
Soft Comput
DOI 10.1007/s00500-014-1363-0

METHODOLOGIES AND APPLICATION

Systolic genetic search, a systolic computing-based metaheuristic

Martín Pedemonte · Francisco Luna · Enrique Alba

© Springer-Verlag Berlin Heidelberg 2014

Abstract In this paper, we propose a new parallel optimiza-
tion algorithm that combines ideas from the fields of meta-
heuristics and Systolic Computing. The algorithm, called
Systolic Genetic Search (SGS), is designed to explicitly
exploit the high degree of parallelism available in modern
Graphics Processing Unit (GPU) architectures. In SGS, solu-
tions circulate synchronously through a grid of processing
cells, which apply adapted evolutionary operators on their
inputs to compute their outputs that are then ejected from
the cells and continue moving through the grid. Four dif-
ferent variants of SGS are experimentally studied for solv-
ing two classical benchmarking problems and a real-world
application. An extensive experimental analysis, which con-
sidered several instances for each problem, shows that three
of the SGS variants designed are highly effective since they
can obtain the optimal solution in almost every execution
for the instances and problems studied, as well as they out-
perform a Random Search (sanity check) and two Genetic

Communicated by V. Loia.

M. Pedemonte (B)
Instituto de Computación, Facultad de Ingeniería,
Universidad de la República, Julio Herrera y Reissig 565,
11300 Montevideo, Uruguay
e-mail: mpedemon@fing.edu.uy

F. Luna
Depto. de Ingeniería de Sistemas Informáticos y Telemáticos,
Centro Universitario de Mérida, Universidad de Extremadura,
Santa Teresa de Jornet, 28, 06800 Mérida, Spain
e-mail: fluna@unex.es

E. Alba
Departamento de Lenguajes y Ciencias de la Computación,
Universidad de Málaga, E.T.S. Ingeniería Informática,
Campus de Teatinos, 29071 Málaga, Spain
e-mail: eat@lcc.uma.es

Algorithms. The parallel implementation on GPU of the pro-
posed algorithm has achieved a high performance obtain-
ing runtime reductions from the sequential implementation
that, depending on the instance considered, can arrive to
around a hundred times, and have also exhibited a good scal-
ability behavior when solving highly dimensional problem
instances.

Keywords Systolic genetic search ·
Evolutionary algorithms · Systolic computing ·
Parallel computing · Graphics processing units · CUDA ·
GPGPU

1 Introduction

In the last ten years, computing platforms have undergone
revolutionary changes (Hennessy and Patterson 2011). Par-
allel hardware is no longer an infrastructure reserved for a
few research laboratories, but it is widely available for the
general public. On one hand, the architecture of CPU proces-
sors has changed, being now multi-core (a single computing
unit composed of at least two independent processors). As
a consequence, modern desktop computers are at least dual-
core (the more common hardware configuration) and even
hexa-core. On the other hand, the parallel hardware that can
be used for computation has diversified notably. Nowadays,
it is possible to use devices like multi-core processors with
ARM architecture (Furber 2000), which have become mas-
sively available in smart cell phones and tablet computers,
as well as Graphics Processing Units (GPUs) as general-
purpose parallel platforms (Owens et al. 2007).

The number of cores available in modern hardware is
growing steadily and will undoubtedly continue to do so in
the foreseeable future. For instance, Nvidia has launched

123

M. Pedemonte et al.

its new generation of GPUs, Kepler (Nvidia Corporation
2012d), with up to 2,688 CUDA cores at 732 MHz and
a single precision floating point peak performance of 3.95
TFlops; while Intel has released the Xeon Phi coprocessor
(Intel Corporation 2013a,b), with up to 61 cores operating at
least 1 GHz and a single precision floating point peak per-
formance of 2.15 TFlops. As a consequence, the design of
parallel algorithms able to exploit the new capabilities avail-
able in modern hardware is indispensable.

In this context, in which remarkable changes are taking
place in the devices used for computing and device capabili-
ties will stay growing, the design of new parallel algorithms
that profit from them is certainly an interesting, promis-
ing research line. This is specially relevant in the field of
metaheuristics (Blum and Roli 2003) and their paralleliza-
tion (Alba 2005). Unlike exact methods, metaheuristics are
stochastic algorithms which are able to provide optimiza-
tion problems with very accurate solutions in a reasonable
amount of time. However, as the problem instances in today’s
research are becoming very large, even metaheuristics may be
highly computationally expensive. This is where parallelism
comes out as an actual, reliable strategy to speed up the search
of those kind of optimizers. The truly interesting point is that
parallel metaheuristics do not only allow the runtime of the
algorithms to be reduced, but also allow to improve the qual-
ity of results obtained by traditional sequential algorithms
due to their (often new) enhanced search engine (Alba 2005).
As a consequence, research on this topic has grown sub-
stantially in the last years, motivated by the excellent results
obtained in their application to the resolution of problems in
search, optimization, and machine learning.

In particular, the use of GPUs has represented an inspir-
ing domain for the research in parallel metaheuristics, expe-
riencing a tremendous growth in the last five years. This
growth has been based on its wide availability, low eco-
nomic cost, and inherent parallel architecture, and also on
the emergence of general-purpose programming languages,
such as CUDA (Kirk and Hwu 2012) and OpenCL (Gaster
et al. 2012).

The first works on parallel metaheuristics on GPUs have
gone in the direction of taking a standard existing family
of algorithms and porting them to this new kind of hard-
ware (Langdon 2011). Thus, many results show the time
savings of running master–slave (Maitre et al. 2012), dis-
tributed (Zhang and He 2009), and cellular (Soca et al.
2010; Vidal and Alba 2010a) metaheuristics on GPU (mainly
Genetic Algorithms (Maitre et al. 2012; Pedemonte et al.
2011) and Genetic Programming (Harding and Banzhaf
2011; Langdon and Banzhaf 2008; Lewis and Magoulas
2009) but also other types of techniques like Ant Colony
Optimization (Cecilia et al. 2011; Tsutsui and Fujimoto
2011), Differential Evolution (Veronese and Krohling 2010),
Particle Swarm Optimization (Zhou and Tan 2009), etc.).

A different approach, followed in this paper, lies in propos-
ing and designing new techniques that explicitly exploit the
high degree of parallelism available in modern GPU architec-
tures. Following this course of action, two new optimization
algorithms (Systolic Neighborhood Search (Alba and Vidal
2011; Vidal et al. 2013) and Systolic Genetic Search (Pede-
monte et al. 2012, 2013)) have recently been proposed that
are based on combining ideas from the fields of metaheuris-
tics and Systolic Computing. The concept Systolic Com-
puting was coined at Carnegie-Mellon University by Kung
(1982), and Kung and Leiserson (1978). The basic idea of
this concept focuses on creating a network of different simple
processors or operations that rhythmically compute and pass
data through the system. Systolic computation offers several
advantages, including simplicity, modularity, and repeata-
bility of operations. This kind of architecture also offers
transparent, understandable and manageable, but still quite
powerful parallelism. In Systolic Genetic Search (SGS) solu-
tions circulate synchronously through a grid of cells. When
two solutions meet in a cell, adapted evolutionary operators
are applied to generate new solutions that continue moving
through the grid. SGS has shown its potential for tackling the
Knapsack Problem finding optimal solutions in short execu-
tion times in Pedemonte et al. (2012, 2013).

The goal of the present work is to characterize the gen-
eral SGS optimization algorithm and study four novel vari-
ants that follow the premises of this general optimization
algorithm. An exhaustive experimental evaluation has been
undertaken to provide the reader with insights on both the
search capabilities of the SGS algorithms and their paral-
lel performance when deployed on a GPU card. The results
have shown that three out of the four systolic algorithms
devised are highly effective as they are able to reach the
optimal solution in almost every execution for the instances
and problems studied, outperforming the other algorithms
involved in the experiment (namely, Random Search, and two
Genetic Algorithms). The testbed is composed of different
instances of two classical benchmark problems, Knapsack
Problem (Pisinger 1999) and Massively Multimodal Decep-
tive Problem (Goldberg et al. 1992), and a real-world applica-
tion, the Next Release Problem (Bagnall et al. 2001). On the
other hand, the parallel implementation on GPU of SGS has
achieved a high performance obtaining runtime reductions
from the sequential implementation that, depending on the
problem and the instance considered, can scale up to around
a hundred times.

Finally, it should be highlighted that parallel SGS also
exhibits a good scalability behavior when solving high-
dimensional problem instances.

This article is organized as follows. The next section intro-
duces the SGS algorithm and the four different variants stud-
ied. Section 3 describes the implementation of the SGS on a
GPU. Then, Sect. 4 presents the experimental study consid-

123

Systolic genetic search

ering the three different problems aforementioned. Section 5
shows how our approach differs from the existing popula-
tion models for evolutionary algorithms. Finally, in Sect. 6,
we outline the conclusions of this work and suggest future
research directions.

2 Systolic genetic search

Systolic computing-based metaheuristics, as well as Systolic
Computing, are inspired by the same biological phenomenon.
The idea is to mimic the systolic contraction of the heart that
makes it possible to inject blood back on the body rhythmi-
cally according to the metabolic needs of the tissues. This
biological phenomenon is briefly described next.

The cardiovascular system consists of the heart, that is
responsible for pumping blood with each beat, and a special-
ized conduction system composed of arteries, which trans-
port and distribute blood from the heart to the body, and the
veins that transport the blood back to the heart. The cardiovas-
cular system can be seen as two pumps that work in parallel;
the first pump corresponds to the right heart, which receives
deoxygenated blood from the tissues and sends it to the lungs
to be oxygenated (pulmonary circulation). On the other hand,
the second pump corresponds to the left heart that receives
oxygenated blood from the lungs and sends it to all tissues
to distribute oxygen to the different parenchyma (systemic
circulation). The human heart pumps through the body more
than 6,000 l of blood daily (Guyton and Hall 2006; Libby et
al. 2007).

In each cardiac cycle, the heart first relaxes to refill with
circulating blood (this phase is known as diastole) and then
it contracts (this phase is known as systole), increasing the
pressure inside the cavities. As a consequence, the heart
ejects blood into the arterial system. Due to the systolic con-
traction, the blood is ejected from the heart with a regular
cadence or rhythmically according to the metabolic needs of
the tissues. If the cardiac cycle is regular, i.e., there are no
pathological situations (called cardiac dysrhythmia), we can
define as a normal heart rate for an adult a value between
60 and 100 cycles/min (Guyton and Hall 2006; Libby et al.
2007).

In Systolic Computing-based metaheuristics, solutions
flow across processing units (cells) according to a synchro-
nous, structured plan. When two tentative solutions (or one
single solution in Systolic Neighborhood Search algorithm)
meet in a cell, operators are applied to obtain new solutions
that continue moving across the processing units. In this way,
solutions are refined again and again by simple low complex-
ity search operators.

In the leading work on Systolic Computing-based meta-
heuristics, the Systolic Neighborhood Search algorithm has
been proposed that is based on using a local search as the

working operation in cells (Alba and Vidal 2011; Vidal et
al. 2013). In subsequent works, we have explored a more
sophisticated approach that involves more diverse opera-
tions: the Systolic Genetic Search algorithm (Pedemonte et
al. 2012, 2013). Closely related works are further analyzed
in Sect. 5.

The rest of this section is structured as follows. First, in
the next subsection the SGS algorithm is described. Then, the
four different instantiations or flavors of SGS that are used
in the experimental evaluation are introduced.

2.1 Systolic genetic search algorithm

In a SGS algorithm, the solutions are synchronously pumped
through a bidimensional grid of cells. At each step of SGS,
two solutions enter each cell, one from the horizontal data
stream (Si, j

H) and one from the vertical data stream (Si, j
V),

as it is shown in Fig. 1a. Then, adapted evolutionary/genetic
operators (crossover shown in Fig. 1b and mutation shown
in Fig. 1c) are applied to generate two new solutions. Later,
the cell uses elitism (shown in Fig. 1d) to determine which
solutions continue moving through the grid, one through the
horizontal data stream (Si, j+1

H) and one through the vertical

data stream (Si+1, j
V), as it is shown in Fig. 1e.

The pseudocode of SGS is presented in Algorithm 1. At
the very beginning of the operation, each cell generates two
random solutions which are aimed at moving horizontally
and vertically, respectively. Then, it applies the basic evolu-
tionary search operators (crossover and mutation) but to dif-
ferent, preprogrammed fixed positions of the tentative solu-
tions that circulate throughout the grid. This is the major
contribution of SGS: it performs a stochastic yet structured
exploration of the search space. The cells use elitism to pass
on the best solution (between the incoming solution and the
newly generated one by the genetic operators) to the next
cells. The incorporation of elitism is critical, as there is no
global selection process like in standard Evolutionary Algo-
rithms (EAs). Each cell sends the outgoing solutions to the
next cells of the data streams, which have been computed
previously.

We want to remark that the idea of the SGS algorithm
can be adapted to any solution representation and any par-
ticular operator. In this work, we address binary problems,
for this reason we encoded the solutions as binary strings,
and use bit-flip mutation and two-point crossover as evolu-
tionary search operators. In this case (binary representation),
the positions in which operators are applied in each cell are
defined by considering the location of the cell in the grid,
thus avoiding the generation of random numbers during the
execution. Some key aspects of the algorithm such as the size
of the grid and the calculation of the crossover points and the
mutation point are discussed next.

123

M. Pedemonte et al.

(a)

(b)

(c)

(d)

(e)

Fig. 1 SGS processing at cell (i, j)

2.1.1 Size of the grid

The length and width of the grid considered, respectively, as
the number of cells in a row and in a column, should allow the
algorithm to achieve a good exploration, but without increas-
ing the population size up to values that compromise per-
formance. To generate all possible mutation point values at
each single row and considering that each cell uses a different
mutation point value, the grid length is l (the length of the
tentative solutions, i.e., the size of the problem instance). As

Algorithm 1 Systolic Genetic Search
1: for all c Cell do
2: c.h =generateRandomSolution();
3: c.v =generateRandomSolution();
4: end for
5: for i = 1 to maxGeneration do
6: for all c Cell do
7: (tempH , tempV) =crossover(c.h, c.v);
8: tempH =mutation(tempH);
9: tempV =mutation(tempV);
10: c1 =calculateNextHorizontalCell(c);
11: c2 =calculateNextVerticalCell(c);
12: tempH =elitism(c.h, tempH);
13: tempV =elitism(c.v, tempV);
14: moveSolutionToCell(tempH , c1.h);
15: moveSolutionToCell(tempV , c2.v);
16: end for
17: end for

a consequence, each cell in a given row modifies a different
position of the arriving solutions.

If a similar strategy would have been used for the columns
(generate all possible mutation point values at each single
column), the natural value for the width of the grid is also
l. However, that would lead SGS to use a population with
2 × l × l (2 solutions per cell) for solving problem instances
of size l. For this reason, and to keep the total number of
solutions of the population within an affordable value, the
width of the grid has been reduced to τ = �lg l�. Therefore,
the number of solutions of the population is 2 × l × τ (2
solutions per cell).

2.1.2 Crossover operator

As the crossover operator used is the two-point crossover,
two different crossover point values (preprogrammed at fixed
positions of the tentative solutions) have to be calculated for
each cell. In each row, to sample different sections of the indi-
viduals, the second crossover point is calculated increasing
the distance to the first crossover point with the column, and
two different values for the first crossover point are used.
Figure 2 shows the general idea followed to distribute the
crossover points over the entire grid, using different crossover
points in each cell to exchange different sections of the solu-
tions through the grid.

For the first crossover point, two different values are used
in each row, one for the first l

2 cells and another one for the
last l

2 cells. These two values differ by div(l, 2τ), while cells
of successive rows in the same column differ by div(l, τ).
This allows using a large number of different values for the
first crossover point following a pattern known a priori. If
x ≥ 0 and y > 0, then div(x, y) = � x

y �, so we use div in
the text but we prefer to use floor notation in the equations
for the sake of clarity. Figure 3 illustrates the first crossover
point calculation.

123

Systolic genetic search

Fig. 2 Distribution of crossover points across the grid

First l
2 tsaLsnmuloc l

2 columns

1

2

i

2 2 + div(l, 2τ)

2 + div(l, τ +2) div(l, τ) + div(l, 2τ)

2 + (i − 1) × div(l, τ) 2 + (i − 1) × div(l, τ) + div(l, 2τ)

Fig. 3 First crossover point calculation

The general expression for calculating the first crossover
point at cell (i, j) is:

2 +
⌊

l

τ

⌋
(i − 1) +

⌊
j − 1⌊ l

2

⌋
⌋⌊

l

2τ

⌋
(1)

For the second crossover point, the distance to the first
crossover point increases with the column index, from a
minimum distance of two positions to a maximum distance
of div(l, 2) + 1 positions. In this way, cells in contiguous
columns exchange a larger portion of the solutions. Figure 4
illustrates the second crossover point calculation, being F1

the first crossover point for the first l
2 cells and F2 the first

crossover point for the last l
2 cells. If the value of second

crossover point is smaller than the first one, the values are
swapped.

The general formula for calculating the second crossover
point for the cell (i, j) is presented in Eq. 2, where mod is
the modulus of the integer division.

1 +
(

3 +
⌊

l

τ

⌋
(i − 1) +

⌊
j − 1⌊ l

2

⌋
⌋ ⌊

l

2τ

⌋

+
(

(j − 1) mod

⌊
l

2

⌋))
mod l (2)

2.1.3 Mutation

The mutation operator flips a single bit in each solution. Fig-
ure 5 shows the general idea followed to distribute the points
of mutation over the entire grid, using different mutation
points in each cell in order to change different bits of the
solutions through the grid.

Each cell mutates a different bit of the solutions in the hor-
izontal data stream in order to generate diversity by encour-
aging the exploration of new solutions. On the other hand,
cells in the same vertical data stream should not mutate the
same bit in order to avoid deteriorating the search capability
of the algorithm. For this reason, the mutation points on each
row are shifted div(l, τ) places. Figure 6 shows an example
of the mutation points for the cells of column j .

Fig. 4 Second crossover point
calculation First l

2 tsaLsnmuloc l
2 columns

i F1 + 2 F1 + 3 F1 + l
2 + 1 F2 + 2 F2 + 3 F2 + l

2 + 1

123

M. Pedemonte et al.

Fig. 5 Distribution of mutation points across the grid

j

1

2

3

i

j

j + div(l, τ)

j + 2 × div(l, τ)

j + (i − 1) × div(l, τ)

Fig. 6 Mutation points for column j

The general formula for calculating the mutation point of the
cell (i, j) is:

1 +
(

(i − 1)

⌊
l

τ

⌋
+ j − 1

)
mod l, (3)

where mod is the modulus of the integer division.

2.2 SGS flavors

So far, we have described the complete algorithm of SGS,
but one important detail is still missing: what happens when

a solution reaches the end of the grid either horizontally (hor-
izontal outgoing solution from a cell of the last column) or
vertically (vertical outgoing solution from a cell of the last
row)? Four different flavors have been devised attending to
this design decision.

The first alternative is to use a bidimensional toroidal grid
of cells (first subsection below). However, we quickly iden-
tify a major issue with this approach as solutions moving
vertically lack diversity (remind that the width of the grid
is lower than the length, i.e., l > τ) because they are only
mutated in τ positions. Three enhanced versions have then
been engineered aiming at overcoming this issue. They are
presented in the last three subsections.
Toroidal Systolic Genetic Search (SGST). The solutions flow
across a bidimensional toroidal grid (as it is shown in Fig. 7a)
either horizontally, moving always in the same row, or ver-
tically, moving always in the same column. The horizontal
outgoing solutions from the cells of the last column of the
grid are passed on to the cells of the first column of the grid
in the same row. In the same way, the vertical outgoing solu-
tions from the cells of the last row of the grid are passed on
to the cells of the first row of the grid in the same column.
Toroidal Systolic Genetic Search with Exchange of directions
(SGSE). The solutions flow across a bidimensional toroidal
grid as it is shown in Fig. 7a). As the length of the grid is
larger than the width of the grid, the solutions moving through
the columns would be limited to only τ different mutation
and crossover points, while those moving horizontally use
a wider set of values. To avoid this issue, every τ iterations
the two solutions being processed in each cell exchange their
directions. That is, the solution received through the horizon-

123

Systolic genetic search

(a)

(b)

(c)

Fig. 7 Interconnection topology for the different flavors. a Toroidal
grid. b Grid with horizontal toroidal flow and vertical flow to the next
column. c Grid with vertical flow to the next column and horizontal
flow to the next row

tal input leaves the cell through the vertical output, while the
one moving vertically continues through the horizontal. This
flavor has already been used in previous works (Pedemonte
et al. 2012, 2013).
Systolic Genetic Search with horizontal toroidal flow and ver-
tical flow of solutions to the next column (SGSV). In SGSV ,
the grid is toroidal regarding the horizontal axis, but to avoid
the low diversity in the mutation points of the solutions mov-
ing vertically, a vertical outgoing solution from a cell of the
last row of the grid is passed on to the cell of the first row of

the next column of the grid. The interconnection topology of
the cells is shown in Fig. 7b.
Systolic Genetic Search with vertical flow of solutions to the
next column and horizontal flow of solutions to the next row
(SGSB).1 In SGSB, together with the modification of the
vertical flow that happens in SGSV with respect to SGST, a
horizontal outgoing solution from a cell of the last column of
the grid is passed on to the cell of the first column of the next
row of the grid. The interconnection topology of the cells is
shown in Fig. 7c.

3 SGS implementation on GPU

This section is devoted to presenting how SGS has been
deployed on a GPU. First, we provide a general snapshot
of GPU devices and highlight some relevant features of the
card used in this work (Nvidia’s GeForce GTX 480). Then,
all the implementation details are thoroughly explained.

3.1 CUDA graphics processing units

In recent years, GPUs have significantly diversified their
field of application because they are no longer just special-
ized fixed-function graphics platforms. At present, GPUs
have become general computing devices composed by highly
parallel programmable cores. The architecture of GPUs is
designed by following the idea of devoting more transistors
to computation than traditional CPUs (Kirk and Hwu 2012).
As a consequence, current GPUs have a large number of small
cores and are usually considered as many-core processors.

CUDA is the general framework that enables to work with
Nvidia’s GPUs. The CUDA architecture abstracts GPUs as
a set of shared memory multiprocessors (MPs) that are able
to run a large number of threads in parallel. Each MP fol-
lows the SIMT (Single Instruction Multiple Threads) paral-
lel programming paradigm. SIMT is similar to SIMD (Sin-
gle Instruction Multiple Data) but in addition to data-level
parallelism (when threads are coherent) it allows thread-
level parallelism (when threads are divergent, see Kirk and
Hwu (2012), and Nvidia Corporation (2012c)). The number
of threads that modern GPUs can execute in parallel is in
the order of thousands and is expected to continue growing
rapidly; what makes these devices a powerful and low cost
platform for implementing parallel algorithms.

When a kernel is called in CUDA, a large number of
threads are generated on the GPU. The group of all the
threads generated by a kernel invocation is called a grid,
which is partitioned into many blocks. Each block groups
threads that are executed concurrently on a single MP. There
is no fixed order of execution between blocks. If there are

1 The B stands for Both flows.

123

M. Pedemonte et al.

enough multiprocessors available on the card, they are exe-
cuted in parallel. Otherwise, a time-sharing strategy is used.
The blocks are divided for their execution into warps that
are the basic scheduling units in CUDA and consist of 32
consecutive threads.

Threads can access data on multiple memory spaces dur-
ing their life time. CUDA architecture has six different mem-
ory spaces: registers, shared memory, local memory, global
memory, constant memory and texture memory (Kirk and
Hwu 2012).

Registers are the fastest memory on the card and are only
accessible by each thread. Shared memory is almost as fast
as registers and can be accessed by any thread of a block; its
lifetime is equal to the lifetime of the block. Each thread has
its own local memory but is one of the slowest memories on
the card, because it is located in the device memory. Local
memory and registers are entirely managed by the compiler.
The compiler places variables in local memory when regis-
ter spilling occurs, i.e., the kernel needs more registers than
available. All the threads executing on the GPU have access
to the same global memory on the card that is one of the
slowest memory on the GPU. Constant memory is a read-
only space with only 64 kB accessible by all threads that
is located in the device memory. Each multiprocessor has a
constant cache of 8 kB that makes access to constant memory
space faster. Finally, the texture memory has the same fea-
tures that of constant memory, but it is optimized for certain
access patterns (Nvidia Corporation 2012c).

In this work, we use a GeForce GTX 480 (Compute Capa-
bility 2.0 Nvidia Corporation 2012c), which has a Fermi
architecture (CUDA’s third-generation architecture, Nvidia
Corporation 2009). Each multiprocessor on the Fermi archi-
tecture consists of 32 CUDA cores that are organized into two
blocks with 16 CUDA cores each. Moreover, each MP has
two warp schedulers that could handle two warps at once, one
for each block of CUDA cores. Figure 8 shows the architec-
ture of the GeForce GTX 480 card, as well as the maximum
bandwidth of the access to global GPU memory, CPU mem-
ory and transfers between CPU and GPU of the infrastructure
used in this work. It should be noted that access to global GPU
memory is more than sixteen times faster than access to CPU

Fig. 8 CPU–GPU system used in this work

Fig. 9 GeForce GTX 480 (Fermi architecture) memory hierarchy

memory and more than forty times faster than data transfers
between CPU and GPU. In fact, the transfers between CPU
and GPU are usually one of the most important bottlenecks
on CPU–GPU heterogeneous computing.

Each multiprocessor has also an on-chip memory of only
64 kB. A portion of this memory is used as shared memory
and the rest is used as a first-level cache for global memory.
It can be divided as 16–48 kB or 48–16 kB between cache
and shared memory. The Fermi architecture also incorporates
a second-level cache with 768 kB shared among all multi-
processors to access the global memory. Figure 9 presents
the memory hierarchy of the GeForce GTX 480.

3.2 Implementation details

The approach followed for the GPU implementation of SGS
in previous works (Pedemonte et al. 2012, 2013) was targeted
to validating the algorithmic proposal, but without neglecting
performance. However, little attention was paid in the devel-
opment of a highly optimized code. For this reason, several
design decisions have been reconsidered for this work. One of
the most important improvements lies in the kernel design.
In the first SGS implementations, each step of the search
loop was computed using three different kernels (namely,
crossoverAndMutation, evaluate and elitism
kernels), while in the present implementation the code of
the kernels has been merged into a single kernel to increase
the performance. Another important difference is that the
pseudorandom number generation has been moved from the

123

Systolic genetic search

CPU2 to the GPU. The source code of SGS is publicly avail-
able in http://www.fing.edu.uy/~mpedemon/SGS.html. The
GPU implementation details are commented next.

Algorithm 2 presents the pseudocode of the SGS algo-
rithm for the host side (CPU). Initially, the seed for the ran-
dom number generation is transferred from the CPU to the
global memory of the GPU and the constant data associ-
ated with the problem required for computing the fitness
values are transferred from the CPU to texture memory of
the GPU. Then, the population is initialized on the GPU
(initPop kernel) and the fitness of the initial population is
computed afterwards (fitness kernel). At each iteration,
the crossover and mutation operators, the fitness function
evaluation, and the elitist replacement are executed on the
GPU in a single kernel (systolicStep kernel). Addition-
ally, in the SGSE flavor the exchange of directions operator
(exchange kernel) is applied on the GPU in given iter-
ations (when div(generation, τ) == 0). Finally, when the
algorithm reaches the stop condition, the results are trans-
ferred from the GPU to the CPU.

Algorithm 2 SGS Host Side Pseudocode
1: transfer seed for random number generation to GPU
2: transfer constant data to GPU’s texture memory
3: invoke initPop kernel to initialize population
4: invoke fitness kernel to calculate fitness of the population
5: for i = 1 to maxGeneration do
6: invoke systolicStep kernel to compute systolic step
7: if div(generation, τ) == 0 then % only in SGSE
8: invoke exchange kernel to exchange directions
9: end if
10: end for
11: transfer results from GPU to CPU

3.2.1 Data organization

Two independent memory spaces of the GPU global mem-
ory are used to allow concurrent access of data. While the
memory space that contains the population in generation t is
read, the new solutions from generation t + 1 can be writ-
ten in the other memory space without requiring any type of
concurrency control (disjoint storage). Each memory space
stores a struct, containing an array with the solutions moving
horizontally, an array with the solutions moving vertically, an
array with the fitness values corresponding to the solutions
moving horizontally, and an array with the fitness values cor-
responding to the solutions moving vertically.

2 The random number generation on the CPU guarantees that, using
the same seed, the results obtained by a stochastic algorithm in a CPU
and in a GPU are the same.

3.2.2 Kernel operation

The initPop kernel initializes the population in the GPU
using the CUDA CURAND Library (Nvidia Corporation
2012b) to generate random numbers. The kernel is launched
with a configuration that depends on the total number of bits
that have to be initialized, following the guidelines recom-
mended in Nvidia Corporation (2012a).

The fitness, systolicStep and exchange ker-
nels are implemented following the idea used in Pedemonte
et al. (2011), in which operations are assigned to a whole
block and all the threads of the block cooperate to perform a
given operation. If the solution length is larger than the num-
ber of threads in the block, each thread processes more than
one element of the solution but the elements used by a single
thread are not contiguous. Thus, each operation is applied to
a solution in chunks of the size of the thread block (T in the
following figure), as it is shown in Fig. 10.

The systolicStep kernel is launched with l × τ

blocks, i.e., each block processes one cell of the grid. Ini-
tially, the global memory location of the two solutions that
have to be processed by the cell,3 the global memory location
where the resulting solutions should be stored,4 the crossover
points and the mutation point are calculated from the block
identifiers by thread zero of the block. These values are stored
in shared memory to make them available for the rest of the
threads of the block.5 This kernel uses shared memory to tem-
porarily store the two solutions being constructed and partial
fitness values computed by each thread. The amount of shared
memory used by each kernel (8×threads Per Block+2×l)
ensures that at least four blocks can work concurrently in
a multiprocessor with solutions of up to 3,800 bit length.
The use of shared memory has the advantage that reduces
the accesses to global memory, which is a costly operation,
even though it restricts the size of the instances that could be
resolved.

Initially, systolicStep kernel applies the crossover
operator, processing the solution components in chunks of
size of the thread block (as it was explained above), taking the
two solutions from the first memory space of the GPU global
memory and storing the intermediate solutions in the shared
memory. The thread zero of the block mutates the two inter-

3 The two solutions are read from the first memory space of the GPU
global memory, one from the array that stores the solutions moving
horizontally and the other from the array that stores the solutions moving
vertically.
4 It should be noted that the two solutions are written in the second
memory space of the GPU global memory, one in the array that stores
the solutions moving horizontally and the other in the array that stores
the solutions moving vertically.
5 We made this decision, rather than making each thread calculate these
values redundantly, in order to reduce the number of registers used by
the block.

123

http://www.fing.edu.uy/~mpedemon/SGS.html

M. Pedemonte et al.

p1

p2

X1

Y1

T
h
re

a
d

1

X2

Y2

T
h
re

a
d

2

XT

YT

T
h
re

a
d

T

XT+1

YT+1

T
h
re

a
d

1

XT+2

YT+2

T
h
re

a
d

2

X2T

Y2T

T
h
re

a
d

T

X2T+1

Y2T+1

T
h
re

a
d

1

X2T+2

Y2T+2

T
h
re

a
d

2

X3T

Y3T

T
h
re

a
d

T

First loop iteration Second loop iteration Third loop iteration

Fig. 10 Threads organization

mediate solutions. Then, partial fitness values are computed
by each thread using the data from the texture memory of the
GPU and those values are stored in shared memory. Then,
the kernel applies the well-known reduction pattern (McCool
et al. 2012) to these values to calculate the full fitness value
of each intermediate solution. Finally, the best solutions for
each flow are copied to the second memory space of the GPU
global memory, considering the fitness values calculated for
the intermediate solutions and the fitness values from the
original solutions. If an intermediate solution is better than
the original solution in one cell, the intermediate solution is
directly copied from the shared memory to the global mem-
ory. Otherwise, the original solution is copied from the first
memory space of the global memory to the second one.

The fitness and exchange kernels follow the same
idea regarding the thread organization and behavior than
systolicStep kernel, and are also launched for execution
organized in l × τ blocks.

4 Experimental study

This section describes the problems used for the experimental
study, the parameters setting, and the execution platforms.
Then, the results obtained are presented and analyzed.

4.1 Test problems

For the experimental evaluation of SGS, we use two classi-
cal benchmark problems, Knapsack Problem and Massively
Multimodal Deceptive Problem, plus a real-world applica-
tion, the Next Release Problem. These problems and the test
instances used are briefly introduced next.

4.1.1 Knapsack problem

The Knapsack Problem (KP) is a classical combinatorial opti-
mization problem that belongs to the class of NP-hard prob-

lems (Pisinger 1999). It is defined as follows. Given a set of
n items, each of them having associated an integer value
pi called profit or value and an integer value wi known as
weight, the goal is to find the subset of items that maximizes
the total profit keeping the total weight below a fixed maxi-
mum capacity (W) of the knapsack or bag. It is assumed that
all profits and weights are positive, that all the weights are
smaller than W (items heavier than W do not belong to the
optimal solution), and that the total weight of all the items
exceeds W (otherwise, the optimal solution contains all the
items of the set).

The most common formulation of the KP is the integer
programming model presented in Eqs. 4a, 4b, and 4c, being
xi the binary decision variables of the problem that indicate
whether the item i is included or not in the knapsack.

(KP) maximize f (x) =
n∑

i=1

pi xi (4a)

subject to:
n∑

i=1

wi xi � W (4b)

xi ∈ {0, 1},∀i = 1, . . . , n (4c)

Table 1 presents the instances used in this work. These
instances have been generated with no correlation between
the weight and the profit of an item (i.e., wi and pi are chosen
randomly in [1, R]) using the generator described in Pisinger
(1999). The Minknap algorithm (Pisinger 1997), an exact
method based on dynamic programming, was used to find
the optimal solution for each of the instances.

All the algorithms studied use a penalty approach to man-
age infeasibility. In this case, the penalty function subtracts
W to the total profit for each unit of the total weight that
exceeds the maximum capacity. The formula for calculating
the fitness with penalty is:

f (x) =
n∑

i=1

pi xi −
(

n∑
i=1

wi xi − W

)
× W. (5)

123

Systolic genetic search

Table 1 Knapsack instances
used in the experimental
evaluation and their exact
optimal solutions

Instance n R W Profit of Opt. Sol Weight of Opt. Sol

100–1,000 100 1,000 1,001 5,676 983

100–10,000 100 10,000 10,001 73,988 9,993

200–1,000 200 1,000 1,001 10,867 1,001

200–10,000 200 10,000 10,001 100,952 9,944

500–1,000 500 1,000 1,001 19,152 1,000

500–10,000 500 10,000 10,001 153,726 9,985

1,000–1,000 1,000 1,000 1,001 27,305 1,000

1,000–10,000 1,000 10,000 10,001 231,915 9,996

Table 2 MMDP basic deceptive subfunction

Number of ones (unitation) Subfunction value

0 1.000000

1 0.000000

2 0.360384

3 0.640576

4 0.360384

5 0.000000

6 1.000000

4.1.2 Massively multimodal deceptive problem

The Massively Multimodal Deceptive Problem (MMDP) is
a problem that has been specifically designed to make EAs
converge to regions of the search space where the optimal
solution cannot be found (Goldberg et al. 1992). MMDP is
made up of k deceptive subproblems of 6 bits each one. The
function value of each of these subproblems is independent
from each other and only depends on the number of ones
it has (Unitation), following Table 2. The optimal solution
of a MMDP with k subproblems is accomplished if every
subproblem has either zero or six ones, and in that case the
function value and the fitness value are k. We use for the
experimental evaluation instances with strings of 300, 600,
900, 1,200 and 1,500 bits and therefore, the optimal solutions
are 50, 100, 150, 200 and 250, respectively.

4.1.3 Next release problem

The Next Release Problem (NRP) is a real-world problem
that arises in the software development industry (Bagnall et
al. 2001). In NRP, a company involved in the development of
a large software system has to determine which requirements
should be targeted in the next release of the software. The set
of costumers has different requirements that provide some
value to the company, while fulfilling each requirement has
an associated cost for the company.

NRP can be stated in the following terms (Durillo et
al. 2011). There is a set C of m customers and a set R
of n requirements. The economical cost of satisfying each
requirement is denoted by r j . Each customer has associated
a value ci that reflects the importance of the customer to the
company. There is also a value associated with each costumer
and each requirement (vi j) that represents the importance for
the customer i of the requirement j .

NRP was originally formulated as a single-objective prob-
lem using an integer programming model that is closely
related with the knapsack problem (Bagnall et al. 2001).
The formulation of the single-objective NRP is presented
in Eqs. 6a, 6b, and 6c, being x j the binary decision variables
of the problem that indicate whether the requirement j is
satisfied or not and B a given bound for the total cost.

(NRP) maximize f (x) =
m∑

i=1

c j

n∑
j=1

x jvi j (6a)

subject to:
n∑

j=1

x jr j � B (6b)

x j ∈ {0, 1},∀ j = 1, . . . , n (6c)

Later on, NRP was reformulated as a bi-objective problem
to avoid imposing the artificial constraint presented in Eq. 6b.
The formulation of the bi-objective NRP (Durillo et al. 2011;
Zhang et al. 2007) is presented in Eqs. 7a, 7b, and 7c.

(NRP) minimize f1(x) =
n∑

j=1

x jr j (7a)

maximize f2(x) =
m∑

i=1

c j

n∑
j=1

x jvi j (7b)

subject to: x j ∈ {0, 1},∀ j = 1, . . . , n (7c)

Since SGS is a single-objective algorithm, we followed a
similar approach that Zhang et al. (2007), who also solved
the NRP using a single-objective GA.

To that end, the authors transform the first-objective func-
tion in a maximization, as shown in Eq. 8, and use the

123

M. Pedemonte et al.

weighted sum method (Deb 2001; Marler and Arora 2004)
that combines both objective functions into a single-objective
using w as a weighting factor (0 ≤ w ≤ 1), as shown in Eq. 9.

maximize f1(x) = −
n∑

j=1

x jr j (8)

maximize F(x) = (1 − w) · f1(x) + w · f2(x) (9)

However, there is a great difference between the magni-
tudes of f1 and f2, so we normalized both objective func-
tions (Deb 2001; Marler and Arora 2004) to map them in
[0,1]. The formula for normalization in a maximization is:

f Trans
i (x) = fi (x) − zNadir

i

zIdeal
i − zNadir

i

, (10)

being zNadir the Nadir point, i.e., the point with the worse
(minimal) value for each fi and zIdeal the Ideal or utopian
point, i.e., the point with the best (maximal) value for each
fi .

Since ∀x f1(x) ≤ 0 and f2(x) ≥ 0, then zIdeal
1 = 0 and

zNadir
2 = 0, thus resulting in the objective functions shown in

Eqs. 11a and 11b.

f Trans
1 (x) = f1(x)−zNadir

i
−zNadir

i
(11a)

f Trans
2 (x) = f2(x)

zIdeal
i

(11b)

To obtain a better distribution on the Pareto Front of the
solutions obtained with a single-objective algorithm, we pre-
ferred to use the Tchebycheff approach (Marler and Arora
2004; Miettinen 1999; Zhang and Li 2007) rather than using
the weighted sum method. This will avoid the usual issue
of not being able to solve non-convex problems. Thus, the
resulting problem formulation is:

minimize g(x) = max(f Tch
1 (x), f Tch

2 (x)) (12a)

where: f Tch
1 (x) = (1 − w) · (1 − f Trans

1 (x)) (12b)

f Tch
2 (x) = w · (1 − f Trans

2 (x)) (12c)

Since the original problem has been transformed in a min-
imization and g(x) ≤ 1, the fitness function is defined as
follows:

f (x) = 1 − g(x). (13)

Additionally, as it is possible that x dominates y and
g(x) = g(y) (Zhang and Li 2007), when two different solu-
tions with the same fitness value are compared (e.g., when
elitism is applied), it is checked whether a solution dominates
the other.

The instances used in this work for the experimental eval-
uation of the NRP are taken from Durillo et al. (2011), and
Zhang et al. (2007). The instance name indicates the number
of costumers and requirements (m−n stands for m costumers
and n requirements). The instances used are 100–20, 100–
25, 35–35 (real-world instance from Durillo et al. 2011),
15–40, 50–80, 100–140 and 2–200. The optimal value for
each instance and weighting factor w is unknown since the
approach followed in the previous work (Zhang et al. 2007)
for solving the NRP using single-objective algorithms is dif-
ferent from the one used in this work.

4.2 Algorithms

In addition to the SGS algorithms proposed in this paper,
we have included two algorithms, a Random Search and a
simple Genetic Algorithm (GA) with and without elitism, to
compare the quality of the solutions obtained. The former
is used as a sanity check, just to show that our algorithmic
proposals are more intelligent that a pure random sampling.
On the other hand, the GAs have been chosen because of
their popularity in the literature and also because they share
the same basic search operators so we can properly compare
the underlying search engine of the techniques. Briefly, the
details of these algorithms are:

– Random Search (RS): The RS algorithm processes each
bit of the solution vector sequentially. Each bit is set to
1 at random with probability 0.5, except for the KP. In
the KP, if including an item in the knapsack exceeds the
maximum capacity, it is discarded. Otherwise, the item is
included in the knapsack at random with probability 0.5.

– Simple Genetic Algorithm (SGA): It is a generational GA
with binary tournament, two-point crossover, and bit-flip
mutation.

– Elitist Genetic Algorithm (EGA): It is similar to SGA but
with elitist replacement, i.e., each child solution replaces
its parent solution only if it has a better (higher) fitness
value.

Each of the algorithms studied has been implemented both
on CPU and GPU, except RS and SGST that have only been
implemented on CPU since they use a rather simple search
engine with low numerical efficiency. The CPU implemen-
tation is straightforward, so no further details are provided.
The SGA and EGA implementation on GPU follows the same
guidelines that the implementations of the SGS algorithms.

4.3 Parameters setting and test environment

The SGA and EGA parameter values used are 0.9 for the
crossover probability and 1/ l for the mutation probability,
where l is the length of the tentative solutions. The population

123

Systolic genetic search

size and the number of iterations are defined by considering
the features of SGS, using exactly the same values for the two
GA versions. In this study, the population size is 2 × l × τ

and the number of iterations is l × τ (recall that τ = �lg l�).
This number was chosen so that each solution returns to its
original cell in SGSB after that number of iterations. Finally,
2 × l2 × τ 2 solutions are generated by RS to perform a fair
comparison.

In the NRP, we use eleven different weight coefficients
w ranging from 0 to 1 with a step size of 0.1 to analyze the
importance of the two internal goal functions. Each execu-
tion reported in the article consists of eleven consecutive and
independent runs with the different possible values of w to
obtain different solutions within a single experiment. A sim-
ilar approach was previously used in Zhang et al. (2007), but
using only nine different values (ranging from 0.1 to 0.9 with
a step size of 0.1).

It is still a controversial issue how to make a fair compari-
son between traditional CPUs and modern GPUs. The selec-
tion of the execution platforms tries to follow the guidelines
suggested in Hennessy and Patterson (2011). The execution
platform for the CPU versions is a PC with a Quad Core Xeon
E5530 processor at 2.40 GHz with 48 GB RAM using Linux
operating system. The CPU versions have been compiled
using the -O3 flag and are run as single thread applications.
The execution platform for the GPU versions is a Nvidia’s
GeForce GTX 480 (480 CUDA Cores) connected to a PC
with a Core 2 Duo E7400 at 2.80 GHz with 2 GB RAM
using Linux operating system. The GPU versions were also
compiled using the -O3 flag.

All the results reported are mean values rounded to two
figures over 50 independent runs. The transference times of
data between CPU and GPU are included in the reported total
runtime of the GPU version.

4.4 Experimental analysis

This section describes the experimental analysis conducted to
validate SGS. The experiments include a study of the numer-
ical efficiency of the algorithm proposed and a study of the
performance of the parallel GPU implementation of SGS.

All the algorithms in this work are stochastic algorithms,
therefore, the results have to be provided with statistical sig-
nificance. The following statistical procedure has been used.
First, fifty independent runs for each algorithm and each
problem instance have been performed. The following sta-
tistical analysis has been carried out (Sheskin 2011). First, a
Kolmogorov–Smirnov test and a Levene test are performed
to check, respectively, whether the samples are distributed
according to a normal distribution and whether the variances
are homogeneous (homocedasticity). If the two conditions
hold, an ANOVA I test is performed; otherwise we perform
a Kruskal–Wallis test. All the statistical tests are performed

with a confidence level of 95 %. Since more than two algo-
rithms are involved in the study, a post hoc testing phase
which allows for a multiple comparison of samples has been
performed. The result is a pairwise comparison of all the
cases compared using the Bonferroni–Dunn method on either
the Student’s t test (if the samples follow a normal distribu-
tion and the variances are homogeneous) or the Wilcoxon–
Mann–Whitney test (otherwise). The results are displayed
in tabular form (see below), where ‘�’ states that the con-
figuration of the row has statistically lower values (i.e., it is
better) than the column and ‘�’ states that the opposite is
true. When no statistically significant differences are found,
the ‘−’ symbol is used.

4.4.1 Numerical efficiency

Let us first analyze the numerical efficiency for KP. Table 3
presents the experimental results regarding the quality of the
solutions (measured in terms of distance to the optimal solu-
tion) obtained for the KP, while Table 4 presents in which
instances the statistical confidence has been achieved.

The results obtained show that SGSE, SGSV and SGSB

are the best performing algorithms for the KP, as they are far
superior than RS, SGA and SGST in all the instances consid-
ered in this study. They are also superior than EGA in five out
of eight instances (the instances with more items). It should
also be noted that both SGSV and SGSB find the optimal solu-
tion on every run for all the instances, while SGSE reaches the
optimal solution on every run for six out of eight instances.
EGA also performs well, having a small mean error and being
superior to RS, SGA and SGST in all the instances studied.
Although the results obtained by SGST are not satisfactory
due to the rather high mean error, SGST performs better than
RS and SGA. SGA presents non-competitive results and it
is only better than the (non-intelligent) random search. It is
also remarkable the ability of SGSV and SGSB to scale prop-
erly with the size of the KP instances: they have consistently
reached the optimal solutions regardless of the number of
items (which ranges from 100 to 1,000).

Now, we analyze the numerical efficiency for the MMDP.
Table 5 presents the experimental results regarding the qual-
ity of the solutions obtained for MMDP, while Table 6
presents in which instances the statistical confidence has been
achieved.

The results obtained show that SGA, SGSE, SGSV and
SGSB are the best performing algorithms for MMDP. They
all reach the optimal solution in every independent run for
all the considered instances. EGA and SGST have a simi-
lar performance, having a small mean error and only being
superior to RS. It is interesting that EGA performs worse
than SGSE, SGSV and SGSB. Since MMDP is a deceptive
problem, it is reasonable that an algorithm with elitism is
especially attracted to local optima. However, the systolic

123

M. Pedemonte et al.

Table 3 Numerical efficiency of CPU versions for KP (mean error ± std. dev.)

Instance RS SGA EGA SGST SGSE SGSV SGSB

100–1,000 1.59e3 ± 8.56e1 4.79e2 ± 1.65e2 5.14e0 ± 2.60e1 2.56e2 ± 1.15e2 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

100–10,000 1.96e4 ± 1.78e3 7.15e3 ± 2.24e3 0.00e0 ± 0.00e0 3.66e3 ± 2.03e3 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

200–1,000 5.27e3 ± 1.65e2 1.77e3 ± 3.07e2 3.64e0 ± 1.46e1 9.23e2 ± 2.71e2 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

200–10,000 2.96e4 ± 1.77e3 1.12e4 ± 2.05e3 1.36e1 ± 3.86e1 8.15e3 ± 2.42e3 0.20e0 ± 1.41e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

500–1,000 1.19e4 ± 1.74e2 4.32e3 ± 4.12e2 2.21e1 ± 3.74e1 2.04e3 ± 3.73e2 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

500–10,000 7.06e4 ± 2.20e3 3.44e4 ± 2.56e3 1.55e2 ± 1.65e2 1.55e4 ± 3.39e4 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

1,000–1,000 1.93e4 ± 2.89e2 7.93e3 ± 4.65e2 5.27e1 ± 4.19e1 6.59e3 ± 6.87e2 5.52e0 ± 1.71e1 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

1,000–10,000 1.34e5 ± 2.63e3 6.55e4 ± 4.02e3 4.00e2 ± 6.36e2 5.73e4 ± 4.23e3 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

The best results are in bold

Table 4 Statistical significance for instances 100–1,000, 100–10,000, 200–1,000, 200–10,000, 500–1,000, 500–10,000, 1,000-1,000, 1,000–10,000

SGA EGA SGST SGSE SGSV SGSB

RS �
SGA �
EGA � � � � � � � � – – – � � � � � – – – � � � � � – – – � � � � �
SGST �
SGSE – – – – – – – – – – – – – – – –

SGSV – – – – – – – –

Table 5 Numerical efficiency of CPU versions for MMDP (mean error ± std. dev.)

Instance RS SGA EGA SGST SGSE SGSV SGSB

300 2.07e1 ± 3.88e−1 0.00e0 ± 0.00e0 1.44e−2 ± 7.11e−2 1.44e−2 ± 7.11e−2 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

600 4.63e1 ± 5.20e−1 0.00e0 ± 0.00e0 1.29e−1 ± 2.02e−1 3.95e−1 ± 2.32e−1 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

900 7.26e1 ± 5.37e−1 0.00e0 ± 0.00e0 9.92e−1 ± 6.01e−1 7.69e−1 ± 2.81e−1 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

1,200 9.95e1 ± 6.82e−1 0.00e0 ± 0.00e0 1.89e0 ± 9.49e−1 1.20e0 ± 4.63e−1 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

1,500 1.27e2 ± 8.42e−1 0.00e0 ± 0.00e0 4.08e0 ± 1.11e0 3.52e0 ± 1.37e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

The best results are in bold

Table 6 Statistical significance
for instances 300, 600, 900,
1,200, 1,500

SGA EGA SGST SGSE SGSV SGSB

RS �
SGA – � � � � – � � � � – – – – – – – – – – – – – – –

EGA – � – � – – � � � � – � � � � – � � � �
SGST – � � � � – � � � � – � � � �
SGSE – – – – – – – – – –

SGSV – – – – –

variants, which also use elitism, have managed to avoid get-
ting stuck in unpromising regions of the search space. SGSE,
SGSV and SGSB have been able to scale with the size of the
instances, showing the promising search engine devised.

Finally, we analyze the numerical efficiency for the NRP.
In a previous work, Zhang et al. (2007) used two single-
objective algorithms for solving the NRP, but they used a
different approach than the one used in this work. For this

reason, the optimal value for each instance and weighting fac-
tor w is unknown. Table 7 presents the best solution found
on all the executions for each pair instance weighting fac-
tor considered. These solutions will be considered the best
known solutions of the NRP for the experimental analysis.

Table 8 presents the experimental results regarding the
quality of the solutions obtained for the NRP. For each
instance, we measure the Euclidean distance between the

123

Systolic genetic search

Table 7 Best solution found for NRP

Instance Weight

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

100–20

Cost 0 9 18 25 33 44 54 65 79 90 107

Value 0 495.55 762.19 1,004.11 1,238.43 1,472.86 1,599.37 1,816.68 1,964.12 2,181.44 2,408.56

100–25

Cost 0 4 8 12 18 22 27 33 40 48 58

Value 2,433 4,791 6,016 7,157 8,458 9,124 10,301 11,451 12,620 13,741 14,998

35–35

Cost 0 440 770 1,080 1,430 1,830 2,240 2,840 3,440 4,640 6,740

Value 0 33 42 47 52 56 60 64 68 72 78

15–40

Cost 0 15 29 42 55 69 84 101 124 147 185

Value 0 167.19 254.35 322.51 378.34 429.51 478.18 525.47 572.54 626.96 688.36

50–80

Cost 0 34 66 98 131 165 201 240 284 337 404

Value 0 1,061.73 1,614.07 2,049.91 2,446.10 2,821.81 3,184.76 3,552.58 3,925.87 4,323.95 4,761.10

100–140

Cost 0 58 110 162 216 271 332 397 471 562 572

Value 0 3,936.08 5,923.49 7,541.37 8,962.41 10,299.10 11,595.75 12,920.88 14,264.14 15,734.58 17,289.44

2–200

Cost 0 80 149 216 283 353 427 509 600 716 987

Value 0 128.29 185.24 228.57 265.37 298.49 329.66 360.84 392.05 424.53 461.04

Table 8 Numerical efficiency of CPU versions for NRP (mean error ± std. dev.)

Instance RS SGA EGA SGST SGSE SGSV SGSB

100–20 6.15e2 ± 4.31e2 0.02e0 ± 0.25e0 0.09e0 ± 0.60e0 0.11e0 ± 0.52e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

100–25 3.71e3 ± 2.49e3 0.11e0 ± 1.72e0 0.87e0 ± 2.03e1 1.15e0 ± 7.28e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

35–35 2.03e3 ± 1.24e3 0.01e0 ± 0.06e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

15–40 1.90e2 ± 1.14e2 0.28e0 ± 1.07e0 0.39e0 ± 1.38e0 0.24e0 ± 1.12e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

50–80 1.22e3 ± 7.99e2 5.43e0 ± 4.44e0 0.65e0 ± 2.15e0 0.98e0 ± 1.94e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

100–140 4.41e3 ± 2.84e3 2.44e1 ± 2.81e1 3.84e0 ± 1.08e1 5.07e0 ± 1.00e1 3.39e0 ± 1.01e1 2.23e0 ± 6.53e0 0.09e0 ± 0.28e0

2–200 3.01e2 ± 1.53e2 0.94e0 ± 0.91e0 0.05e0 ± 0.18e0 1.77e0 ± 1.94e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

The best results are in bold

solution obtained for each run and the best solution found,
using the same weighting factor, calculating the mean error
as the average of these distances.

Table 9 presents in which instances the statistical confi-
dence has been achieved.

The results obtained show that SGSE, SGSV and SGSB

are among the best performing algorithms for the NRP, as
their solutions are much closer to the best known than RS,
SGA, EGA and SGST in most of the instances considered in
this study; SGSB even outperforms SGSE and SGSV in one
instance. It should also be noted that those three algorithms
are able to find the best known solution in every run in six

out of seven instances, while EGA and SGST find the best
known solution in every run in one of the instances. EGA
also performs well, having a small mean error and being
superior to SGA and SGST in most instances and to RS in all
the instances studied. SGA and SGST have a similar perfor-
mance, having an acceptable mean error in most instances
and only being superior to RS.

From these results, it is clear that the structured search of
SGS performs an intelligent exploration of the search space,
allowing three out of four flavors of SGS to identify the region
where the optimal solution is located for the considered prob-
lem and instances. The key aspect that explains why SGST

123

M. Pedemonte et al.

Table 9 Statistical significance for instances 100–20, 100–25, 35–35, 15–40, 50–80, 100–140, 2–200

SGA EGA SGST SGSE SGSV SGSB

RS �
SGA – – – � � � � � � – � � � � – – – � � � � – – – � � � � – – – � � � �
EGA – � – – � � � � – – � � – � � – – � � – � � – – � � � �
SGST � � – � � � � � � – � � � � � � – � � � �
SGSE – – – – – – – – – – – – � –

SGSV – – – – – � –

Table 10 Runtime in seconds of the CPU versions for KP (mean ± std. dev.)

Instance SGA EGA SGST SGSE SGSV SGSB

100–1,000 1.27e0 ± 0.01e0 1.36e0 ± 0.01e0 0.69e0 ± 0.04e0 0.71e0 ± 0.04e0 0.66e0 ± 0.04e0 0.65e0 ± 0.03e0

100–10,000 1.35e0 ± 0.04e0 1.42e0 ± 0.04e0 0.76e0 ± 0.05e0 0.73e0 ± 0.02e0 0.66e0 ± 0.03e0 0.70e0 ± 0.04e0

200–1,000 1.30e1 ± 0.41e0 1.36e1 ± 0.09e0 6.07e0 ± 0.36e0 6.12e0 ± 0.33e0 5.54e0 ± 0.21e0 5.70e0 ± 0.13e0

200–10,000 1.29e1 ± 0.15e0 1.38e1 ± 0.10e0 6.25e0 ± 0.37e0 6.08e0 ± 0.20e0 5.85e0 ± 0.36e0 5.75e0 ± 0.04e0

500–1,000 2.52e2 ± 2.54e0 2.63e2 ± 4.57e0 1.09e2 ± 3.21e0 1.08e2 ± 2.97e0 1.03e2 ± 3.44e0 1.06e2 ± 3.69e0

500–10,000 2.48e2 ± 4.81e0 2.68e2 ± 8.05e0 1.08e2 ± 0.75e0 1.03e2 ± 0.20e0 9.82e1 ± 1.09e0 1.03e2 ± 1.38e0

1,000–1,000 2.42e3 ± 6.75e1 2.56e3 ± 4.84e1 9.10e2 ± 5.23e0 9.30e2 ± 2.54e1 8.82e2 ± 5.35e0 9.08e2 ± 1.04e1

1,000–10,000 2.39e3 ± 6.80e1 2.52e3 ± 4.54e1 8.98e2 ± 3.90e0 9.12e2 ± 3.27e1 8.66e2 ± 5.60e0 8.92e2 ± 1.72e1

The shortest runtimes are in bold

Table 11 Runtime in seconds of CPU versions for MMDP (mean ± std. dev.)

Instance SGA EGA SGST SGSE SGSV SGSB

300 5.62e1 ± 1.67e0 5.91e1 ± 2.08e0 2.64e1 ± 0.03e0 2.74e1 ± 1.29e0 2.50e1 ± 1.34e0 2.71e1 ± 0.66e0

600 5.37e2 ± 2.39e0 5.73e2 ± 7.70e0 2.44e2 ± 6.30e0 2.46e2 ± 2.45e0 2.40e2 ± 1.36e1 2.36e2 ± 1.20e1

900 1.85e3 ± 4.9e1 1.91e3 ± 2.78e1 7.63e2 ± 1.24e1 7.85e2 ± 7.83e0 7.72e2 ± 4.21e1 7.43e2 ± 1.95e1

1,200 5.25e3 ± 1.64e2 5.47e3 ± 1.74e2 2.13e3 ± 5.43e1 2.17e3 ± 5.78e1 2.11e3 ± 9.36e1 2.10e3 ± 9.38e1

1,500 1.02e4 ± 1.73e2 1.08e4 ± 3.39e2 4.10e3 ± 1.05e2 4.23e3 ± 1.36e2 4.04e3 ± 1.14e2 4.00e3 ± 4.64e1

The shortest runtimes are in bold

is not competitive with the other flavors of SGS is that SGST

has low diversity in the mutation and crossover points of the
solutions moving through the vertical data stream. Within the
context of the experimental evaluation of the KP, a deceptive
problem, like the MMDP, and a real-world problem like the
NRP, it has been shown the potential of SGSE, SGSV and
SGSB regarding the quality of the obtained solutions.

4.4.2 Parallel performance

In this section, we begin our study with the performance
analysis of the CPU versions of the algorithms studied.
Tables 10, 11 and 12 show the mean runtime in seconds and
the standard deviation of the algorithms executed on CPU for
the KP, MMDP and NRP, respectively. The runtime of RS is
not included due to its poor numerical results.

The results show that SGS algorithms are the best per-
forming algorithms. In particular, SGSV is the algorithm
with the shortest runtime in most instances of the KP, while

SGSB is the best performing algorithm in most instances
of the MMDP. This is mainly caused because the crossover
and mutation points of each cell are calculated according
to the coordinates of the cell on the grid, thus avoiding the
generation of random numbers during the execution of the
algorithm. In NRP, the behavior is somewhat different to the
behavior observed in the other two problems as SGSB and
SGSV are among the algorithms that take the longest runtime
to finish in several instances. This fact may be mainly pro-
voked by two reasons. On one hand, the fitness function is
the most computationally costly of the whole experimental
evaluation. On the other hand, in NRP each execution con-
sists of eleven consecutive runs with the different values of
the weighting factor. These two facts, as well as the reduced
number of requirements of the instances used, i.e., the num-
ber of decision variables, seem to compensate the possible
gain in performance that could be achieved by avoiding the
random number generation during its execution.

123

Systolic genetic search

Table 12 Runtime in seconds of CPU versions for NRP (mean ± std. dev.)

Instance SGA EGA SGST SGSE SGSV SGSB

100–20 4.54e−1 ± 2.16e−2 4.71e−1 ± 8.38e−3 4.19e−1 ± 2.54e−2 4.02e−1 ± 5.55e−4 4.81e−1 ± 4.90e−4 5.52e−1 ± 7.52e−3

100–25 9.12e−1 ± 4.80e−2 9.65e−1 ± 2.44e−2 8.43e−1 ± 1.86e−2 8.44e−1 ± 2.50e−2 9.80e−1 ± 1.16e−3 1.12e0 ± 3.38e−2

35–35 1.77e0 ± 8.03e−2 1.88e0 ± 3.62e−2 1.55e0 ± 4.43e−2 1.55e0 ± 1.83e−2 1.71e0 ± 8.06e−4 1.95e0 ± 3.48e−2

15–40 1.58e0 ± 7.16e−2 1.69e0 ± 2.72e−2 1.22e0 ± 7.29e−2 1.16e0 ± 1.07e−3 1.28e0 ± 1.00e−3 1.43e0 ± 4.27e−2

50–80 2.96e1 ± 1.91e0 3.15e1 ± 1.56e0 2.45e1 ± 1.28e0 2.52e1 ± 7.57e−1 3.08e1 ± 9.70e−1 3.47e1 ± 5.98e−1

100–140 3.64e2 ± 7.15e0 3.69e2 ± 2.08e0 3.22e2 ± 3.18e−1 3.42e2 ± 7.09e0 4.19e2 ± 7.09e0 4.28e2 ± 1.79e1

2–200 1.88e2 ± 1.12e0 2.01e2 ± 3.98e0 1.00e2 ± 8.04e−2 1.07e2 ± 1.91e0 1.06e2 ± 2.30e0 1.07e2 ± 5.84e0

The shortest runtimes are in bold

Table 13 Best TPB configuration of GPU versions for KP

Instances SGA EGA SGSE SGSV SGSB

100–1,000 32 32 64 64 64

100–10,000 32 32 64 64 64

200–1,000 32 32 64 64 64

200–10,000 32 32 64 64 64

500–1,000 64 64 128 128 128

500–10,000 64 64 128 128 128

1,000–1,000 64 64 128 128 128

1,000–10,000 64 64 128 128 128

Table 14 Best TPB configuration of GPU versions for MMDP

Instances SGA EGA SGSE SGSV SGSB

300 32/64 64 64 64 64

600 64 64 64 64 64

900 64 64 128 128 128

1200 64 64 128 128 128

1500 64 64 128 128 128

Now, we analyze the performance of the GPU versions.
Considering the features of the GPU platform used in this
work, executions with 32, 64, 128 and 256 Threads Per Block
(TPB) were made. Tables 13, 14, and 15 show the best con-
figuration of TPB of the algorithms studied for each problem
and instance, i.e., the TPB configuration with the shortest
execution time. The numerical efficiency of the GPU imple-
mentations was also studied, reaching similar conclusions as
those drawn for the CPU versions, but these results are not
included in this article because of its huge extension.

Tables 16, 17, and 18 show the mean runtime in seconds
and the standard deviation of the algorithms implemented
on GPU using the best TPB configuration on each problem
and instance for the KP, MMDP and NRP, respectively. The
results show that the SGS algorithms are also the best per-
forming algorithms when implemented on GPU. In partic-
ular, SGSB is the algorithm with the shortest runtime in all

Table 15 Best TPB configuration of GPU versions for NRP

Instances SGA EGA SGSE SGSV SGSB

100–20 32 32 32 32 32

100–25 32 32 32 32 32

35–35 32 32 32/64 64 64

15–40 32 32 32/64 64 64

50–80 32 32 32 32 32/64

100–140 32 32 64 64 64

2–200 32 64 64 64 64

the instances of the three problems studied, e.g., SGSB needs
only 14.70 s for instance 100–10,000 of the KP, 35.65 s for
instance 1,500 of MMDP and 1.32 s for instance 100–140 of
NRP, which is more than 2× faster than both GAs.

Let us now analyze the improvement in performance of
GPU over CPU implementations. To this end, we use the ratio
between the wall-clock time of the CPU and the GPU exe-
cutions of each algorithm. Even though some authors make
reference to this metric as speedup, we prefer to refer to
this ratio as runtime reduction. The use of the term speedup
can give a misleading idea on how parallelizable is the GPU
implementation of an algorithm since the execution times
are measured in two different platforms. Tables 19, 20 and
21 show the runtime reduction of GPU versions vs. the CPU
versions for KP, MMDP and NRP.

The runtime reduction of SGS algorithms is up to 62.86×
(SGSB in 1,000–1,000) for the KP, 112.74× (SGSV in 1,500)
for the MMDP and 324.08× (SGSB in 100–140) for the NRP,
while for GAs it is up to 72.22× (EGA in 1,000–1,000),
110.86× (EGA in 1,500) and 110.94× (EGA in 100–140),
respectively.

The tendency is clear, the larger the instance, the higher
the time reduction. The reason is twofold. On the one hand,
larger tentative solutions allow all the algorithms to better
profit from the parallel computation of the threads and, on
the other hand, the algorithms use larger populations when
the size of the instances increases (the grid has to be enlarged
to meet the SGS structured search model), so a higher num-

123

M. Pedemonte et al.

Table 16 Runtime in seconds of GPU versions for KP (mean ± std. dev.)

Instance SGA EGA SGSE SGSV SGSB

100–1,000 7.54e−2 ± 5.48e−4 7.02e−2 ± 4.31e−4 3.70e−2 ± 1.41e−4 3.44e−2 ± 4.99e−4 3.40e−2 ± 2.47e−4

100–10,000 7.68e−2 ± 4.60e−4 7.24e−2 ± 4.90e−4 3.70e−2 ± 3.48e−4 3.46e−2 ± 4.99e−4 3.41e−2 ± 3.73e−4

200–1,000 4.48e−1 ± 6.30e−4 4.41e−1 ± 4.63e−4 2.26e−1 ± 4.05e−4 2.11e−1 ± 4.63e−4 2.10e−1 ± 4.43e−4

200–10,000 4.52e−1 ± 5.55e−4 4.31e−1 ± 4.99e−4 2.22e−1 ± 4.31e−4 2.06e−1 ± 5.01e−4 2.05e−1 ± 4.71e−4

500–1,000 4.58e0 ± 2.17e−3 4.51e0 ± 6.13e−4 2.28e0 ± 7.51e−4 2.15e0 ± 8.18e−4 2.13e0 ± 7.42e−4

500–10,000 4.59e0 ± 2.20e−3 4.51e0 ± 5.28e−3 2.29e0 ± 6.52e−4 2.15e0 ± 6.69e−4 2.14e0 ± 8.48e−4

1,000–1,000 3.43e1 ± 1.67e−2 3.40e1 ± 9.52e−4 1.53e1 ± 2.39e−3 1.45e1 ± 2.70e−3 1.45e1 ± 2.87e−3

1,000–10,000 3.42e1 ± 1.71e−2 3.49e1 ± 1.53e−3 1.55e1 ± 3.33e−3 1.48e1 ± 3.18e−3 1.47e1 ± 3.19e−3

The shortest runtimes are in bold

Table 17 Runtime in seconds of GPU versions for MMDP (mean ± std. dev.)

Instance SGA EGA SGSE SGSV SGSB

300 1.15e0 ± 6.58e−4 1.12e0 ± 7.12e−4 5.43e−1 ± 3.25e−3 5.01e−1 ± 2.35e−3 4.97e−1 ± 1.72e−3

600 8.00e0 ± 9.86e−4 7.88e0 ± 4.10e−3 3.06e0 ± 3.02e−3 2.83e0 ± 1.37e−3 2.81e0 ± 2.68e−3

900 2.34e1 ± 1.58e−3 2.26e1 ± 4.77e−2 8.85e0 ± 4.68e−2 8.26e0 ± 2.47e−3 8.21e0 ± 1.63e−3

1,200 5.48e1 ± 4.96e−2 5.37e1 ± 8.02e−2 2.10e1 ± 4.60e−2 1.96e1 ± 2.89e−3 1.95e1 ± 2.60e−3

1,500 9.70e1 ± 7.10e−2 9.70e1 ± 1.89e−1 3.81e1 ± 2.88e−3 3.58e1 ± 3.08e−3 3.57e1 ± 5.65e−3

The shortest runtimes are in bold

Table 18 Runtime in seconds of GPU versions for NRP (mean ± std. dev.)

Instance SGA EGA SGSE SGSV SGSB

100–20 6.04e−2 ± 5.81e−4 5.72e−2 ± 5.66e−4 5.25e−2 ± 6.08e−4 5.15e−2 ± 5.38e−4 5.15e−2 ± 5.74e−4

100–25 7.68e−2 ± 5.39e−4 7.31e−2 ± 8.29e−4 6.36e−2 ± 5.38e−4 6.15e−2 ± 5.80e−4 6.15e−2 ± 5.42e−4

35–35 1.16e−1 ± 7.60e−4 1.11e−1 ± 4.04e−4 8.79e−2 ± 1.02e−3 8.46e−1 ± 5.35e−4 8.36e−2 ± 5.98e−4

15–40 1.30e−1 ± 1.09e−3 1.24e−1 ± 5.15e−4 9.52e−2 ± 5.35e−4 9.11e−1 ± 3.96e−4 9.07e−2 ± 6.00e−4

50–80 5.31e−1 ± 5.85e−4 5.11e−1 ± 4.20e−3 3.56e−1 ± 4.22e−4 3.37e−1 ± 5.75e−4 3.35e−1 ± 5.25e−4

100–140 3.79e0 ± 6.95e−3 3.66e0 ± 9.09e−3 1.40e0 ± 7.40e−4 1.33e0 ± 5.80e−4 1.32e0 ± 7.85e−3

2–200 6.71e0 ± 1.21e−2 6.42e0 ± 7.35e−3 4.65e0 ± 9.11e−3 4.20e0 ± 5.65e−3 4.18e0 ± 8.12e−3

The shortest runtimes are in bold

ber of blocks have to be generated and the algorithm takes
advantage of the computing capabilities offered by the GPU
architecture. The reductions obtained by SGS for the MMDP
and the NRP are larger than the ones obtained by GAs except
for instance 2–200. In KP, the reductions obtained by GAs
are slightly larger than the ones obtained by SGS, since both
implementations follow a similar scheme, while sequential
GAs are computationally more expensive than sequential
SGS and have some additional features that can be paral-
lelized (e.g., mutation, random number generation).

Finally, we study the comparative performance among
CPU and GPU implementations.

To this end, we analyze the normalized number of solu-
tions built and evaluated for each algorithm per second (the
unit is the number of solutions constructed by the slower
algorithm for each instance). Figures 11 and 12 graphically

Table 19 Runtime reduction of GPU vs CPU versions for KP

Instance SGA EGA SGSE SGSV SGSB

100–1,000 16.84 19.37 19.19 19.19 19.12

100–10,000 17.58 19.61 19.73 19.08 20.53

200–1,000 29.11 30.79 27.08 26.26 27.14

200–10,000 28.58 31.93 27.39 28.40 28.05

500–1,000 54.95 58.41 47.32 48.10 49.78

500–10,000 54.04 59.47 45.16 45.67 48.28

1,000–1,000 70.50 75.14 60.77 60.92 62.86

1,000–10,000 69.81 72.22 58.78 58.68 60.69

The best values are in bold

show the normalized number of solutions built and evaluated
by CPU implementations for KP and MMDP, while Figs. 13
and 14 graphically show the normalized number of solu-

123

Systolic genetic search

Table 20 Runtime reduction of GPU versions vs CPU versions for
MMDP

Instance SGA EGA SGSE SGSV SGSB

300 48.83 52.76 50.50 49.96 54.61

600 67.18 72.75 80.28 84.64 83.89

900 79.09 84.46 88.75 93.45 90.50

1,200 95.81 102.02 103.60 107.64 107.47

1,500 104.91 110.86 110.91 112.74 112.12

The best values are in bold

Table 21 Runtime reduction of GPU vs CPU versions for NRP

Instance SGA EGA SGSE SGSV SGSB

100–20 7.52 8.23 7.66 9.34 10.72

100–25 11.88 13.20 12.27 15.93 18.21

35–35 15.26 16.94 17.63 20.21 23.33

15–40 12.15 13.63 12.18 14.05 15.77

50–80 55.82 61.59 70.81 91.34 103.52

100–140 96.10 100.94 244.36 315.26 324.08

2–200 28.03 31.34 23.05 25.12 25.60

The best values are in bold

Instance

N
um

be
r

of
 s

ol
ut

io
ns

 p
er

 s
ec

on
d

(n
or

m
al

iz
ed

)

100−1000 200−1000 500−1000 1000−1000
100−10000 200−10000 500−10000 1000−10000

3
2

1

SGA
EGA
SGST

SGSE

SGSV

SGSB

Fig. 11 Performance of CPU implementations for KP

tions built and evaluated by GPU implementations for KP
and MMDP. For NRP, as the results of the CPU versions are
irregular and there are large differences between the magni-
tudes of the results of the GPU versions, we have chosen to
not include plots, and the results are summarized in Table 22.

The results obtained show that the CPU implementation
of SGS can build and evaluate solutions more than two times
faster than both GAs for almost all the instances considered
in the experimental evaluation of the KP and MMDP. Addi-
tionally, the trend can be clearly seen in the figure: the larger

Instance

N
um

be
r

of
 s

ol
ut

io
ns

 p
er

 s
ec

on
d

(n
or

m
al

iz
ed

)

300 600 900 1200 1500

3
2

1

SGA
EGA
SGST

SGSE

SGSV

SGSB

Fig. 12 Performance of CPU implementations for MMDP

50
10

0
15

0

Instance

N
um

be
r

of
 s

ol
ut

io
ns

 p
er

 s
ec

on
d

(n
or

m
al

iz
ed

)

100−1000 200−1000 500−1000 1000−1000
100−10000 200−10000 500−10000 1000−10000

SGA
EGA
SGSE

SGSV

SGSB

Fig. 13 Performance of GPU implementations for KP

the instance considered, the larger the improvement over the
number of solutions build and evaluated by both GAs. In
NRP, the results obtained regarding the number of solutions
built and evaluated per second for the CPU implementations
are somewhat irregular, having a great variability. The behav-
ior is fairly different from the behavior seen in the first two
problems analyzed. The improvement of the best perform-
ing algorithm (SGST in five out of seven instances and SGSE

in four out of seven instances) over the algorithm with the
longest execution time for each instance ranges from 1.26
(35–35) to 2.01 (2–200).

On the other hand, the results obtained show that the GPU
implementation of SGS can build and evaluate solutions up
to more than 150 and 260 times faster than the CPU imple-

123

M. Pedemonte et al.

50
10

0
15

0
20

0
25

0
30

0

Instance

N
um

be
r

of
 s

ol
ut

io
ns

 p
er

 s
ec

on
d

(n
or

m
al

iz
ed

)

300 600 900 1200 1500

SGA
EGA
SGSE

SGSV

SGSB

Fig. 14 Performance of GPU implementations for MMDP

mentation of both GAs for the largest instances considered in
the experimental evaluation of the KP and MMDP, respec-
tively. In particular, SGSB, the best performing algorithm,
improves upon the sequential SGA up to 166× and 284×,
and upon the sequential EGA up to 176× and 301× for KP
and MMDP, respectively. Additionally, the clear trend shown
in the figures is that, when the larger the instance considered,
the larger the improvement over the number of solutions build
and evaluated by both sequential GAs and, what is more rel-
evant, the larger the difference between the improvement of
the GPU implementation of SGS and the improvement of the
GPU implementations of both GAs.

Finally, to compare the improvement in performance for
different instances of the NRP, it should be taken into account
that the complexity of an instance is not only influenced by
the number of requirements but also is influenced by the num-
ber of customers. For this reason, it is not easy to exactly
establish which instances are larger than others. To analyze

the scalability of the GPU implementations, we consider that
the size of the instance can be inferred from the value of the
normalized number of solutions, i.e., the larger the value,
the larger the instance. Taking as a criterion the order of the
instances determined by the normalized number of solutions
of the GPU implementation of SGA, the tendency is sim-
ilar than the one obtained for the first two problems, when
the larger the instance considered, the larger the improvement
over the sequential algorithm with the longest execution time
on CPU and the larger the difference between the improve-
ment of the SGS over both GAs on GPU.

The results obtained in the study of the performance of
the GPU implementation of SGS are superior than reduc-
tions that are often found in the literature of metaheuristics
on GPUs (10–20×). Additionally, the idea of SGS has proven
that is highly scalable, making these algorithms an interest-
ing alternative to unleash the potential of GPU platforms for
new applications.

5 Related work

This section analyzes published material which is related to
the SGS algorithm presented in this work. First of all, to the
best of our knowledge, the SGS algorithm is a newly fresh
research line developed by the authors which has been pre-
liminary explored in Pedemonte et al. (2012), Pedemonte et
al. (2013). Besides the seminal works of Systolic Computing
by Kung (1982), and Kung and Leiserson (1978), only few
subsequent trials have been devoted to engineer optimiza-
tion algorithms based on this paradigm. Indeed, only Chan
and Mazumder (1995) and Megson and Bland (1998) imple-
mented a GA on VLSI and FPGA architectures in a systolic
fashion, but this lines were early discarded due to the com-
plexity of translating the GA operations into the recurrent
equations required to define the hardware. More recently,
Alba and Vidal (2011), and Vidal et al. (2013) have proposed
SNS (Systolic Neigborhood Search). SGS can be seen as an

Table 22 Normalized number of solutions constructed per second for NRP

Instance CPU versions GPU versions

SGA EGA SGST SGSE SGSV SGSB SGA EGA SGSE SGSV SGSB

100–20 1.22 1.17 1.32 1.37 1.15 1.00 9.14 9.65 10.51 10.72 10.72

100–25 1.23 1.16 1.33 1.33 1.14 1.00 14.58 15.32 17.61 18.21 18.21

35–35 1.10 1.04 1.26 1.26 1.14 1.00 16.81 17.57 22.18 23.05 23.33

15–40 1.07 1.00 1.39 1.46 1.32 1.18 13.00 13.63 17.75 18.55 18.63

50–80 1.17 1.10 1.41 1.38 1.13 1.00 65.31 67.87 97.42 102.91 103.52

100–140 1.17 1.16 1.33 1.25 1.02 1.00 112.87 116.88 305.56 321.65 324.08

2–200 1.07 1.00 2.01 1.88 1.91 1.88 29.99 31.34 43.28 47.91 48.14

The best values are in bold

123

Systolic genetic search

advanced version of SNS. They share the arrangement of
solutions into a grid, but SNS only circulates solutions in
a row fashion, whereas SGS moves solutions not only hor-
izontally but also vertically. This means that each cell has
to manage pairs of solutions and thus more complex search
strategies can be devised.

Finally, SGS (and SNS as well) have similarities with the
cellular model of EAs (Alba and Dorronsorso 2008), but there
are strong conceptual design goals that make the two under-
lying search models fairly different. In the cellular model, the
population is structured in overlapping neighborhoods with
interactions between individuals limited to those neighbor-
hoods. Although in a first impression the models look alike,
the only point of contact of both models is that the solutions
are placed in a structured grid. Two main differences emerge.

First, the information flow in both models is quite differ-
ent. While the solutions remain static in the same position
of the grid and all the exchange of information among solu-
tions is caused by the overlap of neighborhoods in the cellular
model, SGS is based on the flow of solutions. That is, the con-
stant movement of all the information through the grid pro-
duces the communication between the solutions. As a conse-
quence, the solutions that could be mated in SGS is dynamic
during the execution of the algorithm, while in the cellular
model the mating is static, i.e., a given solution can only be
mated with the same set of solutions for the whole execution.
This clearly introduces a higher diversity in the search.

Second, each cell applies the evolutionary operators to
produce new solutions independently of the other cells in
SGS, i.e., when a cell is applying those operators it can be
considered isolated from the rest of the grid, while in the
cellular model each cell needs the neighboring cells to be
able to produce new solutions. Also, the SGS search aims
at being systematic: the search operators in each cell has an
structured pattern rather than the pure stochastic approach of
cellular EAs. As a final remark, we would like to point out
that the cellular model has been ported to CUDA too, so as to
allow its deployment on GPU cards (Vidal and Alba 2010a,b).

6 Conclusions and future work

In this work, we have presented a new parallel optimization
algorithm that combines ideas from the fields of metaheuris-
tics and Systolic Computing, the Systolic Genetic Search
algorithm. The algorithm is inspired by the systolic contrac-
tion of the heart that makes possible that it pumps blood
rhythmically according to the metabolic needs of the tissues
and is designed to explicitly exploit the high degree of paral-
lelism available in modern devices such as Graphics Process-
ing Units. An exhaustive experimental evaluation was con-
ducted using four different instantiations of SGS, a Random
Search and two GAs for solving two classical benchmarking

problems (including one deceptive problem) and a real-world
application on twenty different instances.

The experimental evaluation shows that SGSE, SGSV and
SGSB flavors have a great potential. These algorithms have
shown to be highly effective for solving the three problems
considered as they are able to find the optimal solution in
almost every run for each instance. Additionally, these three
instantiations of SGS outperform the remaining algorithms
involved in the experiment for KP and NRP, as well as RS
and EGA for MMDP.

The parallel implementation on GPU of these three algo-
rithms has achieved a high performance obtaining runtime
reductions from their corresponding sequential implementa-
tion that, depending on the instance considered, can arrive to
hundred times. In particular, parallel GPU-based implemen-
tation of SGSB is the best performing algorithm of the whole
experimental evaluation, having systematically the shortest
runtime for all the instances of all the problems considered.
The runtime reduction of the parallel GPU-based implemen-
tation of SGSB with respect to its sequential implementation
is up to 62× for the KP, 112× for the MMDP and 324× for
the NRP. Additionally, if the performance is evaluated using
the improvement in the number of solutions constructed and
evaluated relative to the sequential algorithm with the longest
runtime on CPU, the parallel GPU-based implementation of
SGSB improvement in performance is up to 176× for the
KNSP, 301× for the MMDP and 324× for the NRP. Finally,
it should be highlighted that SGSE, SGSV and SGSB on GPU
have shown a good scalability behavior when solving high-
dimension problem instances.

Three main areas that deserve further study are identified.
A first issue is to customize the GPU implementation of SGS
to the new Kepler architecture to assess the improvement in
performance that can be obtained in these new devices. A sec-
ond line of interest is to study theoretically and empirically
the impact of the values of the crossover and mutation points,
and how these values are distributed in the systolic grid, in the
quality of the solutions obtained by SGS. Given the results
obtained, we also want to go for an accurate scalability study
of this search model. Finally, we aim to perform a wider
impact analysis by solving additional problems to extend the
existing evidence of the benefits of this line of research.

Acknowledgments Martín Pedemonte acknowledges support from
Programa de Desarrollo de las Ciencias Básicas, Universidad de
la República, and Agencia Nacional de Investigación e Innovación,
Uruguay. Francisco Luna and Enrique Alba acknowledge partial sup-
port from the Spanish Ministry of Economy and Competitiveness and
FEDER under contract TIN2011-28194. Francisco Luna also acknowl-
edges partial support from TIN2011-28336. The authors would like
to thank to M.Sc. Leonella Luzardo for her valuable comments and
suggestions to improve the description of the biological phenomenon
that inspires Systolic Computing and systolic based metaheuristics. The
authors would also like to thank to the anonymous reviewers for their
insightful and constructive suggestions.

123

M. Pedemonte et al.

References

Alba E (ed) (2005) Parallel metaheuristics: a new class of algorithms.
Wiley, New York

Alba E, Dorronsorso B (eds) (2008) Cellular genetic algorithms.
Springer, New York

Alba E, Vidal P (2011) Systolic optimization on GPU platforms. In: 13th
international conference on computer aided systems theory (EURO-
CAST 2011)

Bagnall A, Rayward-Smith V, Whittley I (2001) The next release prob-
lem. Inf Softw Technol 43(14):883–890

Blum C, Roli A (2003) Metaheuristics in combinatorial optimiza-
tion: overview and conceptual comparison. ACM Comput Surv
35(3):268–308

Cecilia JM, García JM, Ujaldon M, Nisbet A, Amos M (2011) Par-
allelization strategies for ant colony optimisation on gpus. In: 25th
IEEE international symposium on parallel and distributed process-
ing, IPDPS 2011, workshop proceedings, pp 339–346

Chan H, Mazumder P (1995) A systolic architecture for high speed
hypergraph partitioning using a genetic algorithm. In: Yao X (ed)
Progress in evolutionary computation, vol 956., Lecture Notes in
Computer ScienceSpringer, Berlin, pp 109–126

Deb K (2001) Multi-objective optimization using evolutionary algo-
rithms. Wiley, New York

Durillo JJ, Zhang Y, Alba E, Harman M, Nebro AJ (2011) A study of the
bi-objective next release problem. Empirical Softw Eng 16(1):29–60

Furber S (2000) ARM system-on-chip architecture, 2nd edn. Addison-
Wesley Longman Publishing Co., Inc.

Gaster B, Howes L, Kaeli D, Mistry P, Schaa D (2012) Heterogeneous
computing with OpenCL, 2nd edn. Morgan Kaufmann

Goldberg D, Deb K, Horn J (1992) Massively multimodality, deception
and genetic algorithms. In: Proceedings of the international confer-
ence on parallel problem solving from nature II (PPSNII), pp 37–46

Guyton AC, Hall JE (2006) Textbook of medical physiology, 11th edn.
Elsevier Saunders

Harding S, Banzhaf W (2011) Implementing cartesian genetic program-
ming classifiers on graphics processing units using gpu.net. In: 13th
annual genetic and evolutionary computation conference, GECCO
2011, companion material, pp 463–470

Hennessy J, Patterson D (2011) Computer architecture: a quantitative
approach. The Morgan Kaufmann Series in Computer Architecture
and Design. Morgan Kaufmann

Intel Corporation (2013a) Intel xeon phi core micro-architecture. White
paper, Intel Corporation. http://software.intel.com/en-us/articles/
intel-xeon-phi-core-micro-architecture

Intel Corporation (2013b) Intel xeon phi product family: performance
brief. White paper, Intel Corporation. http://www.intel.com/content/
www/us/en/benchmarks/xeon-phi-product-family-performance-
brief.html

Kirk D, Hwu W (2012) Programming Massively parallel processors. A
hands-on approach. 2nd edn. Morgan Kaufmann

Kung HT (1982) Why systolic architectures? Computer 15(1):37–46
Kung HT, Leiserson CE (1978) Systolic arrays (for VLSI). In: Sparse

matrix proceedings, pp 256–282
Langdon WB (2011) Graphics processing units and genetic program-

ming: an overview. Soft Comput 15(8):1657–1669
Langdon WB, Banzhaf W (2008) A simd interpreter for genetic pro-

gramming on gpu graphics cards. In: Genetic programming, 11th
European conference, EuroGP 2008. Proceedings, Springer, Lecture
Notes in Computer Science, vol 4971, pp 73–85

Lewis TE, Magoulas GD (2009) Strategies to minimise the total run time
of cyclic graph based genetic programming with gpus. Genetic and
evolutionary computation conference, GECCO 2009, pp 1379–1386

Libby P, Bonow R, Mann D, Zipes D (2007) Braunwald’s heart disease:
a textbook of cardiovascular medicine. Elsevier Health Sciences

Maitre O, Krüger F, Querry S, Lachiche N, Collet P (2012) Easea:
specification and execution of evolutionary algorithms on gpgpu.
Soft Comput 16(2):261–279

Marler R, Arora J (2004) Survey of multi-objective optimization meth-
ods for engineering. Struct Multidiscip Optim 26(6):369–395

McCool MD, Robison AD, Reinders J (2012) Structured parallel pro-
gramming, patterns for efficient computation. Morgan Kaufmann

Megson G, Bland I (1998) Synthesis of a systolic array genetic algo-
rithm. In: Parallel processing symposium, 1998. IPPS/SPDP 1998,
pp 316–320

Miettinen K (1999) Nonlinear multiobjective optimization. Interna-
tional series in operations research and management science. Kluwer
Academic Publishers

Nvidia Corporation (2009) NVIDIA’s next generation CUDA compute
architecture: fermi. Nvidia Corporation, Whitepaper

Nvidia Corporation (2012a) CUDA C Best Practices Guide Version 5.0.
Nvidia Corporation

Nvidia Corporation (2012b) CUDA Toolkit 5.0 CURAND Guide.
Nvidia Corporation

Nvidia Corporation (2012c) NVIDIA CUDA C Programming Guide
Version 5.0. Nvidia Corporation

Nvidia Corporation (2012d) NVIDIA’s next generation CUDA compute
architecture: Kepler GK110. Whitepaper, the fastest, most efficient
HPC architecture ever built. Nvidia Corporation

Owens JD, Luebke D, Govindaraju N, Harris M, Krnger J, Lefohn
A, Purcell TJ (2007) A survey of general-purpose computation on
graphics hardware. Comput Graphics Forum 26(1):80–113

Pedemonte M, Alba E, Luna F (2011) Bitwise operations for gpu imple-
mentation of genetic algorithms. In: Genetic and evolutionary com-
putation conference, GECCO’11. Companion Publication, pp 439–
446

Pedemonte M, Alba E, Luna F (2012) Towards the design of systolic
genetic search. In: IEEE 26th international parallel and distributed
processing symposium workshops and PhD Forum. IEEE Computer
Society, pp 1778–1786

Pedemonte M, Luna F, Alba E (2013) New ideas in parallel metaheuris-
tics on gpu: systolic genetic search. In: Tsutsui S, Collet P (eds)
Massively parallel evolutionary computation on GPGPUs, Natural
Computing Series, chap 10. Springer, Berlin, pp 203–225

Pisinger D (1997) A minimal algorithm for the 0–1 knapsack problem.
Oper Res 45:758–767

Pisinger D (1999) Core problems in knapsack algorithms. Oper Res
47:570–575

Sheskin DJ (2011) Handbook of parametric and nonparametric statis-
tical procedures, 5th edn. Chapman and Hall/CRC

Soca N, Blengio J, Pedemonte M, Ezzatti P (2010) PUGACE, a cel-
lular evolutionary algorithm framework on GPUs. In: 2010 IEEE
world congress on computational intelligence. WCCI 2010–2010
IEEE Congress on Evolutionary Computation, CEC 2010, pp 1–8

Tsutsui S, Fujimoto N (2011) Fast qap solving by aco with 2-opt local
search on a gpu. In: 2011 IEEE congress of evolutionary computa-
tion, CEC 2011, pp 812–819

Veronese LDP, Krohling RA (2010) Differential evolution algorithm
on the gpu with c-cuda. In: Proceedings of the IEEE congress on
evolutionary computation, CEC 2010, pp 1–7

Vidal P, Alba E (2010a) Cellular genetic algorithm on graphic process-
ing units. In: Nature inspired cooperative strategies for optimization
(NICSO 2010), pp 223–232

Vidal P, Alba E (2010b) A multi-gpu implementation of a cellular
genetic algorithm. In: IEEE congress on evolutionary computation,
pp 1–7

Vidal P, Luna F, Alba E (2013) Systolic neighborhood search on graph-
ics processing units. Soft Computing, pp 1–18

Zhang Q, Li H (2007) Moea/d: a multiobjective evolutionary algorithm
based on decomposition. IEEE Trans Evol Comput 11(6):712–731

123

http://software.intel.com/en-us/articles/intel-xeon-phi-core-micro-architecture
http://software.intel.com/en-us/articles/intel-xeon-phi-core-micro-architecture
http://www.intel.com/content/www/us/en/benchmarks/xeon-phi-product-family-performance-brief.html
http://www.intel.com/content/www/us/en/benchmarks/xeon-phi-product-family-performance-brief.html
http://www.intel.com/content/www/us/en/benchmarks/xeon-phi-product-family-performance-brief.html

Systolic genetic search

Zhang S, He Z (2009) Implementation of parallel genetic algorithm
based on CUDA. In: ISICA 2009, LNCS 5821, pp 24–30

Zhang Y, Harman M, Mansouri SA (2007) The multi-objective next
release problem. In: Proceedings of the 9th annual conference on
genetic and evolutionary computation, ACM, GECCO ’07, pp 1129–
1137

Zhou Y, Tan Y (2009) Gpu-based parallel particle swarm optimization.
In: Proceedings of the IEEE congress on evolutionary computation,
CEC 2009, pp 1493–1500

123

	Systolic genetic search, a systolic computing-based metaheuristic
	Abstract
	1 Introduction
	2 Systolic genetic search
	2.1 Systolic genetic search algorithm
	2.1.1 Size of the grid
	2.1.2 Crossover operator
	2.1.3 Mutation

	2.2 SGS flavors

	3 SGS implementation on GPU
	3.1 CUDA graphics processing units
	3.2 Implementation details
	3.2.1 Data organization
	3.2.2 Kernel operation

	4 Experimental study
	4.1 Test problems
	4.1.1 Knapsack problem
	4.1.2 Massively multimodal deceptive problem
	4.1.3 Next release problem

	4.2 Algorithms
	4.3 Parameters setting and test environment
	4.4 Experimental analysis
	4.4.1 Numerical efficiency
	4.4.2 Parallel performance

	5 Related work
	6 Conclusions and future work
	Acknowledgments
	References

