
Patterns for Automated Management of Security and Dependability
Solutions∗∗∗∗

∗ Work partially supported by the E.U. through SERENITY project (IST-027587) and by Junta de Castilla La Mancha through the MISTICO-
MECHANICS project (PBC06-0082)

Francisco Sanchez-Cid, Antonio Maña
Computer Science Department
University of Malaga. Spain
{cid, amana}@lcc.uma.es

Abstract

Current processes for providing security and
dependability (S&D) in computing systems require a
detailed a priori knowledge about the target systems
and their environments. However, in many emergent
computing scenarios like ubiquitous computing or
ambient intelligence, it is not possible to foresee all
possible situations that may arise at runtime so the
necessary knowledge is not available at development
time. In this paper we present the concept of S&D
Pattern and the artefacts that we use to implement it,
as the basis for the automated provision of S&D
Solutions to running applications in highly dynamic
and heterogeneous environments.

1. Introduction

Security and dependability (S&D) are essential
aspects of computing and communication systems. The
wide spreading of an ever-increasing number of
heterogeneous computers and communication channels
has resulted in the popularization of many (new and
not-so-new) distributed computing paradigms. At the
same time, the ubiquity of communication systems and
information has fostered the development of many
interesting distributed applications in which we rely
more and more in our daily lives.

The current processes for developing secure and
dependable systems require a detailed a priori
knowledge about the systems and their environments.
However, in the scenarios depicted above, this
knowledge is not available at development time
because it is impossible to foresee all possible
situations that may arise at runtime. Therefore, we need
to overcome this difficulty by delaying the provision of
S&D to runtime, when we have enough information to
make a sound decision. This approach requires the
introduction of automated mechanisms capable of
selecting the most appropriate solution based on

precise information about the application context and
the available solutions.

This paper presents the SERENITY approach to the
concept of S&D Pattern and the artefacts that we use to
implement it, as the basis for the automated provision
of S&D Solutions to running applications.

The rest of the paper is organized as follows. Section
2 presents an example scenario that will be used
throughout the paper. The goal of this section is to
introduce the main concepts proposed in our work (the
artefacts for representing security solutions) to the
reader, along with the mechanisms behind the
automatic selection and adaptation of these artefacts at
runtime. Section 3 presents the SERENITY model for
the automated management of S&D Solutions and
provides precise descriptions of the three artefacts that
we propose for the representation of S&D Solutions.
Section 4 describes some relevant related work and
finally Section 5 presents conclusions.

2. L.A. Confidential

It is leisure time at “Las Acacias” College and Alice
and Bob enjoy a Race Game using their wireless
ACME game-consoles. Charlie asks them to join the
race using his brand new BOXX630 SERENITY-
enabled game-console. Alice and Bob are willing to
accept their friend to join the game, but the ACME
consoles require confidentiality for wireless
connections to other devices. Basically, this is a pre-
configured setting for preventing eavesdroppers from
obtaining information about the parties that are
interacting and the services they use.

Charlie’s console identifies the requirement (a
confidential channel) and looks for the best solution. At
design time, the developers of the game identified the
need to securely connect players, but because at that
stage they could not foresee the possible types of
counterparts and the different circumstances under

which the communication would take place, they
decided not to restrict the range of possible solutions to
use. One of the SERENITY artefacts called S&D Class
represents security and dependability services and is
especially designed to support system developers in
these situations. In particular S&D Classes allow
developers to delay the decision about the most
appropriate solution to runtime, when the information
required to select a specific solution (the context, type
and capabilities of the other party, etc.) is available.
Thus, they selected and used the S&D Class named
“TransmisionConfidentiality.iso.org”, which represents
confidentiality services and includes a predefined high-
level interface. In this way, the game developers were
able to use the confidentiality services without knowing
which solution will be used to provide them at runtime.

Going back to our scenario, Charlie’s console must
now select one specific solution to provide the
confidentiality services to the game application. At this
point the console uses the second of the SERENITY
artefacts called S&D Pattern, used to represent abstract
solutions. The main purpose of this artefact is to
guarantee the interoperability of different solutions. A
number of different S&D Patterns belong to the
selected S&D Class. After analysing them, only two are
found to be adequate given the current context:
Charlie’s using an open wireless network susceptible to
possible eavesdropping as well as passive and active
attacks. The suitable patterns are: “SSL 3.0 Channel”
and “TLS Channel”. At this point Charlie’s device
negotiates with the other parties and eventually, the
SSL option is selected as the most appropriate.

Once the abstract solution has been selected, which
ensures the interoperability between the different
systems, Charlie’s console needs to find an
implementation (i.e. an instance) of the “SSL 3.0
Channel” S&D Pattern. The third artefact provided by
SERENITY comes into play. This artefact is the S&D
Implementation, used to represent working solutions.

Given Charlie’s console context (underlying O.S.,
running software, other active S&D Solutions, user
preferences, etc.), only three S&D Implementations are
available for that S&D Pattern and that context:
mod_ssl module from Apache 2.0, Cisco OpenSSL,
and Java SSL using JSSE. Java implementation of SSL
is selected and activated to provide confidentiality for
the game-connection. Charlie is informed of the
successful establishment of the confidential connection
and he finally joins the game.

2.1. Analysis of the scenario

It goes without saying that our main characters are
all but security experts. Consequently, it is important to

remark that the provision of a solution for a concrete
context should be as transparent as possible for the
user. That is, S&D Patterns must be designed for
automated processing, so that Charlie’s awareness of
technical details should be reduced to the minimum.

Each context entails different threats to guard from.
Consequently, the S&D Pattern must include
information on the attack models considered when the
pattern was created. In addition, the scenario reveals
another important issue regarding the application
context. Bob is trying to connect through a non-trusted
network, with a presumably low powered device. As
the applicability of S&D Patterns and implementations
depends on the context, it is necessary for the patterns
to include such applicability conditions.

The S&D Solutions offered by Charlie’s console are
represented using a three level hierarchy. Figure 1
represents an instantiation of such hierarchy for the
artefacts used in the L.A. scenario (note that only the
SSL branch is fully expanded).

SimpleTransmisionConfidentiality.iso.org:

S&D Class

ConfidentialityBySSL3.0.iso.org:

S&D Pattern

ConfidentialityByTLS.iso.org:

S&D Pattern

ApacheSSL:

S&D Implementation

JavaSSL:

S&D Implementation

. . .

CiscoSSL:

S&D Implementation

S&D Class Instance S&D Pattern Instance
S&D Implementation

Instance
Executable Component

mod_ssl:

Executable Component

OpenSSL:

Executable Component

JSSE_SSL:

Executable Component

belongs_to

implements

describes

Legend

Figure 1. S&D Artefacts’ hierarchy

In the figure, both ConfidentialityBySSL3.0 and
ConfindentialityByTLS patterns belongs to the same
class, SimpleTransmisionConfidentiality. In addition,
several implementations are available for SSL pattern,
namely: ApacheSSL, JavaSSL and CiscoSSL. Finally,
each S&D Implementation points to the real
Executable Component that realizes the functionality
claimed by the pattern. This component is the one to
install and configure for the target device. The whole
group hierarchy integrates what we call S&D Library.

To end with, the scenario points out the fact that in
order to provide and deploy solutions at runtime, some
work is necessary at development time. Following our
approach, the analysis of the S&D Requirements of a
device or application is done during the development
of the system but the realization of some of these
requirements may be delayed by the developer, until
the system is running. However, before the system is
running it needs to be populated with all the necessary
artefacts: S&D Classes, S&D Patterns and S&D
Implementations. In our example, Charlie’s game made

use of the TransmissionConfidentiality class, but no
pattern or implementation was selected at that stage.
This is one of the main pillars of our proposal: As all
the S&D Patterns belonging to a class provide the
class’ interface, all of them are candidates at runtime.
Extending this concept to S&D Implementations, we
achieve the flexibility necessary to adapt the solutions
to ever-changing contexts.

3. SERENITY Model

3.1. Representing S&D Solutions

Our main objective is the development of artefacts to
represent S&D Solutions for automated processing.
Note that for this purpose we do not need to describe
the functioning of the solution but its semantics (i.e.
properties provided, limitations, etc.). This is an
essential difference between our S&D Patterns and the
widespread concept of security pattern. These semantic
descriptions allow solutions to be automatically
selected, adapted, used and monitored at runtime.
However, as has been already shown, our approach
adopts an integral methodology covering the complete
system lifecycle also covering development aspects.
Therefore, an additional goal for our artefacts is to
support system developers in the development process.
With these two purposes in mind, we have developed
the following artefacts to capture the different aspects
of the S&D Solutions that are necessary at different
stages of the system lifecycle.

3.1.1 S&D Patterns

To start with, we define S&D Solutions as well-
defined mechanisms (i.e. security protocols, encryption
algorithms, etc.) that provide one or more S&D
Properties (i.e. confidentiality, availability, etc.).
Hence, S&D Patterns are detailed descriptions of
abstract S&D Solutions that contain all the information
necessary for the selection, instantiation and
adaptation, and dynamic application of the solution
represented in the S&D Pattern. One important aspect
of the solutions represented as S&D Patterns is that
they can contain a description of the results of any
static analysis performed on them. Such descriptions
provide a precise foundation for the informed use of
the solution and enhance the trust in the model. Despite
of that, the limitations of the current static analysis
tools introduce the need to support the dynamic
validation of the behaviour of the described solutions
by means of monitoring mechanisms.

S&D Patterns represent not only simple solutions,
but also complex ones. In fact, a special type of S&D
Patterns, called Integration Scheme, is used to

represent solutions that are built by combining other
S&D Patterns. For the sake of space, no extended
explanation is given here, but readers can find a more
detailed description of this artefact in [1].

3.1.2. S&D Classes

S&D Classes represent abstractions of a set of S&D
Solutions characterized for providing the same S&D
Properties and having compatible interfaces. We could
describe this artefact as an extension of the “interface”
concept, with some semantic information, in a similar
way as proposed in [2]. This artefact is mainly used at
development time by system developers. The main
purpose of introducing this artefact is to facilitate the
dynamic substitution of the S&D Solutions at runtime
while facilitating the development process.

Given that interoperability is a key issue at this level,
with this approach it is possible for developers to
create an application bound to a specific S&D Class
given that this artefact only defines the high-level
interface. At runtime all S&D Patterns (and their
respective S&D Implementations) belonging to this
S&D Class will be selectable. S&D Patterns that
belong to an S&D Class can have different interfaces,
but they must describe how these specific interfaces
map into the S&D Class interface. Figure 2 shows how
this correspondence is captured in a component of the
S&D Pattern called “Interface Adaptor”. In the
representation, the Interface Adaptor specifies how to
map the SendConfidential() function (at Class level) to
the sequence {GetKey(); Encrypt(); and Send()} (at
Pattern level).

Figure 2. Interface Mapping process

3.1.3. S&D Implementations

S&D Implementations represent the components that
realize the S&D Solutions. All S&D Implementations
of an S&D Pattern must conform directly to the
interface, monitoring capabilities, and any other
characteristic described in the S&D Pattern. However,
they may have differences, such as the specific context
conditions that must be met before deploying it, their
performance, target platform, programming language

or any other feature not fixed yet by the pattern. A
specific component providing encryption services or a
web service providing time stamping services are
susceptible to become S&D Implementations.

We must emphasize that S&D Implementations are
not the actual components but their representation. The
actual components are made accessible to applications
thanks to the SERENITY Runtime Framework
(presented in next section), who maps from the S&D
Implementations to the actual executable components.

3.2. Automated management of S&D Patterns

The scenario presentation suggested some entity in
charge of deploying and monitoring the pattern
selected for Charlie’s device. This entity takes form in
this section and is what we call SERENITY Runtime
Framework. The SERENITY Runtime Framework
(SRF from here onwards) is in charge of negotiating
the terms of the dialogue and navigating throughout the
S&D Artefacts’ hierarchy. Figure 3 shows a simplified
structure with the main components of the framework.

Instances of SRF can be embedded in any type of
device with a minimum computational power (Charlie’s
game console in the example scenario). Every SRF
instance acts like a dynamic S&D provider, providing
solutions to applications and monitoring the correctness
of the provided solutions. For that purpose, each SRF
instance has an S&D Library containing the artefacts
that describe the available security and dependability
solutions. This library is searched by the SRF for the
best pattern to meet the requirements. After selecting a
solution, the SRF uses the information provided by the
S&D Implementations and dynamically deploys the
corresponding Executable Component.

Two elements of Figure 3 are also worth mentioning
here: the Context Manager and the S&D Manager. A
brief example will help us to understand their purpose.

After some racing Bob decides to check his agenda
to confirm when he is expected to send his Personal
Progress Report for the Software Engineering Group
Projects class. While Alice’s console was only
SERENITY-aware, Bob’s new console is fully
SERENITY-enabled. His game-console has a web
browser so he just connects to the University Virtual
Campus using the college private LAN. Being a trusted
network, a simple authentication pattern is used to
connect to the Intranet of the University. As lunch time
is approaching, Bob takes his game console with him
(as usual) and goes to his favourite restaurant, just
down the street. While having his “Burrito Deluxe”, he
suddenly has a great idea for the final presentation of
his project and tries to connect to the group forum in
the intranet to post-it before losing the idea.

Charlie's Dev ice

Serenity Runtime Framework

Negotiation

S&D LibraryS&D Manager

RaceGame

Executable
Implementations

S&D Classes

S&D Patterns

S&D Implementations

Monitoring
Serv ice

Context Manager

Monitoring

described by

Figure 3. Simplified perspective of SRF

At this point, the Context Manager realizes that the
browser is trying to connect to the intranet from an
untrusted network. The S&D Pattern that was active for
providing a confidential channel is no longer valid and
the system must be reconfigured using a new pattern.
The S&D Manager analyses the context information
coming from the Context Manager along with the
current S&D Requirements and triggers a query to find
the better solution available in the S&D Library. This
solution is then activated and connected to the browser.
If there is no appropriate solution in the S&D Library
matching the requirements and able to handle the new
situation, the SRF instance denies the access to the
browser and informs the user.

SRF instances present interfaces to communicate
with other systems. When Charlie tried to join the
game, the Negotiation Interface was used to mediate in
order to reach an agreement on the parameters and
restrictions for the communication. This step helped to
discriminate between TLS and SSL channels. It is
important to note that as long as non SERENITY-
enabled systems (e.g. Alice’s device) implement this
interface, they will also be able to communicate with
SERENITY-enabled nodes (Bob’s and Charlie’s ones).

As SERENITY faces runtime scenarios in which the
context and requirements can evolve on time, a
Monitoring Interface is also provided. Each S&D
Pattern includes specific information on how to
monitor its behaviour. The monitoring interface
accesses that information and forwards it to an
appropriate monitor, which is responsible for checking
whether the component is acting as predicted or not.
Monitoring rules defined in S&D Pattern allows
checking relevant aspects such as the expected size of a
transmission, the allowed resources to be accessed by a
component, expected latency rates, and so on.

4. Related work

The concept of security pattern was introduced to
support system engineers in selecting appropriate
security solutions. But currently most security patterns

are expressed in textual form, as informal indications
on how to solve some particular security problem [3,
4]. However, there is an increasing interest in
proposing more formal and precise descriptions to
enhance the special needs of secure-ware systems with
high dependency on the environment in which these
systems are deployed. Konrad et al. in [5] study the
security patterns proposed by Gamma et al. in [6] and
uses UML to represent both the structural and
behavioural information. Behaviour or Supported
Principles are two new fields that convey essential
information that has not been necessary in the general
design patterns but appears as mandatory in the new
security context. Other proposals describe more precise
representations based on UML diagrams, but they do
not include enough semantic information for
automating their processing [7].

In an ambitious paper, Eduardo B. Fernandez
follows in [8] the track initiated in [7] (here the author
combines for the first time the idea of multiple
architectural levels with the use of design patterns) and
proposes a methodology for using security patterns at
every stage of the software lifecycle. Following this
approach, Wassermann and Cheng present in [9] a
revision of most of the patterns from [8] and [10] and
categorise them in terms of their abstraction level.
However, none of these approaches face the possible
change of requirements at runtime, and the consequent
need of adapting or changing the patterns in use.

Some authors propose formal characterizations of
patterns. The idea of precisely specifying a given class
using class invariants and pre- and post-conditions for
characterizing the behaviours of individual methods is
the basis of the design by contract [11]. Evolutions of
that approach appear in [12], where logic formalism is
proposed with an associated graphical notation to
specify rich structural properties. Also using contracts,
in [13] authors try to preserve the design integrity of a
system so that it continues to be faithful to the patterns
used in its initial design even as it evolves to meet
changing requirements. Following the formal methods
approach, Mikkonen in [14] introduces classes,
relations and actions to formalize patterns
representation and to allow complex specifications by
the combination of patterns.

5. Conclusions and Future work

In this paper we have presented the artefacts that we
use to implement the concept of S&D Pattern. We have
shown using an example scenario how these artefacts
serve are used in the process of providing S&D to
applications used in highly dynamic, heterogeneous
and distributed environments.

Our current work is focused on the further
development of these artefacts to cover additional
aspects, and on the development of support tools. We
have already developed tools for the creation of these
artefacts, and our current work is aimed at the tools for
automated selection, adaptation and management of the
solutions at runtime.

6. References
[1] Francisco Sanchez-Cid, Antonio Muñoz, Daniel Serrano,
and M.C. Gago, “Software Engineering Techniques Applied
to AmI: Security Patterns”. In Proceedings of the First
International Conference on Ambient Intelligence
Developments, Springer, Sept. 2006, pp. 108-124.
[2] C. Canal, L. Fuentes, E. Pimentel, J.M. Troya, and A.
Vallecillo, “Adding Roles to CORBA Objects”, IEEE
Transactions on Software Engineering 29(3), Mar. 2003.
[3] Kienzle, D.M., Elder, M.C., “Final Technical Report:
Security Patterns for Web Application Development”
Available at http://www.scrypt.net/~celer/securitypatterns/
final%20report.pdf.
[4] IBM's Security Strategy team, “Introduction to Business
Security Patterns. An IBM White Paper”, Available at
http://www-3.ibm.com/security/patterns/intro.pdf, 2004.
[5] Konrad, S., B.H.C. Cheng, Campbell, Laura. A., and
Wassermann R., “Using Security Patterns to Model and
Analyze Security Requirements”, Proc. Requirements for
High Assurance Systems Workshop, 2003.
[6] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.,
“Design patterns: Elements of Reusable Object-Oriented
Software”, Addison-Wesley, 1994.
[7] E.B. Fernandez, and Pan, Rouyi, “A pattern language for
security models”, PLoP’01 Conference, 2001.
[8] E.B. Fernandez, “Security patterns”, Procs. of the Eigth
International Symposium on System and Information
Security, Keynote talk, Sao Jose dos Campos, Brazil, 2006.
[9] R. Wassermann, and B.H.C. Cheng, “Security Patterns”
Technical Report MSU-CSE-03-23, Aug. 2003.
[10] Yoder, J. and Barcalow, J., “Architectural Patterns for
Enabling Application Security”, Pattern Languages of
Program Design, Reading, MA: Addison Wesley Publishing
Company, 2000, pp. 301-336.
 [11] Hallstrom, J. O., Soundarajan, N., and Tyler, B.,
“Monitoring Design Pattern Contracts”, In Proc. of the FSE-
12 Workshop on Specification and Verification of
Component-Based Systems, 2004, pp. 87-94.
[12] Allenby, K., and Kelly, T., “Deriving Safety
Requirements Using Scenarios”, In Proc. of the 5th IEEE
International Symposium on Requirements Engineering,
2001.
[13] Hallstrom, J. O., and Soundarajan, N., “Pattern-Based
System Evolution: A Case-Study”, In the Proc of the 18th
International Conference on Software Engineering and
Knowledge Engineering, 2006.
[14] Mikkonen, T., “Formalizing design patterns”. In
Proc. of 20th ICSE, IEEE Computer Society Press,
1998, pp. 115-124.

