Patternsfor Automated Management of Security and Dependability
Solutions”

Francisco Sanchez-Cid, Antonio Mafa
Computer Science Department
University of Malaga. Spain
{cid, amana}@lcc.uma.es

Abstract precise information about the application context a
o) the available solutions.

Current processes for providing security and Thjs paper presents the SERENITY approach to the
dependability (S&D) in computing systems require a concept of S&D Pattern and the artefacts that veetais
detailed a priori knowledge about the target system implement it, as the basis for the automated piawis
and their environments. However, in many emergent 5t sgpD Solutions to running applications.
computing scenarios like ubiquitous computing or The rest of the paper is organized as follows.iSect
ambient intelligence, it is not possible to foresde 2 presents an example scenario that will be used
possible situations that may arise at runtime se th throughout the paper. The goal of this sectionois t
necessary .knowledge is not available at developmentiroduce the main concepts proposed in our wdre (t
time. In this paper we present the concept of S&D griefacts for representing security solutions) he t
Pattern and the artefacts that we use to implenitent reader, along with the mechanisms behind the
as the basis for the automated provision of S&D g iomatic selection and adaptation of these at®fc
Solutions to running applications in highly dynamic ntime. Section 3 presents the SERENITY model for
and heterogeneous environments. the automated management of S&D Solutions and
1. Introduction provides precise descriptions of_the three artefﬁta_t

we propose for the representation of S&D Solutions.

Security and dependability (S&D) are essential Section 4 describes some relevant related work and
aspects of computing and communication systems. Thefinally Section 5 presents conclusions.
wide spreading of an ever-increasing number of))
heterogeneous computers and communication channelé- L -A. Confidential
has resulted in the popularization of many (new and i is |eisure time at “Las Acacias” College andoli
not-so-new) distributed computing paradigms. At the gng Bob enjoy a Race Game using their wireless
same time, the ubiquity of communication systen® an AcME game-consoles. Charlie asks them to join the
information has fostered the development of many ,5.e using his brand neBOXX630 SERENITY-
interesting distributed applications in which weyre enapled game-console. Alice and Bob are willing to
more and more in our daily lives. _ accept their friend to join the game, but the ACME

The current processes for developing secure andconsoles require confidentiality for wireless
dependable systems require a detailed a priorigonnections to other devices. Basically, this igre-
knowledge about the systems and their environments.configured setting for preventing eavesdroppersnfro
However, in the scenarios depicted above, this gpiaining information about the parties that are
knowledge is not available at development time interacting and the services they use.
because it is impossible to foresee all possible charlie’s console identifies the requirement (a
situations that may arise at runtime. Thereforenaed onfidential channel) and looks for the best sohutiAt
to overcome this difficulty by delaying the_: promalpf design time, the developers of the game identiffe
S&D to runtime, when we have enough information 10 need to securely connect players, but becauseast th
make a sound decision. This approach requires thestage they could not foresee the possible types of

introduction of automated mechanisms capable of coynterparts and the different circumstances under
selecting the most appropriate solution based on

YWork partially supported by the E.U. through SEREX project (IST-027587) and by Junta de CastillaMancha through the MISTICO-
MECHANICS project (PBC06-0082)

which the communication would take place, they remark that the provision of a solution for a cater
decided not to restrict the range of possible gmistto context should be as transparent as possible fr th
use. One of the SERENITY artefacts cal&fiD Class user. That is, S&D Patterns must be designed for
represents security and dependability servicesiand automated processing, so that Charlie’s awarenkss o
especially designed to support system developers intechnical details should be reduced to the minimum.
these situations. In particular S&D Classes allow Each context entails different threats to guaranfro
developers to delay the decision about the mostConsequently, the S&D Pattern must include
appropriate solution to runtime, when the informati information on the attack models considered when th
required to select a specific solution (the contéyte pattern was created. In addition, the scenarioaleve
and capabilities of the other party, etc.) is aldd. another important issue regarding the application
Thus, they selected and used the S&D Class namedontext. Bob is trying to connect through a norstied
“TransmisionConfidentiality.iso.org’'which represents network, with a presumably low powered device. As
confidentiality services and includes a predefihigh- the applicability of S&D Patterns and implementatio
level interface. In this way, the game developeesew depends on the context, it is necessary for thie et
able to use the confidentiality services withoubwing to include such applicability conditions.
which solution will be used to provide them at iong. The S&D Solutions offered by Charlie’s console are
Going back to our scenario, Charlie’s console must represented using a three level hierarchy. Figure 1
now select one specific solution to provide the represents an instantiation of such hierarchy far t
confidentiality services to the game applicatioh ttfis artefacts used in the L.A. scenario (note that dhéy
point the console uses the second of the SERENITY SSL branch is fully expanded).
artefacts calle®&D Pattern used to represent abstract
solutions. The main purpose of this artefact is to

SimpleT: ity.iso.org:

S&D Class

guarantee the interoperability of different soloto A belongs_to
number of differentS&D Patterns belong to the ‘ S8D Pattem ‘ S&D Patiem ‘ .
selected S&D Class. After analysing them, only axe ? implements

CiscoSSL:

found to be adequate given the current context: ‘ R
Charlie’s using an open wireless network susceptitl =40

JavaSSL:
S&D i

‘ S&D Implementation

possible eavesdropping as well as passive andeactiv Ljﬁﬂ - i dzscr'bes| o isst
attacks. The suitable patterns are: “SSL 3.0 ChHanne E Conponand] IE z u] [E Eotponal
and “TLS Channel”’. At this point Charlie’s device [logra — — — 7 —— —— — = o |
negotiates with the other parties and eventuahyg, t ﬂsj’"‘_'_“_ ‘_‘_si&i’"f'“_“’"i ‘_T‘ii__‘ |_E”"_°““"_‘EC°_”°”_E”_|

SSL option is selected as the most appropriate.

Once the abstract solution has been selected, which
ensures the interoperability between the different In the figure, both ConfidentialityBySSL3.0and
systems, Charlie’s console needs to find an ConfindentialityByTLSpatterns belongs to the same
implementation (i.e. an instance) of the “SSL 3.0 class, SimpleTransmisionConfidentialityin addition,
Channel” S&D Pattern. The third artefact providgd b several implementations are available for SSL patte
SERENITY comes into play. This artefact is th&D namely: ApacheSSLJavaSSLand CiscoSSL Finally,
Implementatiopused to represent working solutions. ~ each S&D Implementation points to the real

Given Charlie’s console context (underlying O.S., Executable Component that realizes the functionalit
running software, other active S&D Solutions, user claimed by the pattern. This component is the ane t
preferences, etc.), only thr&&D Implementationare install and configure for the target device. Theolgh
available for that S&D Pattern and that context: group hierarchy integrates what we call S&D Library
mod_sslmodule from Apache 2.0, Cisco OpenSSL, To end with, the scenario points out the fact that
and Java SSL using JSSE. Java implementation of SSlorder to provide and deploy solutions at runtinzene
is selected and activated to provide confidenyidtii work is necessary at development time. Following ou
the game-connection. Charlie is informed of the approach, the analysis of the S&D Requirements of a
successful establishment of the confidential cotioec ~ device or application is done during the developmen

Figure 1. S&D Artefacts’ hierarchy

and he finally joins the game. of the system but the realization of some of these
. . requirements may be delayed by the developer, until
2.1. Analysis of the scenario the system is running. However, before the sys®m i

It goes without saying that our main characters areunning it needs to be populated with all the nsags
all but security experts. Consequently, it is impotto ~ artefacts: S&D Classes, S&D Patterns and S&D

Implementations. In our example, Charlie’s game enad

use of theTransmissionConfidentialitlass, but no
pattern or implementation was selected at thatestag
This is one of the main pillars of our proposal: @b
the S&D Patterns belonging to a class provide the
class’ interface, all of them are candidates atimen
Extending this concept to S&D Implementations, we
achieve the flexibility necessary to adapt the thohs

to ever-changing contexts.

3. SERENITY Modél

3.1. Representing S& D Solutions

Our main objective is the development of artefacts
represent S&D Solutions for automated processing.
Note that for this purpose we do not need to descri
the functioning of the solution but its semantice.(
properties provided, limitations, etc.). This is an
essential difference between our S&D Patterns had t
widespread concept of security pattern. These siénan
descriptions allow solutions to be automatically
selected, adapted, used and monitored at runtime

represent solutions that are built by combiningeoth
S&D Patterns. For the sake of space, no extended
explanation is given here, but readers can findoaem
detailed description of this artefact in [1].

3.1.2. S& D Classes

S&D Classegepresent abstractions of a set of S&D
Solutions characterized for providing the same S&D
Properties and having compatible interfaces. Wedcou
describe this artefact as an extension of the rfimte”
concept, with some semantic information, in a smil
way as proposed in [2]. This artefact is mainlydua¢
development time by system developers. The main
purpose of introducing this artefact is to factktahe
dynamic substitution of the S&D Solutions at rurdim
while facilitating the development process.

Given that interoperability is a key issue at thigel,
with this approach it is possible for developers to
create an application bound to a specific S&D Class
given that this artefact only defines the high-leve

interface. At runtime all S&D Patterns (and their

However, as has been already shown, our approacﬁespective S&D Implementations) belonging to this

adopts an integral methodology covering the coraplet
system lifecycle also covering development aspects.
Therefore, an additional goal for our artefactstds
support system developers in the development psoces
With these two purposes in mind, we have developed
the following artefacts to capture the differenpexts

of the S&D Solutions that are necessary at differen
stages of the system lifecycle.

3.1.1 S& D Patterns

To start with, we define S&D Solutions as well-
defined mechanisms (i.e. security protocols, enwyp
algorithms, etc.) that provide one or more S&D
Properties (i.e. confidentiality, availability, étc
Hence, S&D Patterns are detailed descriptions of
abstract S&D Solutions that contain all the infotima
necessary for the selection, instantiation and
adaptation, and dynamic application of the solution
represented in the S&D Pattern. One important dspec
of the solutions represented as S&D Patterns is tha
they can contain a description of the results of an
static analysis performed on them. Such description
provide a precise foundation for the informed uge o
the solution and enhance the trust in the modedpbe
of that, the limitations of the current static s
tools introduce the need to support the dynamic
validation of the behaviour of the described solugi
by means of monitoring mechanisms.

S&D Patterns represent not only simple solutions,
but also complex ones. In fact, a special type &b S
Patterns, called Integration Scheme, is used

to

S&D Class will be selectable. S&D Patterns that
belong to an S&D Class can have different inteace
but they must describe how these specific intedace
map into the S&D Class interface. Figure 2 shows ho
this correspondence is captured in a componerteof t
S&D Pattern called “Interface Adaptor”. In the
representation, the Interface Adaptor specifies bow
map theSendConfidential(junction (at Class level) to
the sequencgGetKey(); Encrypt();and Send()} (at

Pattern level).

Interface Definition:
S&D Class Level

SendConfidential(Conf_data:raw; Recipient:raw)
ReceiveConfidential(Conf_data:raw; Sender: raw)

SendConfidential(d,r) ::= {
GetKey(r,k);
Encrypt(d,k,msg);
B
S8D Pattern Level ReceiveConfidential(d,s) ::= {
Receive(msg,r);
GetKey(s,k);
Decrypt(msg,k,d) ¥
Encrypt(in cleartext: ; in key: ; out ciphertext:)
Interface Definition: Decrypt(in ciphertext: ; in key: ; out cleartext:)
GetKey(userID: ; key:)
Send(data: ; recipient:)
Receive(data: ; Sender:)

Figure 2. Interface Mapping process

3.1.3. S& D Implementations

S&D Implementationsepresent the components that
realize the S&D Solutions. All S&D Implementations
of an S&D Pattern must conform directly to the
interface, monitoring capabilities, and any other
characteristic described in the S&D Pattern. Howeve
they may have differences, such as the specifitezbn
conditions that must be met before deploying igirth
performance, target platform, programming language

or any other feature not fixed yet by the pattehn.
specific component providing encryption servicesaor
web service providing time stamping services are
susceptible to become S&D Implementations.

We must emphasize that S&D Implementations are
not the actual components but their representalibe.
actual components are made accessible to applicatio
thanks to the SERENITY Runtime Framework
(presented in next section), who maps from the S&D
Implementations to the actual executable components

3.2. Automated management of S& D Patterns

The scenario presentation suggested some entity in

charge of deploying and monitoring the pattern
selected for Charlie’s device. This entity takesrfan
this section and is what we cé&ERENITY Runtime
Framework The SERENITY Runtime Framework
(SRF from here onwards) is in charge of negotiating
the terms of the dialogue and navigating througiloeit
S&D Artefacts’ hierarchy. Figure 3 shows a simpldfi
structure with the main components of the framework

Charlie's Device

Serenity Runtime Framework

Monitoring

Negotiation
Monitoring O

Service

S&D Manager S&D Library

S&D Classes.

Context Manager
S&D Patterns

g

S&D Implementations

described by

Figure 3. Simplified perspective of SRF

At this point, theContext Managerealizes that the
browser is trying to connect to the intranet from a
untrusted network. The S&D Pattern that was adtive
providing a confidential channel is no longer vediad

the system must be reconfigured using a new pattern
The S&D Manageranalyses the context information
coming from the Context Manager along with the
current S&D Requirements and triggers a queryrtd fi
the better solution available in the S&D Libranhig

Instances of SRF can be embedded in any type 0fsolution is then activated and connected to thevieo.

device with a minimum computational power (Chadie’
game console in the example scenario). Every SR
instance acts like a dynamic S&D provider, providin
solutions to applications and monitoring the camess
of the provided solutions. For that purpose, eaRf S
instance has an S&D Library containing the artefact
that describe the available security and dependabil
solutions. This library is searched by the SRFtfar
best pattern to meet the requirements. After salpet
solution, the SRF uses the information providedhsy
S&D Implementations and dynamically deploys the
correspondingexecutable Component

Two elements of Figure 3 are also worth mentioning
here: theContext Manageand theS&D Manager A
brief example will help us to understand their msg.

After some racing Bob decides to check his agenda s : ;
Monitoring Interface is also provided. Each S&D

to confirm when he is expected to send his Persona
Progress Report for the Software Engineering Group
Projects class. While Alice’s console was only
SERENITY-aware, Bob’s new console is fully
SERENITY-enabled. His game-console has a web
browser so he just connects to the University \dirtu
Campus using the college private LAN. Being a &dst
network, a simple authentication pattern is used to
connect to the Intranet of the University. As lurtithe

is approaching, Bob takes his game console with him
(as usual) and goes to his favourite restaurarst, ju
down the street. While having his “Burrito Deluxé&®
suddenly has a great idea for the final presemtatio

his project and tries to connect to the group foiom
the intranet to post-it before losing the idea.

If there is no appropriate solution in the S&D laby

gmatching the requirements and able to handle the ne

situation, the SRF instance denies the accesseto th
browser and informs the user.

SRF instances present interfaces to communicate
with other systems. When Charlie tried to join the
game, theNegotiation Interfacavas used to mediate in
order to reach an agreement on the parameters and
restrictions for the communication. This step hdlpe
discriminate between TLS and SSL channels. It is
important to note that as long as non SERENITY-
enabled systems (e.g. Alice’s device) implemens thi
interface, they will also be able to communicatéhwi
SERENITY-enabled nodes (Bob’s and Charlie’s ones).

As SERENITY faces runtime scenarios in which the
context and requirements can evolve on time, a

Pattern includes specific information on how to
monitor its behaviour. The monitoring interface
accesses that information and forwards it to an

appropriate monitor, which is responsible for cliegk
whether the component is acting as predicted or not
Monitoring rules defined in S&D Pattern allows
checking relevant aspects such as the expectedfsize
transmission, the allowed resources to be accdssad
component, expected latency rates, and so on.

4. Related wor k

The concept of security pattern was introduced to
support system engineers in selecting appropriate
security solutions. But currently most securitytpats

are expressed in textual form, as informal indarai Our current work is focused on the further
on how to solve some particular security problem [3 development of these artefacts to cover additional
4]. However, there is an increasing interest in aspects, and on the development of support tooks. W
proposing more formal and precise descriptions to have already developed tools for the creation e§e¢h
enhance the special needs of secure-ware systems wi artefacts, and our current work is aimed at théstéar
high dependency on the environment in which theseautomated selection, adaptation and managemehé of t
systems are deployed. Konrad et al. in [5] study th solutions at runtime.

securitypatterns proposed gamma et alin [6] and

uses UML to represent both the structural and 6. References

behavioural information. Behaviour or Supported [1] Francisco Sanchez-Cid, Antonio Mufioz, Danielr&eo,
Principles are two new fields that convey essential and M.C. Gago, “Software Engineering Techniques ligdp
information that has not been necessary in thergene to Aml: Security Patterns”In Proceedings of the First
design patterns but appears as mandatory in the nevinternational Conference on Ambient Intelligence
security context. Other proposals describe moreipge ~ DevelopmentsSpringer, Sept. 2006, pp. 108-124.

representations based on UML diagrams, but they dol2] C- Canal, L. Fuentes, E. Pimentel, J.M. Trogad A.
noFt) include enough semantic ginformation ¥or Vallecillo, “Adding Roles to CORBA ~Objects|EEE
9 Transactions on Software Engineeridg(3), Mar. 2003.

automating their processing [7]. [3] Kienzle, D.M., Elder, M.C., “Final Technical Rert:

In an ambitious paper, Eduardo B. Fernandez gecyurity Patterns for Web Application Development”
follows in [8] the track initiated in [7] (here treuthor Available at http://www.scrypt.net/~celer/securayterns/
combines for the first time the idea of multiple final%20report.pdf
architectural levels with the use of design patteand [4] IBM's Security Strategy team, “Introduction Business
proposes a methodology for using security pattatns ~Security Patterns. An IBM White PaperAvailable at

every stage of the software lifecycle. Followindsth hst;pié/WWV‘g3-isbmg%méseggity/patéer”S/L“tﬁo-Eﬁoo“- and
; onrad, S., B.H.C. Cheng, Campbell, Laura.
approach, Wassermann and Cheng present in [9] z%Nassermann R., “Using Security Patterns to Model an

reVISIOI’I. of most O,f the patterns frqm [8] and.[m]d Analyze Security RequirementsProc. Requirements for
categorise them in terms of their abstraction leV(_eI High Assurance Systems Worksh2@03.

However, none of these approaches face the possiblgs] Gamma, E., Helm, R., Johnson, R., and Vlissides
change of requirements at runtime, and the conseque “Design patterns: Elements of Reusable Object-@eign
need of adapting or changing the patterns in use. Software”,Addison-Weslgy1994.

Some authors propose formal characterizations of[7] E.B. Fernandez, and Pan, Rouyi, “A pattern lsagg for
patterns. The idea of precisely specifying a giglass ~ Security models’PLoP’01 Conference2001. .
using class invariants and pre- and post-conditions [8] E-B. Fernandez, “Security pattern®yocs. of the Eigth
characterizing the behaviours of individual methizls ~ 'Mtérnational Symposium on System and Information

. - . Security Keynote talk, Sao Jose dos Campos, Brazil, 2006.
the basis of the design by contract [11]. Evoludiarf [9] R. Wassermann, and B.H.C. Cheng, “Security éPast’

that approac_h appear in [1_2], where Io_gic formal_ism Technical Report MSU-CSE-03-28ug. 2003.

proposed with an associated graphical notation to[10] Yoder, J. and Barcalow, J., “Architectural ®ats for
specify rich structural properties. Also using cents, Enabling Application Security”, Pattern Languages of
in [13] authors try to preserve the design intggoit a Program DesignReading, MA: Addison Wesley Publishing
system so that it continues to be faithful to tétgrns ~ Company, 2000, pp. 301-336.

used in its initial design even as it evolves toemme [11] Hallstrom, J. O., Soundarajan, N., and Tyl&,
changing requirements. Following the formal methods ~Monitoring Design Pattern Contractdh Proc. of the FSE-
approach, Mikkonen in [14] introduces classes, 12 Workshop on Specification and Verification of

. - . Component-Based Syster2604, pp. 87-94.
relations and actions to formalize patterns [12] Allenby, K. and Kelly, T. “Deriving Safety

representation and to allow complex specificatibps Requirements Using Scenariodh Proc. of the 5th IEEE

the combination of patterns. International Symposium on Requirements Engineering
. 2001.
5. Conclusions and Futurework [13] Hallstrom, J. O., and Soundarajan, N., “PatBased

System Evolution: A Case-Studyih the Proc of the 18th

In this paper we have presented the artefactsathat International Conference on Software Engineeringd an

use to implement the concept of S&D Pattern. Weshav Knowledge Engineerin006
shown using an example scenario how these artefactTM] Mikkonen. T “Formélizing design patterngh

serve are used in the process of providing S&D to Proc. of 20th ICSEIEEE Computer Society Press
applications used in highly dynamic, heterogeneous1998 pp. 115-124 '

and distributed environments.

