.1 220.4 220.3 220.1 594.1 595.0 596.1
FAE 295.8 296.2 298.1 258.9 260.8 263.7 220.0 220.0 220.0 590.1 594.2 593.8

This is in accordance with the previous fitness-variance analysis, and with the
fact that EFX is an operator performing a strong mixture of information taken
from the parents (similar to UX in binary representations). This is a detrimental
property in such a constrained problem, in which assignment values closely in-
teract. On the other hand, the decoder approach yields the overall best results.
Actually, the optimal solution is found for three of the problem instances (IP1,
IP3, and IP4), since the GA reaches the lower bounds given in [8]. This good
performance can be partially explained by the fact that the decoder provides
locally optimal solutions of high quality, difficult to achieve by random recombi-
nation. Clearly, this is a specific property of the particular decoding algorithm
used in this work. In this sense, the First-Available-Emitter heuristic seems to
be very appropriate to introduce problem-specific knowledge in the GA.

5 Conclusions

This work has compared two different approaches for the resolution of fre-
quency assignment problems. The obtained results have confirmed the goodness
of fitness-variance estimations in order to predict GA performance. It has been
shown that, despite the apparent emitter/frequency symmetry of the problem,
manipulating partial frequency assignments is more adequate that manipulating
partial emitter assignments. This results also holds for two different construc-
tion heuristics used as decoders in a permutation-based GA. Furthermore, there
seems to be a good interplay between the GA and the First-Available-Emitter
heuristic, resulting in much better solutions than those obtained by means of
blind recombination operators.

Future work will be directed to study other construction heuristics, as well as
tackling different variants of FAPs. Over-constrained instances in which the goal
is minimizing unfeasibility rather than optimizing feasibility are a specifically
interesting line of future work.
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Table 2. Comparison of different genetic operators on the Philadelphia test-suite.
Patching is done via the First-Available-Emitter heuristic. All results correspond to
series of twenty runs.

Frequency Span

IP1 IP2 IP3 IP4
Operator best mean σ best mean σ best mean σ best mean σ

EX 434 459.40 12.95 287 308.25 11.73 243 287.70 12.08 875 919.50 25.89
FX 434 451.10 8.41 269 275.65 4.40 240 244.65 1.49 871 907.55 19.55

EFX 435 459.25 13.27 296 308.00 8.14 243 270.60 8.79 885 920.50 24.07
OX 426 426.00 0.00 273 281.75 4.94 239 239.00 0.00 855 855.90 0.94

PMX 426 426.00 0.00 271 285.45 5.32 239 239.00 0.00 855 855.65 0.57
CX 426 426.25 0.43 282 288.25 3.16 239 239.00 0.00 855 857.10 1.45

Number of Frequencies

IP1 IP2 IP3 IP4
Operator best mean σ best mean σ best mean σ best mean σ

EX 360 360.10 0.30 271 275.25 3.39 240 241.95 4.34 720 720.70 0.95
FX 360 360.00 0.00 270 270.00 0.00 240 240.00 0.00 720 720.00 0.00

EFX 360 363.70 2.33 273 282.95 4.66 240 249.25 9.03 720 727.40 4.86
OX 360 360.00 0.00 270 270.00 0.00 240 240.00 0.00 720 720.00 0.00

PMX 360 360.00 0.00 270 270.00 0.00 240 240.00 0.00 720 720.00 0.00
CX 360 360.00 0.00 270 270.00 0.00 240 240.00 0.00 720 720.00 0.00
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