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Abstract

The field of parallel metaheuristics is continuously evolving as a result of new technologies and needs that
researchers have been encountering. In the last decade, new models of algorithms, new hardware for parallel
execution/communication, and new challenges in solving complex problems have been making advances in a
fast manner. We aim to discuss here on the state of the art, in a summarized manner, to provide a solution to
deal with some of the growing topics. These topics include the utilization of classic parallel models in recent
platforms (such as grid/cloud architectures and GPU/APU). However, porting existing algorithms to new
hardware is not enough as a scientific goal, therefore researchers are looking for new parallel optimization and
learning models that are targeted to these new architectures. Also, parallel metaheuristics, such as dynamic
optimization and multiobjective problem resolution, have been applied to solve new problem domains in past
years. In this article, we review these recent research areas in connection to parallel metaheuristics, as well as
we identify future trends and possible open research lines for groups and PhD students.
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1. Introduction

In practice, optimization (and searching and learning) problems are often NP-hard, complex, and
time-consuming. Two major approaches are traditionally used to tackle these problems: exact meth-
ods and metaheuristics. Exact methods allow exact solutions to be found but are often impractical
as they are extremely time-consuming for real-world problems (large dimension, hardly constrained,
multimodal, time-varying problems, etc.). On the other hand, metaheuristics provide suboptimal
(sometimes optimal) solutions in a reasonable time. Thus, metaheuristics usually allow the reso-
lution delays imposed in the industrial field to be met and the study of general problem classes
instead of particular problem instances. In general, many best-performing techniques (in precision
and effort) to solve complex and real-world problems use metaheuristics. Their fields of application
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range from combinatorial optimization, bioinformatics, telecommunications to economics, software
engineering, etc., which need fast solutions with high quality (Alba et al., 2009).

Metaheuristics fall in two categories: trajectory-based metaheuristics and population-based meta-
heuristics (Blum and Roli, 2003). The main difference between these two methods depends on the
number of tentative solutions used in each step of the (iterative) algorithm. A trajectory-based
technique starts with a single initial solution and at each step of the search the current solution is
replaced by another (often the best ones) solution found in its neighborhood. On the one hand,
trajectory-based metaheuristics allow a locally optimal solution to be found quickly, therefore they
are called exploitation-oriented methods, promoting intensification in the search space. On the
other hand, population-based algorithms make use of a population of solutions. In this case, the
initial population is randomly generated (or created with a greedy algorithm), and then enhanced
through an iterative process. At each generation of the process, the whole population (or a part
of it) is replaced by newly generated individuals (often the best ones). These techniques are called
exploration-oriented methods because their main ability depends on the diversification in the search
space.

Most basic metaheuristics are sequential. Although their utilization allows significant reduc-
tion of the temporal complexity of the search process, latter this is commonly used for real-
world problems arising in both academic and industrial domains. Therefore, parallelism comes
as a natural way not only to reduce the search time but also to improve the quality of the
solutions provided. For a discussion on how parallelism can be mixed with metaheuristics, the
reader has several sources of information in the literature (Alba, 2005; Luque and Alba, 2011; Talbi,
2006), respectively, devoted to summarize the field, discuss different kinds of algorithms, and focus
in parallel genetic algorithms. Each of them illustrates complementary approaches to handle and
deploy parallelization in connection to metaheuristics (Ferreira and Pardalos, 1996; Nedjah et al.,
2006).

In this article, we include an extensive and organized survey of the recent advances in the parallel
metaheuristic domain. We discuss new algorithm models and how these techniques can take advan-
tage of the features in the new parallel platforms. Our contribution is to review scientific papers in
the past decade, specially after the work done by Alba (2005) that contains the state of the art of the
work done until 2005. Therefore, we here review recent works, especially for the period 2005–2011,
explain their merits, include the new advances in theoretical foundations of such algorithms, and
define the best practices expected from researchers when dealing with parallel metaheuristics. This
survey also identifies and presents the most promising open research lines and trends in this field in
the coming years for research groups and PhD students.

After presenting a brief introduction to parallel metaheuristics in Section 2, we organize the
existing scientific papers according to different criteria in the following structure of the work. In
Section 3, a taxonomy of the different parallel search models is presented. In Section 4, we classify
the literature according to the domains of work where the problems that they solve can be found.
Later, in Section 5, we describe the advances with respect to the novel parallel computing platforms,
such as grid, cloud, GPU (graphics processing unit), APU (accelerated processing unit), multicore,
and FPGA (field programmable gate arrays), indicating how parallel metaheuristics can profit from
their new features. Then, we include a presentation of parallel methodological issues: a survey about
best practices in experimental design, plus some (very needed) theory of parallel metaheuristics in
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Section 6. Finally, we describe and discuss the new trends and open research lines related to parallel
techniques in Section 7. A summary of conclusions is included in the last section.

2. Introduction to parallel metaheuristics

In this section, we provide a brief survey of classic parallel models found in the literature. This
is an important issue, because new approaches for parallel metaheuristics often use these classical
techniques as a base for their works. We distinguish between trajectory-based and population-based
metaheuristics as the parallel models applied to each one are slightly different.

2.1 Trajectory-based metaheuristics

Metaheuristics for solving optimization problems could be viewed as “walks through neighbor-
hoods” tracing search trajectories through the solution domain of the problem (Crainic and
Toulouse, 2002). The well-known metaheuristic families based on the manipulation of a single
solution include simulated annealing (SA), tabu search (TS), iterated local search (ILS), variable
local search (VNS), and greedy randomized adaptive search procedures (GRASP).

Algorithm 1. Trajectory-based general scheme.

Generate(s(0)); // Initial solution
t := 0; // Numerical step
while not Termination_Criterion(s(t)) do

s′(t) := SelectMove(s(t)); // Exploration of the neighborhood
if ĀcceptMove(s′(t)) then

s(t) := ApplyMove(s′(t));
t := t+1;

endwhile

Walks are performed by iterative procedures that allow moving from one solution to another
in the solution space (see Algorithm 1). This kind of metaheuristic performs the moves in the
neighborhood of the current solution, i.e., it has a perturbative nature. The walks start from a
solution randomly generated or obtained from another optimization algorithm. At each iteration,
the current solution is replaced by another selected from the set of its neighboring candidates. The
search process is stopped when a given condition is satisfied (e.g., reached a maximum number of
moves, found a solution with a target quality, or stuck for a given time).

A powerful way to achieve high computational efficiency with trajectory-based methods is the use
of parallelism. Different parallel models have been proposed for trajectory-based metaheuristics,
and three of them are commonly used in the literature (see Fig. 1): (i) the parallel exploration and
evaluation of the neighborhood (or parallel moves model), (ii) the parallel multistart model, and
(iii) the parallel evaluation of a single solution (or move acceleration model).
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Fig. 1. The three classical parallel models for trajectory-based metaheuristics: (a) parallel exploration of the
neighborhood (or “parallel moves model”), (b) parallel multistart model, and (c) parallel evaluation of the fitness (or

“move acceleration model”).

� Parallel moves model: It is a low-level master–slave model that does not alter the behavior of
the technique. A sequential search would compute the same result but slowly. At the begin-
ning of each iteration, the master duplicates the current solution between distributed nodes.
Each one separately manages their candidate/solution and the results are returned to the
master.

� Parallel multistart model: It involves in simultaneously launching several trajectory-based meth-
ods for computing better and robust solutions. They may be heterogeneous or homogeneous,
independent or cooperative, start from the same or different solution(s), and configured with the
same or different parameters.

� Move acceleration model: The quality of each move is evaluated in a parallel centralized way.
This model is particularly interesting when the evaluation function can be parallelized as its CPU
time-consuming and/or I/O intensive. In that case, the function can be viewed as an aggregation
of a certain number of partial functions that can be run in parallel.

2.2 Population-based metaheuristics
Population-based metaheuristics are stochastic search techniques that have been successfully applied
in many real and complex applications (epistatic, multimodal, multiobjective, and highly constrained
problems). A population-based algorithm is an iterative technique that applies stochastic operators
on a pool of individuals (the population) (see Algorithm 2). Every individual in the population
is the encoded version of a tentative solution. An evaluation function associates a fitness value to
every individual indicating its suitability to the problem. Iteratively, the probabilistic application
of “variation operators” on selected individuals guides the population to tentative solutions of
higher quality. The well-known metaheuristic families based on the manipulation of a population
of solutions include evolutionary algorithms (EAs), ant colony optimization (ACO), particle swarm
optimization (PSO), scatter search (SS), differential evolution (DE), evolutionary strategies (ES),
and estimation distribution algorithms (EDA).
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Algorithm 2. Population-based metaheuristic pseudo-code.

Generate(P(0)); // Initial population
t := 0; // Numerical step
while not Termination_Criterion(P(t)) do

Evaluate(P(t)); // Evaluation of the population
P′′(t) := Apply_Variation_Operators(P′(t)); // Generation of new solutions
P(t + 1) := Replace(P(t), P′′(t)); // Building the next population
t := t + 1;

endwhile

For nontrivial problems, executing the reproductive cycle of a simple population-based method
on long individuals and/or large populations usually requires high computational resources. In
general, evaluating a fitness function for every individual is frequently the most costly operation of
this algorithm. Consequently, a variety of algorithmic issues are being studied to design efficient
techniques. These issues usually consist of defining new operators, hybrid algorithms, parallel
models, and so on (Gallardo et al., 2007; Nguyen et al., 2009; Whitley et al., 2010). We now provide
a brief summary of the well-known parallel models used in this field.

Parallelism arises naturally when dealing with populations, since each of the individuals belong-
ing to it is an independent unit [at least according to the Pittsburg style (De Jong et al., 1993),
although there are other approaches such as Michigan one that do not consider the individual
as an independent unit (Wilson, 1995)]. Indeed, the performance of population-based algorithms
is often improved when running in parallel. Two parallelizing strategies are specially focused on
population-based algorithms (see Fig. 2): (1) parallelization of computations, in which the opera-
tions commonly applied to each of the individuals are performed in parallel; and (2) parallelization
of population, in which the population is split into different parts that can be simply exchanged or
evolved separately, and then joined later.

In the beginning of the parallelization history of these algorithms, the well-known “master–slave”
(also known as “global parallelization” or “farming”) method was used. In this approach, a central
processor performs the selection operations while the associated slave processors (workers) run the

Fig. 2. Most important classical parallel models for population-based metaheuristics: (a) master–slave, (b) distributed,
and (c) cellular models.
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variation operator and the evaluation of the fitness function. This algorithm has the same behavior
as the sequential one (as shown in Fig. 2a), although its computational efficiency is improved,
especially for time-consuming objective functions. On the other hand, many researchers use a pool
of processors to speed up the execution of a sequential algorithm, only because “independent runs”
can be made more rapidly by using several processors than by using a single one. In this case, no
interaction at all exists between the independent runs. This is a very interesting idea for any research
laboratory because it improves the productivity of researches.

However, actually most parallel population-based techniques found in the literature utilize some
kind of spatial disposition for the individuals, and then parallelize the resulting chunks in a pool of
processors. Among the most widely known types of structured metaheuristics, the “distributed” (or
coarse-grain) and “cellular” (or fine-grain) algorithms are very popular optimization procedures
(Alba and Tomassini, 2002). In the case of distributed ones (Fig. 2b), the population is partitioned
in a small set of subpopulations (islands) in which isolated serial algorithms are executed. Sparse
individual exchanges are performed among these islands with the goal of introducing some diversity
into the subpopulations, thus preventing search of getting stuck in local optima. In order to design
a distributed metaheuristic, we must take several decisions. Among them, the main decision is to
determine the parameters related to migration policy: topology (logical links between the islands),
migration rate (number of individuals that undergo migration in every exchange), migration period
(number of performed steps in every subpopulation between two successive exchanges), and the
selection/replacement of the migrants. In the case of a cellular method (Fig. 2c), the concept of
“neighborhood” is introduced, so that an individual may only interact with its nearby neighbors
in the breeding loop. The overlapped small neighborhood in the algorithm helps in exploring
the search space because a slow diffusion of solutions through the population provides a kind
of exploration, while exploitation takes place inside each neighborhood (Alba and Dorronsoro,
2008). Also, hybrid models have been proposed in which a two-level approach of parallelization is
undertaken. In general, the higher level for parallelization is a coarse-grain implementation (i.e., a
set of islands) and each island performs other parallel model such as cellular, master–slave method,
or even another distributed method (see an example in Fig. 3).

Fig. 3. Example of using a distributed model for cellular methods (Luque et al., 2009).

C© 2012 The Authors.
International Transactions in Operational Research C© 2012 International Federation of Operational Research Societies



E. Alba et al. / Intl. Trans. in Op. Res. 20 (2013) 1–48 7

3. Recent parallel models for metaheuristics

The first idea that we must reinforce while researching with parallel metaheuristics is the difference
between the model and its implementation. The model defines the behavior of the method. The
same model could be implemented in different ways and on different parallel platforms. In the
past, some parallel models were proposed for specific parallel platforms, such as cellular algorithms
developed for MMP (massively parallel machine) architectures. However, this model can be suc-
cessfully implemented on other platforms such as sequential ones (Alba and Dorronsoro, 2005) or
clusters (Luque et al., 2009). It is also true that, recently, several models have been proposed using
the special features of new parallel technologies, such as the systolic model for GPU platforms (Alba
and Vidal, 2011) and that targeting the model to the architecture is one way to solve problems in
this domain. In this section, we focus on the existing parallel models for metaheuristics, while in
Section 5 we separately deal with implementation issues.

Although the distributed model (or parallel multistart model in the case of trajectory-based
techniques) has been a very well-known model for decades (Tanese, 1989), it continues being one of
the frequently used models in the literature due to its easy implementation on clusters, multicores,
and other parallel platforms, and because of its accuracy for a significantly large number of problems
(see next section). The recent research in this model is focused on the seeding of the islands (Muelas
et al., 2008) and on the migration policy: studying different topologies (Hijaze and Corne, 2009),
using additional information in the migration phase (Araujo et al., 2009), building self-adaptive
migration models (Araujo and Merelo, 2009; Lässig and Sudholt, 2011), and introducing advanced
techniques during the communication phase in the case of single-solution search methods (Luque
et al., 2010, 2011). Also, very simple parallel variants of distributed models such as a noncooperative
versions for trajectory-based algorithms have been proposed recently (Shylo et al., 2011) showing
very accurate results.

Another search model that has received a large interest from the scientific community in the last
6 years is the cellular model (Alba and Dorronsoro, 2008). Some of the papers in this field run
purely sequential, and try to design an efficient dynamics that makes a good trade-off between
exploration and exploitation (Alba and Dorronsoro, 2005; Nguyen et al., 2009). These works
propose a self-adaptative method to change the balance between exploration and exploitation,
but while the first one (Alba and Dorronsoro, 2005) incorporates a mechanism that changes the
shape of the grid, the second one (Nguyen et al., 2009) defines a memetic algorithm (ACMA)
where the application of the local improvement (a trajectory-based metaheuristic) is regulated by
the distribution or diversity of a population. Following this last schema, Segura et al. (2011a)
proposes a parallel hybridization among parallel population algorithms and parallel single-solution
methods.

The main parallel issues investigated in population-based algorithm family are related to the
design of efficient models of cellular methods that can be executed in actual parallel platforms. In
this case, we can find the distributed model proposed in Luque et al. (2009) or the grid-based hybrid
cellular GA defined in. In both papers, the authors propose a hybrid parallel model that allows to
port the cellular model to parallel hardware. As it is shown in Fig. 3, the first work (Luque et al.,
2009) proposed a cellular algorithm (apcGA) in which the complete population is divided into
several asynchronous islands, allowing to make an efficient use of cluster platforms, although the
global behavior is similar to a cellular GA. The algorithm (PEGA) defined Dorronsoro et al. (2007)
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in uses a master–slave model to distribute the most consuming operations (fitness evaluation and
application of the operators) among the different processors of the parallel platform that is a grid
system.

Also, some new parallel algorithms have been proposed following the parallel moves strategy
(or master/slave) for both population- and trajectory-based metaheuristics, but these algorithms
usually are classical ones adapted to be used in modern parallel platforms, mainly GPUs (Harding
and Banzhaf, 2009; Van Luong et al., 2010; Tsutsui and Fujimoto, 2009), and they will be detailed
in next sections.

Finally, we end this section by discussing several models proposed to deal with the challenges
of new domains such as multiobjective optimization (MO) (Coello et al., 2007; Deb, 2001) and
dynamic environments (Branke, 2001). In short, researchers use well-known models such as cellular
or distributed ones, but by adding some extensions to take into account the special features of these
domains.

For the first domain, the multiobjective one, we can find some cellular models such as Zhang
and Li (2007) and Zhang et al. (2009) that extend the classical model using decomposition, or
Nebro et al. (2006, 2009) that include an additional archive of nondominated solutions to the
canonical cellular model. These extensions allow the cellular algorithm to analyze and maintain
nondominated solutions in different parts of the search space. Also, some distributed and hybrid
models have been used to solve multiobjective problems applying the canonical model (Hiroyasu
et al., 2005, Jaimes and Coello, 2007 and Luna et al., 2006) or implementing subalgorithms (Nebro
and Durillo, 2010), where each one optimizes one or more objectives. Finally, there are also some
works using a master–slave model to parallelize state-of-the-art multiobjective algorithms such as
NSGA-II (Durillo et al., 2008) or MOEA/D (Nebro and Durillo, 2010).

For dynamic optimization (the optimized function changes as the algorithm seeks at finding the
global optimum), the most popular parallel model is the distributed or multipopulation model,
because it helps to maintain a high diversity, which is a key feature in this domain. Some recent
examples are Blackwell and Branke (2004), Du and Li (2008), Khouadjia et al. (2011), and Mendes
and Mohais (2005). Also, the cellular model has been applied to this optimization field (Alba
et al., 2007e), showing promising results that outperform the results computed with other classical
methods.

4. Modern applications solved by parallel metaheuristics

Parallel metaheuristics have been shown to be useful in practice to solve a large number of appli-
cations. Many real-life problems may need days or weeks of computing time to be solved on serial
machines. This is the usual scenario when considering difficult problems such as complex combi-
natorial problems with large search spaces, multiobjective problems with many hard-to-evaluate
objective functions, or dynamic optimization problems. Although the intrinsic time complexity of
a problem cannot be lowered by using a finite amount of computing resources, parallel computing
techniques often allow reducing the resolution times to reasonable levels. This is a very important
advantage in an industrial or commercial setting, where the time to compute a solution is instrumen-
tal for decision-making and competitiveness. Furthermore, the new models offered by structured
populations often allow performing a better exploration of alternative solutions of the search space,
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taking advantage of the diversity enhancements, speciation-like features, and cooperative facilities.
These features of parallel metaheuristics allow researchers to cope with a large class of difficult
problems, where sequential metaheuristics tend to perform poorly or are difficult to apply.

Parallel metaheuristics have been used successfully in operations research, engineering, manu-
facturing, telecommunication, and many other application domains. It is impossible to completely
review such vast work, in fact this would need a separate survey to deal with the wide spec-
trum of optimization tasks in which parallel metaheuristics are being used with success. How-
ever, for the sake of completeness, we do provide a global description of the main successful
and real-world applications in very relevant fields of the optimization with this kind of parallel
methods.

In the academic branch of optimization problems, many papers have focused on providing ex-
perimental results based on well-known benchmark problems, such as routing (TSP—Bai et al.,
2009; Delisle et al., 2005b, 2009; Gao and Dong, 2010; Hung and Chen, 2010; Li et al., 2010; Xiong
et al., 2010), assignment (SAT—Luo and Liu, 2006, MAXSAT—Munawar et al., 2009; Sadeg and
Drias, 2007, QAP—James et al., 2005; Tsutsui, 2007, 2008; Tsutsui and Fujimoto, 2009), covering
and partitioning (He et al., 2007), topological mathematical problems (Catalá et al., 2007; He et al.,
2007; Jovanovic et al., 2010; Kokosiński and Kwarciany, 2007; Mocholı́ et al., 2005; Taskova et al.,
2010), and other classical problems (Zhu and Curry, 2009). These works have been mainly devoted
to demonstrate the effectiveness of the parallel models for metaheuristics to outperform the tradi-
tional sequential implementations, regarding both computational efficiency metrics and quality of
results. Traditionally, most parallel metaheuristics have been proposed for solving combinatorial
optimization problems (characterized by discrete decision variables and a finite search space), but
in the last years many works have also tackled problems using real encoding, specially when solving
multiobjective problems.

Regarding real-world problems, parallel metaheuristics have been used in many scientific, indus-
trial, and commercial application domains. Among the most important ones in recent years, we can
mention the following:

� Automation and robotics, where accurate and efficient learning algorithms to control and use
the information technologies are required to reduce the need for human presence. Here, parallel
metaheuristics provide a decisive help to tackle learning problems that handle large volume of
data (Bouamama, 2010), and those control problems that involve complex training procedures
(Hereford, 2006, 2010; Huang et al., 2009).

� Bioinformatics, an emergent scientific field where parallel models of metaheuristics are helpful
tools to cope with computationally expensive optimization problems in molecular biology that
often also need to manage very large amount of data, such as sequence alignment (Gomes et al.,
2008; Zola et al., 2006), DNA sequencing (Hongwei and Yanhua, 2009; Wirawan et al., 2008), gene
finding (Rausch et al., 2008), genome assembly (Alba and Luque, 2006b; Nebro et al., 2008b), drug
design (Boisson et al., 2008), protein structure alignment/prediction (Chu and Zomaya, 2006;
Guo et al., 2009; Islam and Ngom, 2006; Tantar et al., 2007), phylogenetic inference (Blagojevic
et al., 2007; Cancino et al., 2010; Grouchy et al., 2009), and other related problems (Guarracino
et al., 2006; Martins et al., 2006; Nebro et al., 2008a).

� Engineering design, where systems have many components, a large design space, and they usu-
ally involve functions with huge computation demands. These characteristics make parallel
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metaheuristics one of the most promising alternatives to get accurate solutions in reasonable exe-
cution times for complex tasks such as aerodynamic optimization and airfoil design (Asouti and
Giannakoglou, 2009; Lim et al., 2007), design optimization of turbomachinery blade rows (Sasaki
et al., 2006), electronic circuit and VLSI design (Alba et al., 2007b; Lau et al., 2006; Sait et al.,
2007, 2008), antenna design (Kalinli et al., 2010; Weis and Lewis, 2009), signal processing (Li
et al., 2007b), etc.

� Hydraulic engineering, where parallel metaheuristics have been used to efficiently deal with real-
world scenarios arising in water supply network design optimization (López-Ibánez, 2009),
groundwater source identification (Babbar and Minsker, 2006; Mirghania et al., 2009; Sinha
and Minsker, 2007), and multiobjective groundwater problems (Tang et al., 2007b).

� Information processing, classification, and data mining, where parallel metaheuristics significantly
help with the main challenge in this field, which is related to dealing with huge volumes of data,
such as in feature selection and classification (Hamdani et al., 2006; Lopez et al., 2006), classifica-
tion rules discovery (Chen et al., 2006; Chintalapati et al., 2010; Roozmand and Zamanifar, 2008),
data mining (Langdon, 2010), clustering (Gunes and Sima, 2010), natural language processing
(Alba et al., 2006), and other problems.

� Manufacturing and industrial applications, an area in which productivity plays a major role for the
increase of competitiveness in nowadays globalized economies. Emerging technologies are contin-
uously providing new advanced manufacturing processes, and also new challenges. In this context,
several problems have recently been tackled with parallel implementations of metaheuristics, in-
cluding warehouse location and placement problems (Almeida-Luz, 2009; Byun et al., 2009;
Homberger, 2008; Homberger and Gehring, 2008), steel industry (Zhao et al., 2011), packing
problems (León et al., 2009; Peng et al., 2006; Segura et al., 2011b), and assembly line balancing
problems (Ozbakir et al., 2011).

� Routing, logistics and vehicle planning, a field where sophisticated methods are needed to manage
the flow of resources, especially for large and complex problem instances. Parallel metaheuristics
have been recently applied to logistic problems (Fang and Wu, 2010; Li and Bai, 2010; Liefooghe,
2010), facility location (Subramanian et al., 2010; Wang et al., 2008), site location (Zhao et al.,
2010), vehicle routing (Doerner et al., 2005, 2007; Ellabib et al., 2007; Khouadjia et al., 2011;
Lucka and Piecka, 2009; Yu et al., 2011), emergency vehicle fleet management (Ibri et al., 2010),
bus network optimization (Yang et al., 2007), and path planning (Allaire et al., 2009), among
others problems in this area.

� Scheduling, which is a key class of planning problems to provide a correct service on deciding how
to commit resources to a group of tasks. Scheduling is an important tool in many application
areas (e.g., industrial, manufacturing), where it can have a major impact on the productivity
of a process. Parallel metaheuristics have been applied to traditional scheduling problems, such
as timetabling (Mansour and Haidar, 2010), job shop and flow shop scheduling (Aydin and
Sevkli, 2008; Bozejko et al., 2010; Bozejko and Wodecki, 2008; Melab et al., 2006a), as well as
other problem variants (Alba et al., 2007a; Da Silva and Ochi, 2009; Liefooghe, 2010). Recently,
scheduling has become a relevant problem in large modern parallel computing infrastructures
such as grid, volunteer computing, and cloud computing environments. In these services, parallel
metaheuristics are efficient methods to compute large scheduling in reduced execution times (Alba
et al., 2007d; Nesmachnow et al., 2011, 2012a, 2012b; Xhafa and Abraham, 2008).
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� Software engineering and software development, a field in which parallel metaheuristics have just
started to show their usefulness for exploring large search spaces, such as in the optimization
of dynamic data types and memory managers in embedded systems (Risco-Martin et al., 2008,
2009), and in software testing (Alba and Chicano, 2008).

� Telecommunications, a field that has grown at a fast pace in recent years, posing difficult challenges
to the research community due to the large size of the infrastructures, the need for real-time results,
etc. Parallel metaheuristics have shown a great impact on addressing these challenges by providing
accurate and efficient solutions to the related optimization problems in network design (Alba and
Chicano, 2005; Nesmachnow et al., 2007; Pedemonte and Cancela, 2010; Ribeiro and Rosseti,
2007), network routing (Durillo et al., 2008; Liu et al., 2008a; Segura et al., 2009; Zhu et al., 2010),
and network planning, especially in modern networks technologies such as cellular (Alba and
Chicano, 2005; Talbi et al., 2007), mobile ad-hoc networks (Liu et al., 2008a), vehicular networks,
sensor networks, and peer-to-peer (Luna et al., 2008; Nesmachnow et al., 2009).

Parallel implementations of EAs, ACO, and PSO have been the preferred choices for efficiently
solving optimization problems related to real-world applications, while parallel trajectory-based
metaheuristics (SA, LS) have been also used as viable second options.

Besides the application domains previously highlighted, in the last few years parallel implemen-
tations of metaheuristics have been also successfully applied in many other areas such as energy and
power network optimization (Peng et al., 2010; Zhao et al., 2005), health and medicine (Karnan
and Gopal, 2010), strategic and military applications (Gao et al., 2010), economy and finance (Liu
et al., 2008b), workforce planning (Alba et al., 2007d), and image processing (Cardenas et al., 2010;
Harding and Banzhaf, 2008; Peng et al., 2006) and many other optimization problems (Alba et al.,
2009; Crainic et al., 2009). This shows the growing research in parallel metaheuristics, and there-
fore we can conclude that the near future will witness many more real-life situations and problems
tackled using parallel metaheuristic algorithms.

5. Technologies for parallel metaheuristics

When studying a parallel algorithm, it is important to take into account on which computing
platform it has been implemented, as the hardware architecture notably impacts the time required
to perform the computations, communications, synchronizations, and the data sharing. Until the
last decade, the classic proposals of parallel metaheuristics focused on traditional supercomputers
and clusters of workstations. Currently, the novel emergent parallel computing architectures such
as multicore processors, graphic processing units (GPUs), or grid environments, provide new op-
portunities to develop parallel computing techniques to improve problem solving and to lower the
required computation times. This section introduces popular parallel computing platforms, pro-
viding the main concepts about the implementation of parallel metaheuristics in each hardware,
and describing the most significant recent works in the field, a key issue for developers and users.
The section also summarizes some important issues about software tools for implementing parallel
metaheuristics.
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5.1 Parallel hardware platforms

Among the many classifications proposed for parallel computing platforms, the most used is the
traditional taxonomy by Flynn (1972). This classification distinguishes four categories regarding the
way that the instructions and the data streams are handled: single instruction-single data (SISD),
single instruction-multiple data (SIMD), multiple instruction-single data (MISD), and multiple
instruction-multiple data (MIMD).

Traditional SIMD architectures (shared memory multiprocessors) were mostly used in the 1980s
and the beginning of the 1990s, while MIMD (e.g., networks of workstations) were the leading plat-
forms in parallel computing during the 1990s. In the last decade, new parallel computer architectures
have emerged. These novel architectures can be classified in three main groups: (i) programmable
circuits (such as FPGA, field programmable gate arrays), (ii) multiprocessor computers (including
multicore computers, multikernel computers, and GPUs), and (iii) distributed computing platforms
(clusters of computers, grid, and cloud computing environments).

Parallel implementations of metaheuristics have been proposed for all classical architectures
of parallel computers (Alba, 2005). In recent years, the design and implementation of parallel
metaheuristics have followed important trends in the field of parallel hardware, which have been
focused on the previously mentioned modern computing platforms.

5.1.1 Programmable circuits
Before 2005, FPGAs were sporadically used as a viable choice to develop hardware-based parallel
implementations of metaheuristics (Alba, 2005). The main advantage of this infrastructure con-
sists in the large number of programmable logical elements, able to compute simple logical and
mathematical operations. FPGA also provides a programmable interconnection hierarchy for the
logical elements, which allows implementing sophisticated algorithms. A significant lower num-
ber of FPGA implementations of parallel metaheuristics have been proposed in the last 5 years,
mainly because they provide less flexibility than the new hardware platforms for software-based
implementations of metaheuristics such as GPUs. FPGAs have been used when specific real-time
requirements to find the solution for an optimization problem are formulated (Allaire et al., 2009;
Walton et al., 2010), or just to achieve an improved efficiency (Farmahini-Farahani et al., 2010;
Huang et al., 2009; Mohammed et al., 2011). The cellular model for parallel metaheuristics has
been the most popular choice to implement in FPGAs, because the logical elements and the repro-
grammable interconnection make it easy to implement its population organization and interactions
(Fernando et al., 2008; Jewajinda and Chongstitvatana, 2008). Other works have proposed low-level
implementations of parallel metaheuristics for specific processors such as the cell broadband engine
(Blagojevic et al., 2007; Perez et al., 2009; Wirawan et al., 2008).

5.1.2 Multiprocessor architectures
Multiprocessor parallel platforms are a useful choice to develop parallel implementations of meta-
heuristics. The availability of multiple computing resources integrated in a single device allows
to deal with optimization and learning problems that require a fast solution, or even real-time
efficiency, in an easy-to-program platform. In this kind of hardware, parallel metaheuristics are of-
ten implemented using the shared-memory paradigm for parallel computing programming, which
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uses a common resource (the shared memory) to perform the synchronization and communica-
tion between multiple threads and processes. In the field of parallel metaheuristics, threads and
light processes have been usually employed to parallelize both cooperative and semi-cooperative
versions of multipopulation and multitrajectory methods, as well as hybrid algorithms combining
population-based metaheuristics with local search operators.

Multicore platforms. The new generation of shared memory multicore platforms with multiple-
threads parallel execution has provided a promising hardware platform for implementing new par-
allel metaheuristics. Population-based methods such as EAs, ACO, and PSO are natural candidates
to exploit multithread architectures to take advantage of both implicit and explicit parallelism. Also,
trajectory-based methods can take benefit of multithreading programming, e.g., by implementing
the multiple walks parallel model. Implementations of parallel metaheuristics have been developed
in a wide range of multithread platforms, including simple dual-core computers to modern com-
puting servers with up to 24 cores, and also massively parallel processing (MPP) computers with
thousands of cores. When using these parallel infrastructures, the communications and synchro-
nizations are performed using the shared memory approach. The main advantage of multicore
computers is that it is possible to implement real-time parallel metaheuristics, since the proximity of
multiple CPU cores on the same chip allows to operate at a much higher clock-rate than traditional
parallel computing using several computers. The universal availability of multiple cores in desktop,
laptop, and even smartphones platforms means good news for the future of parallel metaheuristics
on multicore hardware. In these multicore platforms, a significant rise of performance is usually
achieved in lower response-times when running CPU-intensive processes, such as the ones required
to solve optimization problems with complex mathematical functions. On the other hand, specific
adjustments to the operating system support and/or to existing parallel metaheuristics software
libraries can be required to fully exploit the parallelism. Researchers using existing libraries should
check how different is to tune them to profit from multiple cores in the same computer.

Fine-grain implementations of parallel metaheuristics are well-suited to the multithreading ap-
proach, since the shared memory allows fast communications between individuals and subprocesses.
Some parallel metaheuristics with recent implementations of the fine-grain model in multicore ar-
chitectures includes EAs (Munawar et al., 2008), EDAs (Perez et al., 2009), MOEAs (Nebro and
Durillo, 2010), ACOs (Tsutsui and Fujimoto, 2010), VND/ILS (Subramanian et al., 2010), TS and
several other metaheuristics (Bozejko et al., 2008). The master–slave model for parallel metaheuris-
tics has also been implemented in multicore processors, for ACO (Delisle et al., 2005a, 2005b; Guo
et al., 2009; López-Ibánez, 2009; Tsutsui, 2008; Tsutsui and Fujimoto, 2010), EA (Cardenas et al.,
2010), TS and branch and bound (Hung and Chen, 2010); in these methods, the main advantage is
the ability of computing the fitness evaluation in parallel by using several threads. Multicore multi-
population methods have also been proposed for several metaheuristics, such as ACO (Delisle et al.,
2009; Gao et al., 2010; Li et al., 2010; Lucka and Piecka, 2009; Xiong et al., 2008, 2010), EAs (Byun
et al., 2009; He et al., 2007; Tsutsui, 2010), PSO (Tu and Liang, 2011), and the parallel artificial
bee colony algorithm (Narasimhan, 2009). When using multiple populations, the shared-memory
approach is used to perform the specific operators that communicate and synchronize the popu-
lations, allowing an efficient cooperative search. EAs have also been implemented following other
ad-hoc decomposition approaches, such as dividing a problem into smaller parallel subproblems
(Vrajitoru, 2010).
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Graphic Processing units. Currently, GPU cards offer teraflop computing at low cost (less than
one thousand dollars), allowing large-scale SIMD or SPMD computing with significant speed
ups in the execution of graphic applications. The novel general purpose on GPU (GPGPU)
paradigm extends this advantage to other applications areas (Owens et al., 2007). In particular,
GPUs dramatically increase the computational speed for the resolution of real-world optimiza-
tion problems tackled with parallel metaheuristics, and they allow researchers to face sophis-
ticated problems and complex scenarios. The beneficial computing power/cost relationship has
positioned GPU computing at the front of the next generation in high-performance computing
infrastructures.

In GPGPU, the massive floating-point computational power of a GPU shader is turned into
a very scalable computing resource for stream processing, able to obtain a significantly higher
performance than the CPU. Actually, both modern supercomputers and desktop computers can
take advantage of GPU acceleration, by using APIs (such as NVIDIA CUDA and GPL) to design
parallel programs on GPU architectures. Applications are frequently based on map/reduce and
scatter/gather operations performed on static and dynamic arrays. In the parallel metaheuristics
field, GPUs have been used for accelerating the fitness evaluation in genetic programming and in
population-based methods where complex fitness functions are used. In genetic programming, the
trend is to simultaneously execute several copies of the same executable program in the GPU, taking
advantage of the SIMD parallel model to lower the time to compute one generation (Harding and
Banzhaf, 2007, 2008; Krömer et al., 2011; Langdon, 2010; Robilliard et al., 2009), but the use of
interpreters (Langdon and Banzhaf, 2008), hybrid methods that combine CPU and GPU (Lewis
and Magoulas, 2009), and clusters of workstations with GPU (Harding and Banzhaf, 2009) have
also been proposed.

Regarding other metaheuristic techniques, both multitrajectory and distributed multipopulation
models have been implemented on GPU, often following a fine-grain approach in order to fully
exploit the computing capabilities of the large number of threads in the GPU cores. In these models
of computation, the cooperation among threads is exclusively performed using the shared memory
paradigm. EAs have been the preferred metaheuristic to parallelize on GPU, including the fine-grain
master–slave model that implements the parallel fitness evaluation for EAs (Li et al., 2007a; Tsutsui,
2007; Wong and Wong, 2009; Yu et al., 2005), ES (Zhu, 2009) and hybrid EAs (Man-Leung and
Tien-Tsin, 2006; Munawar et al., 2009), the cellular model (Luo and Liu, 2006; Vidal and Alba,
2010a), and the island based model (Luong et al., 2010; Maitre et al., 2009; Pospı́chal et al., 2010a,
2010b; Risco-Martin et al., 2009). Proposals of GPU implementations for other metaheuristics
have also been recently presented, such as the fine-grain parallel fitness evaluation in single-thread
methods (Bozejko et al., 2009), the parallel independent runs of ACO (Bai et al., 2009), the master–
slave parallel ACO (Catalá et al., 2007; Fu et al., 2010; Zhu and Curry, 2009), the fine-grained
parallel immune algorithms (Li et al., 2009; Zhao et al., 2011), and the two-level approach for
parallel metaheuristics (Bozejko et al., 2010).

Hybrid methods that combine CPU and GPU computations have also been used. In this parallel
approach, usually the local search method to improve the solutions is run on the GPU, while the
remaining tasks are executed on the CPU. Two examples of this hybrid CPU/GPU implementations
are the coarse-grain master–slave ACO with local search (Zhu and Curry, 2009) and the parallel
master–slave ACO (Catalá et al., 2007). Further new hardware such as APUs devices (2010) will come
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to change this picture allowing hardware heterogeneity that combines CPU and GPU programming,
opening new challenges to profit from it and create heterogeneous parallel algorithms.

Most of the previously mentioned GPU implementations of parallel metaheuristics have been
developed using NVIDIA and ATI programmable GPUs, but genetic programming has also been
implemented in nontraditional heterogeneous hardware such as XBox360 and Zune (Wilson and
Banzhaf, 2008, 2009).

5.1.3 Distributed computing architectures
Starting from small aggregations of homogeneous computers in the 1990s, as on today distributed
computing environments include platforms formed by hundreds or thousands of heterogeneous
computing resources widespread around the globe, providing the computing power needed for
solving complex problems arising in many areas of application. Nowadays, a common platform
for distributed computing usually comprises a heterogeneous collection of computers able to work
cooperatively (cluster). At a higher level of abstraction, the expression “grid computing” has become
popular to denote the set of distributed computing techniques that work over a large loosely
coupled virtual supercomputer, formed by combining together many heterogeneous components of
different characteristics and computing power. This infrastructure has made it feasible to provide
pervasive and cost-effective access to a collection of distributed computing resources for solving
problems that demand large computing power (Foster and Kesselman, 1998). Recently, “cloud
computing” has emerged as a novel paradigm of location- and device-independent processing,
where physical resources provide computing, software, and access to data, on demand (Velte et al.,
2010). Distributed computing platforms provide a fully scalable environment that allows researchers
to handle large optimization and learning problem instances within reasonable computing times. In
this kind of infrastructure, parallel distributed metaheuristics are very often implemented following
a message passing paradigm, usually for parallelizing multipopulation cooperative algorithms.

Clusters. Many implementations of parallel metaheuristics have been developed on cluster archi-
tectures, most of them following the cooperative parallel model that uses more than one population
(the “distributed subpopulations” model). This approach provides a cooperative search mechanism
that often allows obtaining superior results than the sequential model, as well as outperforming
other parallel metaheuristics, by taking advantage of the multiple search and the increased diversity
provided by a multipopulation model executing on a set of processors. Cluster computing platforms
provide the most natural way to parallelize metaheuristics using a traditional hardware with a very
good performance/cost ratio. In addition, the research on libraries for parallel computing on clus-
ters is consolidated, and several high-level frameworks for parallel/distributed metaheuristics have
been built on them (Parejo et al., 2012). While using cluster computing platforms, the cooperation
and synchronization between the multiple processes that search in parallel is usually performed
using the message passing paradigm for parallel computing.

In cluster architectures, recent implementations of distributed subpopulations metaheuristics
included EAs (Alba et al., 2004; Alba and Luque, 2006b; Homberger, 2008; Homberger and Gehring,
2008; Huang et al., 2009; Jiménez et al., 2010; Nesmachnow et al., 2007, 2011, 2012a, 2012b), hybrid
EAs (Alba et al., 2007d; Gaifang and Xueliang, 2010), multicolony ACO (Chu and Zomaya, 2006;
Hongwei and Yanhua, 2009; Taskova et al., 2010; Xiong et al., 2008, 2010; Yang et al., 2007), and
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PSO (Bouamama, 2010; Hereford, 2006), among others. Some implementations of the master–slave
parallel model for ACO have been developed in clusters (Doerner et al., 2005, 2006; Peng et al.,
2005, 2010; Weis and Lewis, 2009), as well as hybrids combining ACO and TS (Ibri et al., 2010).
The cellular model has also been applied to EAs (Alba et al., 2007e; Luque et al., 2009) and ACO
(Pedemonte and Cancela, 2010) in cluster platforms.

Regarding trajectory-based metaheuristics, some relevant implementations include parallel path-
relinking (James et al., 2005), parallel SA (Lukasik, 2008; Zola et al., 2006), parallel coopera-
tive GRASP (Ribeiro and Rosseti, 2007), parallel approaches for VNS (Aydin and Sevkli, 2008),
parallel strategies for stochastic evolution (Sait et al., 2008), parallel multistart VNS/VND/ILS
(Subramanian et al., 2010), and parallel SS (Mansour and Haidar, 2010). In addition, hybrid
and/or cooperative algorithms combining two or more metaheuristics have been proposed, such
as the COSEARCH metaheuristic (Talbi and Bachelet, 2006), a combination of TS/SA/GA (Ca-
denas et al., 2009), a combination of DE and evolutionary programming (Georgieva and Jor-
danov, 2008), and a parallel hybrid GRASP/GA using reinforcement learning (Dos Santos et al.,
2009).

Multiobjective problems have also been tackled with parallel/distributed metaheuristics in clus-
ters, allowing a better exploration of the search space while also avoiding the computational bottle-
neck associated to the fitness evaluation for complex real-world problems. Some of the recent works
in this area include several multiobjective parallel metaheuristics applied to logistics (Liefooghe,
2010), master–slave MOEAs (Durillo et al., 2008), distributed subpopulations MOEAs (Boisson
et al., 2008; Cancino et al., 2010; Nesmachnow and Iturriaga, 2012; Sasaki et al., 2006), cellular
MOEAs (Zhang and Li, 2007; Zhang et al., 2009), DE (Mendes and Mohais, 2005), and parallel
multiobjective PSO (Du and Li, 2008; Mostaghim, 2010).

Actually, cluster platforms built using multicore computers allow the researchers to develop
two-level implementations of parallel metaheuristics. This approach combines a coarse-grained
parallelization (e.g., the distributed subpopulation model) implemented with the message passing
paradigm, and a fine-grained parallel model implemented following the shared-memory approach
within each multicore computer (Nesmachnow et al., 2012a). This kind of implementations signifi-
cantly improves the efficiency of the search in parallel metaheuristics, taking full advantage of the
computing power availability.

P2P computing. Peer-to-peer (P2P) computing is a paradigm for distributed computing that shares
the workload between equally privileged peers. These peers make their own computing resources
available to other peers in the network, without any centralized coordination. The research on
parallel P2P implementations of metaheuristics have just recently started. Some implementations
have been proposed to take advantage of the cooperation model in P2P networks, by parallelizing
hybrid multiobjective metaheuristics (Melab et al., 2006b), EAs (Laredo et al., 2008a, 2008b)
and hybrids combining GA and Branch & Bound (Bendjoudi et al., 2008). The results showed
that the distributed P2P model needs significantly less computational effort than other traditional
architectures, thus making it suitable for tackling large instances of the faced problems.

Grid computing. In the last years, grid computing environments have been used to solve com-
plex optimization problems with parallel metaheuristics. The main contribution of the distributed
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computing paradigm in grid is the exploitation of large-scale availability of computing resources
that allows facing hard-to-solve problems. However, grid environments also provide the benefit of
true (geographical) decentralization, improving the fault-tolerance of parallel metaheuristics. When
executing in a grid environment, parallel metaheuristics can be implemented by adapting exist-
ing metaheuristic frameworks to work in large distributed systems, or by using ad-hoc programs
including high-level grid/web services.

The most usual grid approach combines a wide-spectrum method (such as an EA), which signif-
icantly reduces the number of visited points in the search space, with a local search/intensification
method to focus the search. This approach allows reducing the number of required communications
between the geographically distributed subpopulations. Parallel implementations of EAs adapted to
execute in grid environments have been often used in recent years, including the traditional master–
slave model (Durillo et al., 2008; Nebro et al., 2008b), the distributed subpopulation model (Luna
et al., 2008; Melab et al., 2006a; Talbi et al., 2007) and the cellular model (Dorronsoro et al., 2007;
Luque et al., 2009). Hierarchical parallel models (Lim et al., 2007) and parallel hybrid MOEAs
(Tantar et al., 2007) have also been proposed.

An alternative for executing parallel metaheuristics in grid computing environments consists in
applying ad-hoc methods using high-level services, instead of adapting existing frameworks. This
model has been applied in parallel ACO algorithms following the multicolony model (Mocholı́
et al., 2005) and the parallel evaluation of solutions (Weis and Lewis, 2009); and in the parallel
GRASP implementation that executed in the grid environment provided by a virtual organization
of the European project EGEE Almeida-Luz (2009).

The efforts carried out to improve the efficacy while reducing the computing time have led
to explore the use of volunteer computing platforms. This type of grid/distributed computing
infrastructure is able to combine the computer power provided by thousands of computers using
a simple middleware that is independent of the computation. In this line of research, two recent
works (Cole et al., 2010; Lombrana et al., 2009) presented parallel EAs conceived to execute over
the Berkeley Open Infrastructure for Network Computing (BOINC) infrastructure, gathering the
computational resources required to face hard-to-solve optimization problems.

Cloud computing. The novel cloud computing paradigm for execution of parallel applications
relies on providing computational resources in demand using Internet or some other high-speed
network. The model offers a set of abstract services – including computation, software, data access,
and storage – conceived to be fully scalable, that can be efficiently provisioned and released (Buyya,
2009). Enterprises such as Microsoft, Amazon, and Google have been playing a very important role
in the developing of cloud computing infrastructures and services such as Amazon EC2 or Google’s
App Engine.

Some recent works (Jin et al., 2008; Llorà et al., 2010; Verma et al, 2010) have demonstrated the
potential utility of the novel cloud computing infrastructures for the parallelization of metaheuris-
tics. By applying standard data-intensive computing frameworks (such as Hadoop and Meandre)
to population-based metaheuristics (GA and EDA), efficient parallel implementations were de-
signed, and they were able to achieve linear speedup for large-scale problems. However, since EAs
cannot be directly expressed by the map/reduce model of computation, the previous works showed
that when using the current state-of-the-art cloud computing paradigm, modifications of either
the frameworks (Jin et al., 2008) or the EAs (Llorà et al., 2010; Verma et al, 2010) are needed.
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Determining the adequate mechanisms for developing efficient and scalable parallel metaheuristics
implementations in cloud computing environments is one of the main challenges for researchers in
this line of work for the next years.

5.2 Software issues and tools

This section presents the main issues concerning the design and implementation of parallel meta-
heuristics. Our survey covers from ad-hoc low-level implementations of specific parallel metaheuris-
tics to generic frameworks that implement many metaheuristics.

5.2.1 Ad-hoc parallel metaheuristics implementations
In the past years, C/C++ and Java have been the most commonly used languages to develop parallel
metaheuristics implementations (Parejo et al., 2012). Some other languages and tools have been
sporadically applied in specific research contexts, such as Matlab in the engineering community.

Parallel metaheuristics can be developed by designing ad-hoc implementations using low-level
interprocess communication mechanisms, such as TCP/IP “sockets” or “pthreads,” to perform the
communication, synchronization, and cooperation between the parallel processes. This approach
was frequently used in the pioneering implementations of parallel metaheuristics developed around
15 years ago, but is rarely used in practice today. At a higher level of abstraction, libraries for
developing parallel computing applications have been employed in ad-hoc implementations of
parallel metaheuristics. The most commonly used libraries include the implementations of the
MPI standard (Gropp et al., 1994, MPICH, LAM/MPI) and the novel MPI-2 standard (Gropp
et al., 1999, MPICH2, OpenMPI, LAM/MPI) for distributed memory platforms, and OpenMP
(Chapman et al., 2007) for shared memory computers. When developing parallel metaheuristics in
Java, the most commonly used method to implement the communication and synchronization is
the built in remote method invocation (RMI, Grosso, 2001). Using RMI, a Java program is able to
export an object that will be accessible across the network using a TCP port, where other processes
can connect and call the methods that the distributed object provides.

Ad-hoc implementations of parallel metaheuristics are often closely tied to the particular prob-
lems solved. Many of these works essentially start the implementation from scratch, making it
difficult to reuse the existing code, and to compare alternative methods. As a consequence, the
approach of developing ad-hoc implementations of parallel metaheuristics has been progressively
less used in the last years, where the main trend is to take advantage of using generic frameworks.

5.2.2 Parallel metaheuristics frameworks
Over the years, the metaheuristics research community has proposed and implemented frameworks
including parallel versions of many well-known techniques. Generic frameworks help developing
new parallel metaheuristic variants quickly, experimenting with existing ones, tackling new appli-
cations, and quickly performing fair comparisons in a well-known and stable environment. Most
of the proposed frameworks implement EA, which has been consistently the parallel metaheuristic
of preference, mainly due to its versatility for solving problems with diverse characteristics in many
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application domains. Other methods, including multiobjective parallel metaheuristics, have also
been implemented.

The most used generic frameworks for parallel metaheuristics have been conceived to follow
the object-oriented paradigm for software development. This choice allows having the benefits of
modularity, reusability, and flexibility when applying them to a wide range of optimization problems.
The design of such frameworks usually also includes the conceptually needed separation between
the algorithms and the specification of the problems, which will be provided by the user.

In generic frameworks for parallel metaheuristics, the parallel implementation issues are often
encapsulated in a specific module or class, providing a user-friendly way to deal with parallelism.
In this way, the use of TCP/IP sockets and parallel libraries such as MPI or Java RMI are wrapped
by high-level classes that make it easy for the user to exploit the parallel environment. When
using large clusters or grid infrastructures, a specific general-purpose middleware layer between the
hardware and the software is required to handle the distributed resources and virtual organizations.
Globus (Foster, 2005) and Condor (Thain et al., 2002) have been the preferred choices to enable
the parallel metaheuristics executions in large clusters (Dorronsoro et al., 2007; Luque et al.,
2009; Tantar et al., 2007), while Sun Grid Engine and BOINC have also been frequently used as
middleware on volunteer computing and grid environments (Cole et al., 2010; Lombrana et al.,
2009). Recently, some parallel metaheuristics implementations have been developed and executed
using programming tools available in the novel cloud computing environments, such as Hadoop and
Amazon Web Services (Jin et al., 2008; Llorà et al., 2010; Verma et al, 2010). Until now, about 20
generic frameworks for parallel metaheuristics, have been proposed, and they have shown different
degrees of maturity. The most relevant framework are as follows:

� MALLBA (Alba et al., 2006, 2007c): A C++ library of algorithms for optimization that can deal
with parallelism (using MPI) on LAN or WAN platforms, in a user-friendly and efficient manner.
Generic templates of metaheuristics (EAs, SA, ACO, PSO, DE, ILS, cellular and distributed
versions, hybrids, and others) are implemented as “software skeletons,” to be instantiated with
the features of the problem by the user. These templates incorporate all the knowledge related
to the resolution method, its interactions with the problem, and the considerations about the
parallel implementations.

� ParadisEO (Cahon et al., 2004): A C++ white-box object-oriented framework dedicated to the
reusable design of metaheuristics, portable on Windows, Unix, and MacOS. ParadisEO provides
support for parallel implementations in parallel/distributed architectures (using MPI) and grid
computing systems (with the ParadisEO-CMW extension, using Globus, and Condor-G/MW).
The metaheuristics implementations include EAs, PSO, TS, ILS, hybrids, and others.

� pALS (Bernal and Castro, 2010): A Java object-oriented framework with a high degree of flexibility
for the development of parallel and cooperative metaheuristics. pALS provides two main models
of parallelization: (i) the parallel execution of algorithms and/or specific operations inside a
metaheuristic, and (ii) the execution of separate instances or multistart models. Also, cooperation
strategies such as the distributed subpopulations model for EAs or the parallel exploration of
neighborhoods in trajectory-based metaheuristics are provided. A specific execution module
allows the execution in grid infrastructures using Globus and Condor.

� ECJ (Luke et al., 2007): A Java framework that implements parallel models for EAs, with a
particular emphasis in genetic programming. ECJ provides implementations of the master–slave
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and the distributed subpopulation models, and new additions include multiobjective optimization
algorithms, implementations of PSO and DE, coevolution, steady-state and evolution strategies
methods, and various encodings (e.g., rule-sets) widely used in the genetic programming commu-
nity. The parallel models are implemented using TCP/IP sockets.

� OPT4J (Lukasiewycz, 2009): A Java-based framework that currently includes a single-objective
SA with some predefined cooling schedules, and multiobjective EA, PSO, and DE methods. A
multithread implementation is provided to support the parallel execution on multiprocessors.

� DGPF (Weise and Geihs, 2006): An adaptable framework for distributed multiobjective search
algorithms applied to Genetic Programming, which includes master–slave, P2P, and hybrid models
of parallel GA/GP.

� PMF (Garrett, 2010): A high-level multicore-enabled framework for the construction of meta-
heuristics for single and multiobjective optimization implemented in C++ and using Intel Thread-
ing Building Blocks library Garrett (2010). PMF includes single-objective metaheuristics (steady-
state EAs, local search operators, SA, TS), and multiobjective metaheuristics (NSGA-II, SPEA2,
and ε-MOEA). The model of parallelism is highly adapted for algorithms that split the work
done during each generation across multiple cores, and it is especially focused on hybrid al-
gorithms with time-consuming local search operators. Support for other parallel models is not
provided.

Other libraries and frameworks that only include a few implementations of parallel metaheuristics
are as follows:

JDeal (Gehlsen and Page, 2001): A Java-based framework for EAs that implements the parallel
evaluation of solutions following the master–slave model.

Distributed BEAGLE (Gagne et al., 2003): It provides a high-level environment for implementing
master–slave and distributed subpopulations parallel EAs using TCP/IP sockets.

DREAM (Arenas et al., 2002): A Java-based framework that implements the distributed subpop-
ulation model for EAs, using a P2P paradigm with TCP/IP sockets.

Java Grid-enabled Genetic Algorithm (JG2A) (Bernal et al., 2009): It implements two simple
parallel models: the multiple parallel independent executions and the distributed master–slave for
the fitness function evaluation.

EASEA (Maitre et al., 2009): A platform for EAs that implements the master–slave model for
fitness evaluation in GPUs.

HeuristicLab (Wagner and Affenzeller, 2005): An extensible framework for metaheuristics (EAs,
MOEAs, PSO, SA, TS, and other methods) written in C# using .NET, which only implements the
parallel distributed subpopulation model for GA, but the execution in grid computing environments
is also possible.

Several other less used frameworks have been proposed for parallel EAs and ACO, such as the
framework for parallel GA following the System-on-a-Programmable-Chip concept (Salmani et al.,
2006); the reusable framework for executing master–slave parallel ACO algorithms (Craus and
Rudeanu, 2004); the pCMALib parallel library for evolution strategy in Fortran 90 (Mueller et al.,
2009); and a recently proposed framework for distributed subpopulations EAs in grids using Globus
(Limmer and Fey, 2010).

Undoubtedly, MALLBA and ParadisEO are the most complete and comprehensive frameworks
for parallel metaheuristics. MALLBA has been continually evolving since its creation in 2002, and
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currently it provides sequential and parallel implementations of the most well-known metaheuristics
(different flavors of EA, ACO, PSO, SA, ES, VNS, DE, CLS, hybrids). ParadiSeO also includes
a wide range of parallel metaheuristics (EAs, PSO, TS, ILS, hybrids) as well as metaheuristics for
multiobjective optimization. These two frameworks are the current state-of-the-art libraries for
implementing parallel metaheuristics.

6. Methodology

Unlike exact methods, where time-efficiency is a main measure for evaluating success, there are two
chief issues in evaluating parallel metaheuristics: how fast solutions can be obtained (efficiency), and
how far they are from the optimum (efficacy). We can distinguish between two different approaches
for analyzing metaheuristics: a theoretical analysis (worst-case analysis, black-box analysis, etc.) and
an experimental analysis. Although several theoretical analyses have been developed for a number
of heuristics and problems, these theoretical achievements have a difficulty in their utilization for
real problems and algorithms, severely limiting their range of application. As a consequence, most
of metaheuristics are evaluated “empirically” in an “ad-hoc” manner.

An experimental analysis usually consists in applying the developed algorithms to a collection of
problem instances and comparatively report the observed solution quality and consumed computa-
tional resources (usually the time required to perform the search and/or the time needed to find the
best solution). Other researchers (Rardin and Uzsoy, 2001) have tried to offer a kind of methodolog-
ical framework to deal with the experimental evaluation of heuristics in general. Important aspects
of an evaluation are the experimental design, finding good sources of test instances, measuring the
algorithmic performance in a meaningful way, sound analysis, and clear presentation of results.
Due to the great difficulty in making all this correctly, the main issues of experimental evaluation
are simplified to only “highlight” some guidelines for designing experiments, and reporting on
their results. An excellent algorithmic survey about simulations and statistical analysis is given in
McGeoch (2007, 2008). In these papers, McGeoch includes an extensive set of basic references on
statistical methods and a general guide for designing experiments.

Some best practices that we should take into account when researching with parallel metaheuris-
tics are as follows:

� Distinguish between instances and problem class.
� Report parameters.
� Perform 30–100 independent runs (at least).
� Always report times and numerical performance.
� Analyze scalability with problem dimension.
� Compare against standard algorithms of the same class of the new proposed, the best so far, and

a random search (this last is a very important sanity check).
� Use meaningful metrics.
� Perform statistical assessment of the numerical metrics.

In the rest of this section, we focus on how the experiments should be performed, and how
the results must be reported in order to make fair comparisons between parallel metaheuristics.
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Fig. 4. Main steps for an experimental design.

Specially, our main interest is revising, proposing, and applying parallel performance metrics and
statistical analysis guidelines to ensure that our conclusions are correct and reproducible by others.
Finally, we have also added a subsection about recent theoretical developments in the parallel
metaheuristic domain for those readers going this way.

6.1 Previous experimental design

In general, the goal of a scientific job is to present a new approach or algorithm that works
better, in some sense, than existing algorithms. This requires experimental tests to compare the
new algorithm with respect to the rest. It is in general hard to make fair comparisons between
algorithms. The reason is that we need to ensure the same experimental setting: computer, net-
work protocols, operating system, and all the other features. Assuming this is correctly done, we
could even infer different conclusions from the same results depending on the metrics we use.
This is specially important for nondeterministic methods. In this section we address the main is-
sues on experimental testing for reporting numerical effort results, and the statistical analysis that
“must” be performed to ensure that the conclusions are meaningful. The main steps are shown in
Fig. 4.

The first choice that a researcher must make is the problem domain and the problem instances
to test his/her algorithm. That decision depends on the goals of the experimentation. We can
distinguish between two clearly different objectives: (1) optimization versus (2) understanding of
the algorithms.

Optimizing (or searching or learning) is a commonly practiced sport in designing a metaheuristic
that beats others on a given problem or set of problems. This kind of experimental research finishes
by establishing the superiority of a given technique over others. In this scenario, researchers should
not be limited to establishing “that” one metaheuristic is better than another in some way, but
also to investigate “why,” i.e., they must understand how the algorithms work. These last studies
usually are developed using mathematical tools (run-time analysis, takeover time study or landscapes
analysis). Although these mathematical methodologies are useful, in some cases they cannot be
applied and then researchers should design experimental studies to analyze the behavior of the
method.

For both goals, optimization and understanding the algorithm, one important decision is the
instance to be used. The set of instances must be complex enough to obtain interesting results and
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must have a sufficient variety of scenarios to allow some generalization of the conclusions. Also, the
number and dimension of instances is capital (size matters). Problem generators are specially good
for a varied and wide analysis. In the next paragraphs we show the main classes of instances (a more
comprehensive classification can be found in Eiben and Jelasity, 2002; Rardin and Uzsoy, 2001).

Real world instances. The instances taken from real applications represent a hard testbed for testing
algorithms. Sadly, it is rarely possible to obtain more than a few real data for any computational
experiment due to proprietary or economic considerations. An alternative is to use random variants
of real instances, i.e., the structure of the problem class is preserved, but details are randomly changed
to produce new instances (Eiben and Jelasity, 2002). This kind of instances represent instances that
emerge from a specific real life situation, such as timetabling of a school. This class of instances
has the advantage of being freely available. Specially, academic instances must be looked for and
analyzed in the existing literature to not reinvent the wheel, and to avoid using straightforward
benchmarks (Whitley, 2001).

Standard instances. In this class are included the instances, benchmarks, and problem instance
generators that, due to their wide use in experimentation, became standard in the specialized
literature. For example, Reinelt (1991) offers the “TSPLIB,” a traveling salesman problem test
instances, Demirkol et al. and Uzsoy et al. (1998) offer something similar for job scheduling prob-
lems. Such benchmarks allow to test specific issues of algorithms and also to compare our results
against other methods. Other examples are CEC and GECCO instances for continuous global
optimization (Finck et al., 2009; Suganthan et al., 2005; Tang et al., 2007a), and the OR-library
Beasley (1990), as excellent examples of results (academy plus industry) for a large set of problem
classes.

Random instances. Finally, when none of the mentioned sources provide an adequate supply for
tests, the remaining alternative is pure random generation. This method is the fastest way to obtain
a diverse group of test instances, but it is also the most controversial.

After having selected a problem or a group of instances, we must design the computational
experiments. Generally, the design starts by analyzing the effects of several factors on the algorithm
performance. These factors include problem factors, such as problem size, number of constrains,
etc., plus algorithmic factors, such as parameters or components used for the search of the optimum.
If the cost of the computer experiments are low, we can do a “full factorial” design, but in general
it is not possible due to the large number of experiments: we usually need to reduce the set of
studied factors. There is a wide literature on “fractional factorial” design in statistics, which seeks to
assess the same effects of a fractional analysis without running all the combinations of influencing
parameters (see e.g., Montgomery, 2000). RACE (Birattari et al., 2002) and SPO (Bartz-Beielstein
and Preuss, 2009) are interesting approaches for validating and reducing the effort of the researcher
in experimentation.

The next step in an experimental project is to execute the experiments, choose the measure of
performance, and analyze the data. These steps are addressed in the next sections.
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6.2 Metrics

The objective of a parallel metaheuristic is to find a “good” solution in a “reasonable” time.
Therefore, the choice of performance measures for experiments necessarily involves both solution
quality and computational effort. Measuring an algorithm properly is a crucial issue in order to
perform fair comparisons and to obtain accurate conclusions. There is quite a large number of
metrics for parallel metaheuristics (Alba and Luque, 2006a). Among the metrics to measure the
performance of parallel metaheuristics, the most important and used one is the speedup, but in the
scientific community a consent does not exist on its definition and use. If we denote with Tm the
execution time for an algorithm using m processors, the speedup is the ratio between the (larger)
execution time on one processor T1 and the (smaller) execution time on m processors Tm is

sm = E [T1]
E [Tm]

. (1)

This metric compares wall-clock times. The main difficulty is that researchers could not agree on
which execution time on a uniprocessor and which execution time for an algorithm using more than
one processor should be used (Luque et al., 2009; Maitre et al., 2009; Vrajitoru, 2010). Actually, this
situation is even more complex since new parallel platforms such as GPUs and multicores need to
take into account other issues: throughput, cycle-per-instruction (-CPI-), memory access patterns
for different core and thread combinations, core-scaling, and thread-scaling (Byun et al., 2009;
Luong et al., 2010). Because of this, authors distinguish several definitions of speedup depending
of the meaning of these values, creating different taxonomies.

From these taxonomies (Alba and Luque, 2006a; Barr and Hickman, 1993), it is clear that
the evaluated parallel metaheuristics should compute solutions having a similar accuracy as the
sequential ones. This accuracy could be the optimal fitness value (if known) or a relaxation of it
(e.g., 90% of the optimal value), but in any case, the same value. Then, the stopping criterion of the
sequential and parallel algorithms should be set to get a same fitness value. Just in this case we are
allowed to compare resulting times. The used times are average mean times: the parallel code on
one machine versus the parallel code on m machines (and not versus a sequential panmictic version,
that in fact is a different algorithm). All this defines a sound way for comparisons, both practical
(no best algorithm needed) and orthodox (same codes, same accuracy).

Recently, new definitions of speedup have been presented for specific platforms and parallel
issues. Wang (2009) proposes the speedup metric taking into account checkpointing overhead,
since the traditional speedup only measures the performance of failure-free systems. The new
metric unifies performance and reliability measures, and evaluates the practical speedup of parallel
application with checkpointing. Hoekstra and Sloot (2005) also present a new speedup definition
for grid platforms. The concept of this metric is only to be used as a scalability metric for parallel
applications on the grid.

Although the speedup is a widely used metric, there exist other measures of the performance of
a parallel metaheuristic. The “efficiency” (Equation 2) is a normalization of the speedup (em = 1
means linear speedup, em < 1 means sublinear speedup, and em > 1 means superlinear speedup).

In some applications, stopping after a maximum time is mandatory, for example when using ACO
(not having the concept of point visited in the landscape since they are mainly devoted to construct
solutions instead of visiting the neighborhood of a given solution) or when stress is focused on
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comparing efficacy of two very different algorithms or implementations. In any case, real time is
very important in parallelism, and should always be reported:

em = sm

m
. (2)

Finally, Karp and Flatt (1990) have devised an interesting metric for measuring the performance
of any parallel algorithm, that can help us to identify much more subtle effects than using speedup
alone. They call it the “serial fraction” of the algorithm (Equation 3),

fm = 1/sm − 1/m
1 − 1/m

. (3)

Ideally, the serial fraction should stay constant for an algorithm. If a speedup value is small we
can still say that the result is good if fm remains constant for different values of m, since the loss of
efficiency is due to the limited parallelism of the program. On the other side, smooth increments of
fm are a warning that the granularity of the parallel tasks is too fine. A third scenario is possible in
which a significant reduction in fm occurs as m enlarges, indicating something akin to superlinear
speedup. If this occurs, then fm would take a negative value.

6.3 Statistical assessment of results

Once we have selected the appropriate metric to compare the algorithms, we need to perform a
statistical analysis to ensure the correction of the conclusions since in most papers, the objective is
to prove that a particular metaheuristic outperforms another one according to a concrete metric.
We have discussed about the metrics, but as we said before, the comparison between two average
values might be different from the comparison between two distributions, which is what we actually
have when the algorithm is run 100 times.

Although it is quite usual to find papers without statistical analysis even in recent journal articles,
statistical methods should be employed wherever possible to indicate the strength of the relations
between different factors and performance measures. A general framework to perform the statistical
analysis is to follow the next main steps (see Fig. 5): first, a normality test (e.g., Kolmogorov–
Smirnov) should be performed in order to check whether the variables follow a normal distribution
or not. If so, a Student t-test (two sets of data) or analysis of variance (ANOVA) test (two or
more sets of data) should be done. If they are not normally distributed, we should perform a
nonparametric test such as Kruskal–Wallis, Wilcoxon, or Friedman. This two-step procedure also
allows to control the type I error (the probability of incorrectly rejecting the null hypothesis when
it is true), since the two phases are independent (they test for different null hypotheses).

Usually, researchers use t-test or an ANOVA to ensure the “statistical significance” of the results,
i.e., determining whether an observed effect is likely to be due to sampling errors (Janson et al.,
2006; Nebro et al., 2006; Urlings et al., 2008). The two analyses, t-test and ANOVA, can only
be applied if the source distribution is normal. In metaheuristics, the resulting distribution could
easily be nonnormal (in fact, times are never normal formally, since the tail of distribution is cut
in zero). For this case, there is a theorem that helps. The “central limit theorem” states that the
sum of many identically distributed random variable tends to a Gaussian. So the mean of any set
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Fig. 5. Statistical assessment of results in metaheuristics.

of samples tends to a normal distribution. But in several cases the central limit theorem is not
useful at all. In these cases, there are a host of nonparametric techniques that can and should be
employed to sustain author’s arguments, even if the results show no statistical difference between
the quality of the solutions produced by the metaheuristics under study. One of the most commonly
used nonparametric test is Kruskal–Wallis (Alba et al., 2007d; Pedemonte and Cancela, 2010).

An important observation is that, in order to report the results, we should show the mean value
when the data follow a normal distribution, or the median otherwise. In parallel metaheuristics,
authors need to report whether they are using the best values of averages, average of averages, or
whatever other metric out of the parallel components running to solve the problem.

6.4 Theoretical developments

Although parallel metaheuristics have been known and used for decades, the number of theoretical
studies analyzing their behavior is very limited. Just recently this situation is changing, and it exists
a growing interest in theoretical issues about parallel metaheuristics. These new works follow three
different approaches: experimental studies, theoretical analysis of the takeover time, and runtime
analysis.

The first approach consists in performing a large number of general experiments, and from their
results, try to obtain some global conclusions or guides to help other researchers. In this category,
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we can found the works (Alba and Luque, 2006b; Alba et al., 2004) where the authors analyze the
influence of several parameters that control the parallel execution of the method, on different parallel
platforms. In those works, authors concluded that platforms with slow communication mechanism
(e.g., WAN environments) can be beneficial for some problems due to the higher isolation times
among the subalgorithm components provoked by these slower communications. Other works
study the impact of the parametrization of parallel models to characterize specific issues such
as communication topology (Hijaze and Corne, 2009) and communication period (Skolicki and
DeJong, 2005).

Another theoretical line of research is the exact (or approximate) computation of takeover times
where the goal is to estimate how quickly information is spread throughout the system. This line
has been explored for different parallel models such as cellular algorithms (Giacobini et al., 2005a,
2005b; Payne and Eppstein, 2007) or distributed ones (Alba and Luque, 2005; Luque and Alba,
2010; Rudolph, 2006). An interesting model is a closed formula for the takeover time of distributed
algorithms proposed by Alba and Luque (2005):

t∗ = per · d (T ) − 1
b

· Ln
(

1
a

· ε

N − d (T ) − ε · N

)
. (4)

In this equation authors relate takeover to the most important parameters in the distributed
model (migration period, per and the diameter of the topology d (T )). We must notice that this and
other similar models could be used as pure mathematical descriptors of the behavior or even put to
work actively inside self-adaptive new algorithms (interesting research line).

Finally, there are some recent studies considering the runtime analysis in parallel metaheuristics, in
particular in distributed models. Lässig and Sudholt (2010b) present a theoretical analysis showing
the essential role of the migration in some problems. The same authors proposed a general method
for estimating the parallel running time of the island model Lässig and Sudholt (2010a) and finally,
they also presented a study about the influence of the number of subalgorithms in a parallel
metaheuristic (Lässig and Sudholt, 2011).

7. Challenges and new trends

In this section, we list some of the hot topics that will probably be main lines of research in the
upcoming years. For their discussion, we distinguish four domains of development: “technology,”
“algorithms,” “methodology,” and “challenges.” As to the technology, it is clear that in any parallel
application there is a stress on the underlying network and parallel hardware. The reason is that
the ultimate source for big improvements in time speedup is linked to the hardware of the used
platform. Also, software technology plays an important role, since software tools are in charge of
approaching the hardware technology to users; how much the software simplifies the utilization of
the parallel hardware is also a goal for research, not only for mere utilization.

In addition to technology, a second big domain of research is represented by algorithms. First,
algorithms are our main object of research when solving a complex problem, and making them
parallel is by itself a difficult task. In dealing with algorithms, not only porting them to new
technological platforms is important, but also to fit them to the special features of the new parallel
architectures.
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The third domain of discussion here will be methodology. Since researchers in parallel algorithms
are either coming from the parallel part or from the algorithm part, it is difficult to have a common
nomenclature and way of thinking. Since most PhD students are pressed to finish their theses,
spending time in reading and knowing previous works is always limited in practice. This means that
the needed effort to work at the same time in parallelism and algorithms, plus the needed time to
get acquired of the literature preclude in many cases a research in the methodological application
and experimentation of this field. However, building a “body of knowledge” is very important,
and research will be welcomed if it works with benchmarks and best practices in the evaluation of
parallel metaheuristics, as well as in their underlying theory.

Finally, a fourth domain can be identified: a set of abstract scientific challenges that will guide the
three previous fields towards successful studies and applications. There are plenty of opportunities
for research in the first three mentioned fields, but here in the fourth item we will highlight some of
the most potentially beneficial ones for the community.

After this introduction, let us go for the details in the next sections.

7.1 Technology

We start this subsection considering the main hardware issues available for research

� Multicore: With the outstanding growth of multicore machines in both desktop and notebooks,
unveiling the behavior of parallel metaheuristics when running in multicores is a must. Studies
here are wanted in the utilization of the shared memory for communication, in the differences
between multicores and clusters of machines, in the advantages of using hyperthreading on many
core systems, and in developing algorithms suited to this architecture in order to extract all the
power out of it for parallel metaheuristics.

� GPUs: General Processing with GPUs (GPGPU) is really a raising field. In addition to porting
parallel algorithms to GPUs, it is very important to create algorithms that will profit from the
thousands of cores/threads of GPUs in a proper way (Maitre et al., 2009). Present research exists
on this, but we feel that researchers are sometimes happy when just getting modest 2×, 3×, 10×
speedups, while a GPU could deliver much more higher values if the algorithms were suited to
their architecture.

� APUs: New advances in the combination of GPU and CPU are gaining momentum in the indus-
try; these new processors will open research to deal with asynchronous algorithms profiting from
the two kinds of components. It will then be possible to run collaborative parallel metaheuristics
both on GPU and CPU, and even connect them in a single computer. This powerful system-on-
a-chip will also allow to create new unseen search models for complex problems, and can be one
way to arrive to the computation of solutions in just a few seconds for problems that take days at
present.

� Smartphones: The more our society develops, the larger is the impact of portable smartphones
(tablets and handhelds, also). If researchers are concerned about the final utilization of their
parallel metaheuristics (a reasonable concern, we must say) then a moment will come when we
need to run algorithms on these platforms. There, the computational power is low compared to
desktops but they represent the actual way to give final services to users: computing vehicle routes,
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advising medicine to doctors, learning problems in changing environments, etc. Here, multicore
systems are starting to appear (dual core at 1 GHz exists, now for example), and probably will
be scaled up in the near future (dual core at 2 GHz planned along 2011 by Google). Also, new
ways of computing for parallel metaheuristics rendering services to final users will appear, based
on P2P or software models of business that need the intelligence of a parallel metaheuristic.

� Cloud computing: This model of exploitation for services can be used to harness the difficulty
of running parallel metaheuristics in big problems. It is true that this field is probably nearer to
final users of parallel metaheuristics than to experts in the field, because of the (undesired) loss
of control when using cloud computing. However, the new services of Microsoft, Google, and
Amazon are great tools for new models of computation in parallel.

After discussing on the hardware, we now provide some aspects related to new software features
and potential developments

� Language embedded: For developers, languages having embedded communication methods
through a network is an easy and standard way of programming new parallel metaheuristics.
In this sense, Java (with RMI) is having an interest for the near future. It is not a slow language as
many researchers think, although it is true that C and even C++ can still run clearly faster in many
platforms. The portability and good efficiency makes it a very complete language for this field.
Other languages exist that have been used (Perl or Fortran) (Douguet et al., 2000; MacCallum,
2003) but surely they are not as well spread in the parallel metaheuristic domain as Java and
C/C++.

� Communication standards: Here, the Socket interface is the lower level way to ensure portability
at a negligible overhead. The standard has existed and will exist for a very long time because of its
close relation to Internet and TCP/IP, making it attractive for researchers looking for the most
efficient way to communicate processes. The weak part is their really low level of programming,
and that is the reason for the high acceptation of MPI. MPI is a standard (not a software or an im-
plementation) that is widely supported in most parallel architectures, with a reasonably high level
of programming primitives and a very good efficiency at the same time. The utilization of MPI will
probably still give birth to new parallel metaheuristics in the forthcoming years, with nice imple-
mentations such as OpenMPI, MPICH (http://www.mcs.anl.gov/research/projects/mpich2/)
and LAM MPI (http://www.lam-mpi.org/) standing on the top.

� Optimization utilities: We will probably see also an increasing interest in including parallel meta-
heuristics in well-known numerical packages such as Matlab, Excel, or R. Extending the existing
algorithms in these packages will attract more users to perform research with parallel metaheuris-
tics. It is however clear that the efficiency and control that one can keep when using these packages
is not comparable to developing in a programming language (complex data structures, memory
control, connectivity to others), and then most probably (again) this line will be exploited by users
of parallel metaheuristic, and not by insiders.

� Libraries: Many libraries exist in this domain such as MALLBA (Alba et al., 2007d), ParadisEO
(Cahon et al., 2004), or HeuristicLab (Wagner and Affenzeller, 2005). Their use will probably
keep growing by users and developers of new parallel algorithms in the future. Research here is
to be done carefully, since they are tools, not actually contributions in science, and thus many
authors will still prefer to make their own software for testing new ideas. As to practitioners,
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libraries are great tools for them, and research will probably come from their utilization in new
applications where the focus is on the result and not on the algorithm used.

� GPU programming: Developments in CUDA (NVIDIA, 2007) and in OpenCL (Munshi et al.,
2009) will subsist for a time. A probable merging of the two could happen in the future from
the point of view of programming paradigms. Here, the useful research can come from their
utilization to fully exploit the potential of GPUs in creating new techniques that cannot be run
in CPUs. Only when this field is full of algorithms not easily portable and with high efficiency,
most researchers will understand the potential of GPUs and devote their effort to create lines of
research in this domain.

� Others: New concepts, specially in the sense of applications will be valuable for future research.
Some of them are Software As A Service (SaaS), web services for optimization such as ROS (Alba
and Garcı́a-Nieto, 2005), remote pay sites for applications, etc.

7.2 Algorithms

As we said before, algorithms are our main object of research when solving a complex problem, and
many topics should be considered when we are using parallel methods:

� Heterogeneous: New algorithms running on the very common network of heterogeneous clus-
ters will be valuable in the future. Many labs and departments are having a vast network of
different processors that can be used to develop new algorithms and to deploy on them tools
such as Condor for their better exploitation (Nebro et al., 2008b). In addition to heterogeneous
hardware, also parallel heterogeneous software algorithms are sought that combine existing ideas
(representations, different parameters, different operators) in one single solution proposal to deal
with harder problems. This line of research needs a careful definition of what speedup means,
and how to fairly compare techniques in order to advance in the body of knowledge on parallel
metaheuristic. It seems that dealing with heterogeneity is a must today, so let us do it in the
algorithms (Hung and Chen, 2010) and in actual hardware (Wilson and Banzhaf, 2009).

� Asynchronous: For most new hardware technologies for parallelism, asynchronicity is an impor-
tant issue. Researching in asynchronous exchanges of information or operations in general will
give birth to techniques that will level up the power of existing parallel metaheuristics Lucka and
Piecka (2009). Flexibility for combining ideas in one single algorithm and improved efficiency
versus synchronous versions are strong pros for going this way in the future (Luque et al., 2010).

� P2P: Further development in P2P algorithms is of interest. The parallel execution on mo-
bile systems (handhelds, vehicles such as cars (http://diricom.lcc.uma.es; http://roadme.
lcc.uma.es, etc.) needs such approaches to compute solutions in parallel or to collaborate in
one common task. The important key here is how to do this and how to make it in an efficient
manner that is competitive against existing techniques.

� Self-adaptation: It is clear that most decisions done by researchers are directed by previous (too
often, personal) experience or by a preliminary set of experiments to tune algorithms. Parallel
metaheuristics represent an interesting domain where self-adaptive algorithms can be proposed.
Here, the key question is what is the overhead of this adaptation (must be reported, must be
linear-like!) and whether adaptive algorithms are really competitive to the best state-of-the-art
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techniques. If so, they will be the way to arrive to the desired exploration/exploitation balance
that all researchers are looking for (even without knowing it).

� Theory driven: Theory has been greatly dismissed in most articles and research lines today. This
is an error: the more we know on the parallel algorithm and the problem landscape the better we
can build new operators and collaborative algorithms. Being able to characterize, the takeover
time Giacobini et al. (2005a), the (apparently different) influence of migration topologies and
policies (Payne and Eppstein, 2007), the expected effects of the parallel metaheuristics on a given
problem, etc. all represent hot topics that will mean highly cited papers in the future for other
researchers. This will definitely help in creating a body of knowledge in parallel metaheuristics.

� Architecture specific: Creating algorithms that profit from the hardware architecture is a must
in the future on this field. Speedup and gains come ultimately from hardware, and fitting the
algorithm to it is a way to go when efficiency is the goal. In the case of GPUs, an interesting
example is that of systolic algorithms, able of creating new metaphors of resolution for complex
problems not only in GPUs but also for traditional CPUs and the coming APUs (Alba and Vidal,
2011). Also, creating compilers to translate existing parallel metaheuristics to new architectures
is a very interesting line of research, to be able of directly using them with a low effort (Maitre
et al., 2009).

� Traditional parallel metaheuristics: There are still many open lines dealing with creating parallel
versions of well-known metaheuristics. One of them is the development of efficient and accurate
parallel ACO algorithms, since the literature tells us that such an algorithm is still to appear. Also,
trajectory-based algorithms are not that commonly found in parallel studies, and remain a field
to discover in a sense (although much exists on some of them, such as SA).

� Multiobjective: Developing efficient parallel MOEAs is a true challenge (Garrett, 2010; Liefooghe,
2010; Nebro and Durillo, 2010; Sasaki et al., 2006). Existing field knowledge is a clear factor to
develop new and efficient MOEA models, but not enough by itself, because of the required
distributed utilization of archives with nondominated solutions, and because of the need to
define a convenient exchange of solutions between the components of a parallel multiobjective
algorithm. Extensions of existing sequential algorithms and new techniques are of interest to
clearly make a step forward in their advantages, since it is very often that researchers can only
provide parallel results that are not clearly (statistically) superior to existing sequential algorithm,
a trend that we all should change with fresh ideas and rigorous experimentation.

7.3 Methodology

We already introduced the details on what methodological issues exist in parallel metaheuristics.
We now summarize them from the point of view of their future in the field.

� Theory: Developments in theory on parallel metaheuristics is a must. As traditional and sequential
algorithms are better and better characterized, the time will come for parallel models to extend
the ideas and to create new concepts explaining their dynamic behavior and their convergence
(Lässig and Sudholt, 2010b). Here, the connection to landscape analysis is also fruitful, in that
elementary landscape analysis (for example) can guide in developing effective/efficient operators
for parallel algorithms (Whitley et al., 2010).
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� Statistics: This is an extremely important issue. More than an interesting line of research, per-
forming statistical analysis on the results and the behavior of parallel algorithms will become
a necessary condition to publish in international conferences and journals. More than 30 runs,
checking normality on the values, using statistical multicompare tests, etc. will become (is almost,
already) a fundamental piece in the evaluation of parallel stochastic algorithms (Alba and Luque,
2006a; Bartz-Beielstein and Preuss, 2009).

� Benchmarks: There is a need of creating benchmarks easing the comparison of parallel algorithms.
Other domains are very developed in this sense (such as multiobjective research, continuous
optimization, and traditional combinatorial problems (Finck et al., 2009; Tang et al., 2007a), but
parallel techniques still wait for a set of problems that can uncover the advantages of the proposed
techniques. With benchmarks, comparisons and knowledge will start to be objective and widely
spread in the community.

� Metrics: A careful definition of metrics for existing and new parallel metaheuristics is of capital
importance (Alba and Luque, 2006a). Ensuring that speedup is a meaningful metric is in the core
of many studies of this field, and limits the conclusions obtained when done in an unorthodox
manner. New metrics for summarizing extensive executions are needed also, and clear quantitative
goals are needed in the future articles on parallel metaheuristics (Hoekstra and Sloot, 2005).

7.4 Challenges

Finally, we conclude this part of our work by showing some interesting challenges in the parallel
metaheuristics field. These challenges represent important open research lines in this domain.

� Few seconds execution: One urban legend says that metaheuristics, especially population-based
models, are slow solvers. This is true in some complex problems with large dimensionality and
of high restriction. However, there exists a set of problems amenable for fast resolution when the
appropriate technique is devised. A challenge for the future will be to run algorithms in a few
minutes or seconds, solving interesting optimization and search tasks. Thus, the evaluation of
algorithms under wall-clock restrictions of a few seconds are of interest as future research lines.
Here, technology plays an important role also, since platforms such as GPUs and other highly
efficient processors could be one of the key to arrive at this real-time response (Vidal and Alba,
2010a, 2010b).

� Beating the state-of-the-art: Most researches have the goal of either to solve problems that have
not been previously solved or to solve existing problems at a higher efficiency. In this last case,
determining the best existing techniques in sequential and developing new parallel ones to beat
them is an interesting line of research. Often, many researchers do not want to enter parallelism
because they do not see a clear advantage (and do see lots of skills required to succeed in the
parallel field); only when researchers in parallel metaheuristics establish clear comparisons to
other existing best results and outperform them, the rest of communities will become interested
in how this is possible, and then come to use parallel algorithms. In any case, comparing to
the best techniques in every single research paper is a must to enhance the knowledge in any
field, and metaheuristics in general are not an exception. This can be considered a compo-
nent of these new best practices, along with including statistical analyses and make the paper

C© 2012 The Authors.
International Transactions in Operational Research C© 2012 International Federation of Operational Research Societies



E. Alba et al. / Intl. Trans. in Op. Res. 20 (2013) 1–48 33

self-contained for future reproduction (Bartz-Beielstein and Preuss, 2009). A final interesting
issue: is the proposed algorithm better than a blind random search? It is difficult to find articles
including this straightforward comparison, a must in any modern study.

� Scalability: Parallel metaheuristics have the potential to scale to larger problem dimensions and
number of restrictions. An interesting challenge consists in applying “stress tests” to any given
new approach, in order to characterize when and how much they are useful (Hoekstra and Sloot,
2005). Problem generators are a kind of software that eases such scalability study, thus showing
the potential of the proposed technique as a solver for the problem class, and not only for one
problem instance.

� Robustness: There is a general shift in research in many domains from pure optimization to
combined robustness analysis. In general, this means that researchers should be considering not
only the average accuracy, but also the dispersion in the results. The sensibility of the worked
solutions and the proper management of noise or dynamic conditions can be mastered specially
well when the resolution technique is having specialized components that cover the search space
in a better form (Finck et al., 2009). Thus, the interest of this topic (robustness) in the parallel
metaheuristic domain is very high, in fact a topic that is underexploited at this moment (Talbi
and Bachelet, 2006).

� Multiobjective: The impact of a multiobjective modeling of a problem is huge. The kind of insights
that a researcher can gain by approaching this domain is vast and rich. A big challenge in parallel
metaheuristics is how to actually share the nondominated solutions among the components of
the parallel algorithm, and how to build and evolve a single Pareto front in a decentralized
manner. Far from being evident, this is an open topic that can bring multiobjective researchers
with powerful tools once this problem is first solved (Nebro and Durillo (2010) and Garrett (2010)
are examples in this line).

� Interactive/online: When the goal of a research is to build an application, it is often the case
that human users want to interact with the system, check different scenarios, see the effects of
some changes on the results and include strategic enterprise information on it. Whatever the goal
is, the ability of the parallel method to run fast and present multiple solutions (possibly several
niche-oriented solutions) is a key factor that could be exploited in future research with parallel
methods.

� Body of knowledge: The strategic goal of all the previous challenges is to advance on the theory
and the applications of parallel metaheuristics. By doing so in a convincing manner, in a general
fashion, and with a basic set of best practices and sanity checks, researchers will be able to delimit
the domain of knowledge of parallel metaheuristics. Such a domain is often misunderstood,
leading to works of low quality that are not even using the appropriate nomenclature, given that
they are dealing at the same time with parallelism and metaheuristics. That body is growing
(Luque and Alba, 2011) and getting defined on time, and we hope that this last section helps in
stretching its bounds (Alba and Luque, 2006a).

� Trade-off usability/efficiency in software: An additional interesting topic for future research is
to explicitly address the balance between software usability and efficiency when dealing with
parallel metaheuristics. Many of packages and algorithms are being constantly proposed for
parallel metaheuristics, but there is no way to evaluate their relative merits because researchers
are not quantifying things such as “flexibility”, “extensibility”, “ease utilization” and such a
list of vague terms, which most times are argued to justify a new library or tool. Defining the
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goal of the software, and performing quantitative analysis is mandatory in this case. Researchers
could analyze the average time to use a software component, overhead in time of the proposed
architecture, whether a serious design exists or not (UML or similar), how the software scales
with problem dimension, etc. This is hardly found at present, and a big effort in comparison and
quantification is needed if this is to be considered a science.

8. Conclusions

This article contains a modern survey of parallel models and implementations of metaheuristics.
We have stressed not only the associated algorithmic issues, but also the parallel tools for building
parallel metaheuristics. By summarizing the parallel algorithms, their applications, classes, and
theoretical foundations, we intend to offer information not only for beginners but also for researchers
working with metaheuristics in general.

The up-to-date list of references has been elaborated to serve as a directory for granting the reader
access to the valuable results that parallel metaheuristics are offering to the research community.
Most important trends have been discussed, yielding what we hope is a unified overview and a useful
text.
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Lässig, J., Sudholt, D., 2010a. General scheme for analyzing running times of parallel evolutionary algorithms. In
Proceedings of the 11th International Conference on Parallel Problem Solving from Nature: Part I. Springer-Verlag,
Berlin, Heidelberg, pp. 234–243.
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