
618 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 4, AUGUST 2010

A Study of Multiobjective Metaheuristics When
Solving Parameter Scalable Problems

Juan J. Durillo, Student Member, IEEE, Antonio J. Nebro, Carlos A. Coello Coello, Senior Member, IEEE,
José García-Nieto, Francisco Luna, and Enrique Alba

Abstract—To evaluate the search capabilities of a multiobjec-
tive algorithm, the usual approach is to choose a benchmark
of known problems, to perform a fixed number of function
evaluations, and to apply a set of quality indicators. However,
while real problems could have hundreds or even thousands of
decision variables, current benchmarks are normally adopted
with relatively few decision variables (normally from 10 to
30). Furthermore, performing a constant number of evaluations
does not provide information about the effort required by an
algorithm to get a satisfactory set of solutions; this information
would also be of interest in real scenarios, where evaluating the
functions defining the problem can be computationally expensive.
In this paper, we study the effect of parameter scalability in
a number of state-of-the-art multiobjective metaheuristics. We
adopt a benchmark of parameter-wise scalable problems (the
Zitzler–Deb–Thiele test suite) and analyze the behavior of eight
multiobjective metaheuristics on these test problems when using
a number of decision variables that range from 8 up to 2048.
By using the hypervolume indicator as a stopping condition, we
also analyze the computational effort required by each algorithm
in order to reach the Pareto front. We conclude that the two
analyzed algorithms based on particle swarm optimization and
differential evolution yield the best overall results.

Index Terms—Comparative study, efficiency, metaheuristics,
multi-objective optimization, scalability.

I. Introduction

MANY REAL-WORLD optimization problems require
the optimization of more than one objective function

at the same time. These problems are called multiobjective

Manuscript received December 4, 2008; revised June 12, 2009. Date of
publication February 17, 2010; date of current version July 30, 2010. This
work was supported in part by the Consejería de Innovación, Ciencia y
Empresa, Junta de Andalucía under Contract P07-TIC-03044, the DIRI-
COM Project (http://diricom.lcc.uma.es), and the Spanish Ministry of Sci-
ence and Innovation under Contract TIN2008-06491-C04-01, the M* Project
(http://mstar.lcc.uma.es). The work of J. J. Durillo and F. Luna is supported by
Grant AP-2006-03349, Grant ES-2006-13075, respectively, from the Spanish
Government. The work of C. A. Coello Coello is supported by CONACyT
Project 103570

J. J. Durillo, A. J. Nebro, J. García-Nieto, F. Luna, and E. Alba
are with the Departamento de Lenguajes y Ciencias de la Computación,
University of Málaga, Málaga 29071, Spain (e-mail: durillo@lcc.uma.es;
antonio@lcc.uma.es; jnieto@lcc.uma.es; flv@lcc.uma.es; eat@lcc.uma.es).

C. A. Coello Coello is with the Department of Computer Sci-
ence, Center of Research and Advanced Studies, Mexico DF 07360,
Mexico, and also with the Unité Mixte Internationale-Laboratoire
Franco-Mexicaine d’Informatique et Automatique 3175 CNRS, Cen-
ter of Research and Advanced Studies, Mexico DF 07360, Mexico
(e-mail: coello@cs.cinvestav.mx).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2009.2034647

optimization problems (MOPs). In contrast to single-objective
optimization problems, the solution to MOPs is not a single
solution, but a set of non-dominated solutions called the Pareto
optimal set. A solution that belongs to this set is said to
be a Pareto optimum and, when the solutions of this set are
plotted in objective space, they are collectively known as the
Pareto front. Obtaining the Pareto front is the main goal in
multiobjective optimization.

The fact that real-world MOPs tend to be nonlinear and with
objective functions that are very expensive to evaluate has led
to the use of metaheuristics [1], [3], [13] to deal with them.
Metaheuristics are a family of techniques comprising evolu-
tionary algorithms (EAs), particle swarm optimization (PSO),
ant colony optimization, tabu search, differential evolution,
scatter search, and many others. The most popular algorithms
for multiobjective optimization based on metaheuristics in
current use (NSGA-II [8] and SPEA2 [35]) adopt EAs as their
search engine [5], [7].

The performance of these algorithms has been typically
assessed using benchmark problems, such as the Zitzler–Deb–
Thiele (ZDT) test problems [34], the Deb–Thiele–Laumanns–
Zitzler (DTLZ) test problems [9], and the Walking-Fish-Group
(WFG) test problems [15], [16]. These three problem families
are scalable in the number of decision variables, and the
last two are also scalable in the number of objectives. The
methodology commonly adopted in the specialized literature
is to compare several algorithms using a fixed (pre-defined)
number of objective function evaluations and then to evaluate
the values of different quality indicators (e.g., generational
distance [32] or hypervolume [36], among others).

The main motivation of this paper is that many real-world
problems have hundreds or even thousands of decision vari-
ables, which contrasts with the current practice of validating
multiobjective metaheuristics using the aforementioned bench-
marks, but with a low number of decision variables (normally,
no more than 30). Thus, the studies currently available do not
consider the capability of current multiobjective evolutionary
algorithms to properly scale when dealing with a very large
number of decision variables. Scalability is a key issue in
optimization algorithms, but it has been rarely addressed in
the multiobjective domain. An example is the study presented
in [14], in which the so-called intelligent multiobjective evolu-
tionary algorithm (IMOEA) is compared to several elitist and
non-elitist multiobjective evolutionary algorithms (MOEAs)
in several of the ZDT test problems, adopting 63 decision

1089-778X/$26.00 c© 2009 IEEE

DURILLO et al.: A STUDY OF MULTIOBJECTIVE METAHEURISTICS WHEN SOLVING PARAMETER SCALABLE PROBLEMS 619

variables. This comparative study was undertaken to validate
the hypothesis of the authors of IMOEA, who argued the
capability of such approach to deal with large parameter
MOPs. Another example can be found in [33], where a study
using only the ZDT1 problem with up to 100 variables is
included. This contrasts with the interest in studying function
scalability, which is currently an active research topic, leading
to the area known as many-objective optimization [2], [10],
[17], [26], [27], [29].

Another interesting issue that has been scarcely covered in
the specialized literature is the analysis of the behavior of
a multiobjective metaheuristic reaching the Pareto front of a
problem. Typically, a fixed number of evaluations (and, in
consequence, of iterations) is defined by the user, and the
performance of the different algorithms studied is compared.
However, this sort of comparison only measures the front
aspect, and it does not provide any indication regarding the
computational effort that a given algorithm requires to reach
the true Pareto front of a problem, i.e., the efficiency of the
algorithm. We believe that this is an important issue, because
if we take into account that evaluating the objective functions
of a MOP can be very time-consuming, it becomes of interest
to know how expensive for a certain algorithm it is to generate
the Pareto front.

We carried a first analysis of these ideas in [11], where
six state-of-the-art multiobjective metaheuristics were com-
pared when solving the ZDT benchmark, considering their
formulation ranging from 8 up to 2048 variables. The algo-
rithms included in the study reported in [11] were three
genetic algorithms (GAs) (NSGA-II [8], SPEA2 [35], and
PESA-II [6]), one evolution strategy (PAES [18]), one PSO
(OMOPSO [28]), and one cellular GA (MOCell [24]). In
that paper, the number of evaluations required to provide a
satisfactory solution was also analyzed. Given that the Pareto
fronts of the ZDT problems are known, an algorithm was
considered successful when the hypervolume of its current
population (or archive, depending on the algorithm) was higher
than the 95% of the hypervolume of the Pareto front.

The current paper conducts further research along this line.
Compared to our previous paper in [11], the main contributions
of this paper are the following.

1) Two additional modern multiobjective metaheuristics
have been included: generalized differential evolution
(GDE3) [20] (a differential evolution algorithm) and
AbYSS [23] (a scatter search algorithm), leading to a
total of eight multiobjective metaheuristics, representa-
tive of the state-of-the-art.

2) We analyze the search capabilities of the algorithms
when solving the scalable ZDT problems using a
stronger stopping condition, by which the algorithms
stop either when they find a solution set having a
hypervolume higher than the 98% of the hypervolume
of the true Pareto front or when they have performed
10 000 000 function evaluations (500 000 in [11]).

3) A more complete statistical analysis is performed, in-
cluding pair-wise comparisons among the techniques in
order to determine the significance of the results.

4) We study the behavior of the most promising techniques
in order to propose mechanisms that enhance their
search capabilities.

The remainder of this paper is organized as follows.
Section II includes basic background on multiobjective op-
timization. Sections III and IV describe, respectively, the
problems and the metaheuristics we have used. Section V is
devoted to the presentation and analysis of the experiments
carried out. In Section VI, we include a discussion about the
obtained results. Finally, Section VII summarizes the paper
and discusses possible lines of future work.

II. Multiobjective Optimization

In this section, we include some background on multiobjec-
tive optimization. More specifically, we define the concepts of
MOP, Pareto optimality, Pareto dominance, Pareto optimal set,
and Pareto front. In these definitions we are assuming, without
loss of generality, the minimization of all the objectives.

A general multiobjective optimization problem (MOP) can
be formally defined as follows.

Definition 1 (MOP): Find a vector �x∗ =
[
x∗

1, x
∗
2, . . . , x

∗
n

]
which satisfies the m inequality constraints gi (�x) ≥ 0, i =
1, 2, . . . , m, the p equality constraints hi (�x) = 0, i =
1, 2, . . . , p, and minimizes the vector function �f (�x) =[
f1(�x), f2(�x), . . . , fk(�x)

]T
, where �x = [x1, x2, . . . , xn]T is the

vector of decision variables.
The set of all values satisfying the constraints defines the

feasible region � and any point �x ∈ � is a feasible solution.
As mentioned before, we seek for the Pareto optima. Its formal
definition is provided next.

Definition 2 (Pareto Optimality): A point �x∗ ∈ � is Pareto
optimal if for every �x ∈ � and I = {1, 2, . . . , k} either
∀i∈I (fi (�x) = fi(�x∗)) or there is at least one i ∈ I such that
fi (�x) > fi (�x∗).

This definition states that �x∗ is Pareto optimal if no feasible
vector �x exists which would improve some criterion with-
out causing a simultaneous worsening in at least one other
criterion. Other important definitions associated with Pareto
optimality are the following.

Definition 3 (Pareto Dominance): A vector
�u = (u1, . . . , uk) is said to dominate �v=(v1, . . . , vk) (denoted
by �u�v) if and only if �u is partially smaller than �v, i.e.,
∀i ∈ {1, . . . , k} , ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi.

Definition 4 (Pareto Optimal Set): For a given MOP �f (�x),
the Pareto optimal set is defined as P∗ = {�x ∈ �|¬∃�x′ ∈
�, �f (�x′)�f (�x)}.

Definition 5 (Pareto Front): For a given MOP �f (�x) and its
Pareto optimal set P∗, the Pareto front is defined as PF∗ =
{�f (�x), �x ∈ P∗}.

Obtaining the Pareto front of a MOP is the main goal
of multiobjective optimization. However, given that a Pareto
front can contain a large number of points, a good solution
must contain a limited number of them, which should be as
close as possible to the true Pareto front, as well as being
uniformly spread; otherwise, they would not be very useful to
the decision maker. Closeness to the Pareto front ensures that
we are dealing with optimal solutions, and a uniform spread

620 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 4, AUGUST 2010

TABLE I

ZDT Test Functions

Problem Objective Functions Variable Bounds Comments

ZDT1

f1(�x) = x1

f2(�x) = g(�x)[1 −
√

x1/g(�x)]

g(�x) = 1 + 9
(∑n

i=2 xi

)
/(n − 1)

0 ≤ xi ≤ 1 Convex

ZDT2

f1(�x) = x1

f2(�x) = g(�x)
[

1 − (x1/g(�x))2
]

g(�x) = 1 + 9
(∑n

i=2 xi

)
/(n − 1)

0 ≤ xi ≤ 1 Non-convex

ZDT3

f1(�x) = x1

f2(�x) = g(�x)
[

1 −
√

x1
g(�x) − x1

g(�x) sin (10πx1)
]

g(�x) = 1 + 9
(∑n

i=2 xi

)
/(n − 1)

0 ≤ xi ≤ 1
Convex
Disconnected

ZDT4

f1(�x) = x1

f2(�x) = g(�x)[1 − (x1/g(�x))2]

g(�x) = 1 + 10(n − 1)+∑n

i=2[x2
i − 10 cos (4πxi)]

0 ≤ x1 ≤ 1
−5 ≤ xi ≤ 5
i = 2, ..., n

Non-convex
Multifrontal

ZDT6

f1(�x) = 1 − e−4x1 sin6 (6πx1)

f2(�x) = g(�x)[1 − (f1(�x)/g(�x))2]

g(�x) = 1 + 9[(
∑n

i=2 xi)/(n − 1)]0.25

0 ≤ xi ≤ 1
Non-convex
Many-to-one
Non-uniformly spaced

of the solutions means that we have made a good exploration
of the search space and no regions are left unexplored.

III. Scalable Parameter-Wise Multiobjective

Optimization Problems

To carry out our paper, it would be helpful to use prob-
lems which are scalable in terms of the number of decision
variables while keeping an invariable Pareto front. The ZDT
test function family [34] fulfills this requirement. It offers,
furthermore, a group of problems with different properties:
convex, non-convex, disconnected, multifrontal, many-to-one
problems (see Table I). These problems have been widely used
in many studies in the field since they were first formulated.
Table I shows the formulation of the ZDT test problem family.
We omitted problem ZDT5 because it is binary encoded. The
Pareto front of each problem is plotted in Fig. 1.

Since we are interested in studying the behavior of the
algorithms when solving scalable parameter-wise problems,
we have evaluated each ZDT problem with 8, 16, 32, 64,
128, 256, 512, 1024, and 2048 variables. This way, we can
study not only what techniques behave more efficiently when
solving problems having many variables, but also if their
search capabilities remain constant or not when the number
of decision variables increases.

IV. Multiobjective Optimization Algorithms

In this section, we briefly describe the eight metaheuristics
that we have considered in this paper. We have used the
implementation of these algorithms provided by jMetal [12],
a Java-based framework aimed at multi-objective optimization
with metaheuristics.1

1jMetal is freely available for download at the following URL:
http://jmetal.sourceforge.net.

The NSGA-II algorithm was proposed by Deb et al. [8].
It is a genetic algorithm based on obtaining a new population
from the original one by applying the typical genetic operators
(selection, crossover, and mutation); then, the individuals in
the two populations are sorted according to their rank, and the
best solutions are chosen to create a new population. In case
of having to select some individuals with the same rank, a
density estimation based on measuring the crowding distance
to the surrounding individuals belonging to the same rank is
used to get the most promising solutions.

SPEA2 was proposed by Zitler et al. in [35]. In this
algorithm, each individual has a fitness value that is the sum of
its strength raw fitness plus a density estimation. The algorithm
applies the selection, crossover, and mutation operators to fill
an archive of individuals; then, the non-dominated individuals
of both the original population and the archive are copied into
a new population. If the number of non-dominated individuals
is greater than the population size, a truncation operator based
on calculating the distances to the kth nearest neighbor is used.
This way, the individuals having the minimum distance to any
other individual are chosen.

PESA-II [6] uses an internal population from which parents
are selected to create new solutions, and an external population
in which the non-dominated solutions found are stored. This
external population uses the same hyper-grid division of phe-
notype (i.e., objective function) space adopted by PAES [19] to
maintain diversity in which region-based selection is adopted.
In region-based selection, the unit of selection is a hyperbox
rather than an individual. The procedure lies in selecting
(using any of the traditional selection techniques) a hyper-
box and then randomly choosing an individual within that
hyperbox.

PAES is a metaheuristic proposed by Knowles and
Corne [19]. The algorithm is based on a simple (1 + 1) evo-
lution strategy. To find diverse solutions in the Pareto optimal

DURILLO et al.: A STUDY OF MULTIOBJECTIVE METAHEURISTICS WHEN SOLVING PARAMETER SCALABLE PROBLEMS 621

Fig. 1. Pareto fronts of the ZDT test functions.

set, PAES uses an external archive of nondominated solutions,
which is also used to decide about the new candidate solutions.
An adaptive grid is used as a density estimator in the archive.
We have used a real coded version of PAES, applying a
polynomial mutation operator.

OMOPSO is a particle swarm optimization algorithm for
solving MOPs [28]. Its main features include the use of
the crowding distance from NSGA-II to filter out leader
solutions and the use of mutation operators to accelerate the
convergence of the swarm. The original OMOPSO algorithm
makes use of the concept of ε-dominance to limit the number
of solutions produced by the algorithm. We consider here a
variant discarding the use of ε-dominance, and considering the
leader population as the result yielded by the algorithm.

GDE3 [20] is an improved version of the GDE algorithm
[21]. It starts with a population of random solutions, which be-
comes the current population. At each generation, an offspring
population is created using the differential evolution operators;
then, the current population for the next generation is updated
using the solutions of both, the offspring and the current
population. Before proceeding to the next generation, the size
of the population is reduced using non-dominated sorting and a
pruning technique aimed at diversity preservation, in a similar
way as NSGA-II, although the pruning used in GDE3 modifies
the crowding distance of NSGA-II in order to solve some of
its drawbacks when dealing with problems having more than
two objectives.

MOCell [24] is a cellular genetic algorithm (cGA). Like
many multiobjective metaheuristics, it includes an external
archive to store the non-dominated solutions found so far. This
archive is bounded and uses the crowding distance of NSGA-II
to keep diversity in the Pareto front. We have used here an
asynchronous version of MOCell, called aMOCell4 in [25], in

which the cells are explored sequentially (asynchronously).
The selection is based on taking an individual from the
neighborhood of the current solution (called cell in cGAs)
and another one randomly chosen from the archive. After
applying the genetic crossover and mutation operators, the
new offspring is compared with the current one, replacing
it if better; if both solutions are non-dominated, the worst
individual in the neighborhood is replaced by the current one.
In these two cases, the new individual is inserted into the
archive.

AbYSS is an adaptation of the scatter search metaheuristic
to the multiobjective domain [23]. It uses an external archive
similar to the one employed by MOCell. The algorithm in-
corporates operators from the evolutionary algorithms domain,
including polynomial mutation and simulated binary crossover
in the improvement and solution combination methods,
respectively.

V. Experimentation

In this section, we describe the parameter settings used in
the experiments, as well as the methodology we have followed
in the tests, and the results we have obtained.

A. Parameterization

We have chosen a set of parameter values such that we allow
a fair comparison among all the algorithms compared. All the
GAs (NSGA-II, SPEA2, PESA-II, and MOCell) as well as
GDE3 use an internal population size equal to 100; the size
of the archive is also 100 in PAES, OMOPSO, GDE3, MOCell,
and AbYSS. OMOPSO has been configured with 100 particles.
For AbYSS, the population and the reference set have a size
of 20 solutions.

622 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 4, AUGUST 2010

TABLE II

Parameterization (L = Individual Length)

Parameterization Used in NSGA-II [8]
Population size 100 Individuals
Selection of parents Binary tournament + binary tournament
Recombination Simulated binary, pc = 0.9
Mutation Polynomial, pm = 1.0/L

Parameterization Used in SPEA2 [35]
Population size 100 individuals
Selection of parents Binary tournament + binary tournament
Recombination Simulated binary, pc = 0.9
Mutation Polynomial, pm = 1.0/L

Parameterization Used in PESA-II [6]
Population size 100 individuals
Selection of parents Region based selection + region based selection
Recombination Simulated binary, pc = 0.9
Mutation Polynomial, pm = 1.0/L

Archive size 100 individuals
Parameterization Used in PAES [18]

Mutation Polynomial, pm = 1.0/L

Archive size 100 individuals
Parameterization Used in OMOPSO [28]

Particles 100 particles
Mutation Uniform + non-uniform
Leaders size 100 individuals

Parameterization Used in GDE3 [20]
Population size 100 individuals
Recombination Differential evolution, CR = 0.1, F = 0.5

Parameterization Used in MOCell [25]
Population size 100 individuals (10 × 10)
Neighborhood 1-hop neighbors (8 surrounding solutions)
Selection of parents Binary tournament + binary tournament
Recombination Simulated binary, pc = 0.9
Mutation Polynomial, pm = 1.0/L

Archive size 100 individuals
Parameterization Used in AbYSS [23]

Population size 20 individuals
Reference set size 10 + 10
Recombination Simulated binary, pc = 1.0
Mutation (local search) Polynomial, pm = 1.0/L

Archive size 100 individuals

In the GAs, we have used simulated binary crossover (SBX)
and polynomial mutation [7]. The distribution indices for
both operators are ηc = 20 and ηm = 20, respectively. The
crossover probability is pc = 0.9 and the mutation probability
is pm = 1/L, where L is the number of decision variables. In
PAES we have also adopted a polynomial mutation operator,
with the same distribution index as indicated before. AbYSS
uses polynomial mutation in the improvement method and
SBX in the solution combination method. GDE3 uses 0.1
and 0.5 for the two parameters CR and F, respectively [20].
OMOPSO applies a combination of uniform and non-uniform
mutation to the particle swarm [28]. A detailed description of
the parameter values adopted for our experiments is provided
in Table II.

B. Methodology

We are interested in two main goals: analyzing the behavior
of the algorithms when solving the scalable ZDT benchmark
and their speed (efficiency) in reaching the Pareto front.
Given that the Pareto fronts of the ZDT problems are known
beforehand, a strategy could be to run the algorithms until they
are able to produce them. However, it is possible that some of
them never produce the true Pareto front, or simply take too

Fig. 2. Pareto fronts with different HV values obtained for problem ZDT1.

long to do it. Thus, we adopt instead a stopping condition for
all the algorithms compared, based on the high quality of the
Pareto front produced. For that purpose, the hypervolume [36]
quality indicator is adopted.

The hypervolume computes the volume (in objective func-
tion space) covered by members of a non-dominated set
of solutions Q for problems in which all objectives are to
be minimized. Mathematically, for each solution i ∈ Q, a
hypercube vi is constructed with a reference point W and
the solution i as the diagonal corners of the hypercube. The
reference point can simply be found by constructing a vector
of worst objective function values. Thereafter, the union of all
hypercubes is found and its hypervolume (HV) is calculated

HV = volume

(|Q|⋃
i=1

vi

)
. (1)

Higher values of the HV performance measure imply more
desirable solutions. A property of this quality indicator is that
it measures both convergence to the Pareto front and diversity
of the obtained fronts.

Once the quality indicator we are going to use has been
described, we need to establish a stopping condition to be
used in the execution of the algorithms. The idea is that the
metaheuristics stop when they reach a certain percentage of
the HV of the Pareto front, which ensures that the obtained
front represents an accurate approximation to it. To decide
about that percentage, we show different approximations of the
Pareto front for the problem ZDT1 with different percentages
of HV in Fig. 2. We can observe that a front with a hyper-
volume of 98.26% represents a reasonable approximation to
the true Pareto fronts in terms of convergence and diversity
of solutions. This same value has been corroborated using the
other test problems from the ZDT suite. So, we have taken
98% of the HV of the Pareto front as a criterion to consider
that a MOP has been successfully solved. Furthermore, those
algorithms requiring fewer function evaluations to achieve this
termination condition can be considered to be more efficient
or faster. In those situations in which an algorithm is unable
to obtain a front fulfilling this condition after the maximum
number of function evaluations, we consider that it has failed
in solving the problem; this way, we can obtain a hit rate for
the algorithms, i.e., their percentage of successful executions.
We set the maximum number of evaluations to ten million.

DURILLO et al.: A STUDY OF MULTIOBJECTIVE METAHEURISTICS WHEN SOLVING PARAMETER SCALABLE PROBLEMS 623

Fig. 3. Statistical analysis performed in this paper.

In our experiments, we check the stopping condition every
100 evaluations (that is, each iteration in the population-based
metaheuristics), where we measure the hypervolume of the
non-dominated solutions found so far. Therefore, in NSGA-II,
SPEA2, and GDE3 we have considered the non-dominated
solutions at each generation: in PESA-II, PAES, AbYSS, and
MOCell, the external population and, in MOPSO, the leaders
archive.

We have executed 100 independent runs for each algorithm
and each problem instance. Since we are dealing with stochas-
tic algorithms, we need to perform a statistical analysis of
the obtained results to compare them with a certain level
of confidence. Next, we describe the statistical test that we
have carried out for assuring this [30]. First, a Kolmogorov–
Smirnov test is performed in order to check whether the
values of the results follow a normal (Gaussian) distribution
or not. If so, the Levene test checks for the homogeneity
of the variances. If samples have equal variance (positive
Levene test), an ANOVA test is done; otherwise we perform a
Welch test. For non-Gaussian distributions, the non-parametric
Kruskal–Wallis test is used to compare the medians of the
algorithms.

We always consider in this paper a confidence level of
95% (i.e., significance level of 5% or p-value under 0.05)
in the statistical tests, which means that the differences are
unlikely to have occurred by chance with a probability of
95%. Successful tests are marked with “+” symbols in the last
row in the tables containing the results (see Tables III–VII);
conversely, “−” means that no statistical confidence was
found (p-value > 0.05). For the sake of homogeneity in the
presentation of the results, all the tables include the median,
x̃, and the interquartile range, IQR, as measures of location
(or central tendency) and statistical dispersion, respectively.

We have performed a post-hoc testing phase using the
multcompare function provided by MATLAB, which al-
lows for a multiple comparison of samples. This way, we can
make pairwise comparison between algorithms to know about
the significance of their results.

C. Analysis of Results

Tables III–VII show the median and the interquartile range
of the number of evaluations needed by the different opti-
mizers for ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, respectively.
This indicates that all the 100 independent runs have been
successful, which means a hit rate of 1.0. When an optimizer

Fig. 4. Number of evaluations when solving ZDT1.

is not able to reach an acceptable front upon performing
10 000 000 function evaluations in all the 100 independent
runs, its cell in the tables includes the “−” symbol, and it is
not taken into account in the statistical tests. In other words,
the “−” symbol means that, in order to solve successfully the
problem in all the independent runs, the optimizer may need
more than 10 000 000 of function evaluations. In these cases,
the hit rate would be less than 1.0. To ease the analysis of the
results in these tables, the cells containing the lowest number
of function evaluations have a grey colored background. There
are two grey levels: the darker grey indicates the best (lowest)
value, while lighter grey is used to point out the second best
value. We can observe that the results in these tables are
significant, as can be seen in the last row of each of them,
where each cell contains a “+” symbol, except for ZDT4
with 1024 and 2048 variables (where there are no results to
compare).

Next, we analyze the results obtained for each of the
problems. To make the results clearer, we include a figure
summarizing the values, using a logarithmic scale, in addition
to the corresponding table. The discussion is organized in the
following order: first, we analyze the success of the algorithms
when solving the different instances of the problem; second,
we analyze the speed of the techniques to obtain the Pareto
front when solving the problems; and, finally, we make a
pairwise comparison of the algorithms, considering those
problems in which there are no statistical differences between
each pair of techniques (if we included the problems with
statistical significance, this would lead to larger tables).

1) ZDT1: This problem presents a uniform density of
solutions in the search space and a convex Pareto front.
Table III and Fig. 4 show the number of evaluations needed to
obtain a Pareto front with 98% of the HV of the Pareto front
for this problem. Table VIII presents the hit rate indicator,
where we have used the symbol

√
to indicate a value of 1.0

(a 100% success rate). Table IX contains the problems for
which no statistical differences have been found between each
pair of algorithms.

We begin by analyzing which algorithms are able to solve
the problems in all the independent runs carried out. The
results in Table III show that all the algorithms have success in
all the instances, except for PAES in the instance with 2048

624 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 4, AUGUST 2010

TABLE III

Evaluations for ZDT1

Algorithm 8 16 32 64 128 256 512 1024 2048
variables variables variables variables variables variables variables variables variables

NSGA-II 4.40e+3 4.0e+2 8.10e+3 5.0e+2 1.52e+4 9.0e+2 2.88e+4 1.4e+3 5.72e+4 3.0e+3 1.21e+5 5.2e+3 2.71e+5 9.3e+3 6.31e+5 1.6e+4 1.45e+6 3.3e+4

SPEA2 5.00e+3 3.0e+2 9.30e+3 8.0e+2 1.69e+4 1.1e+3 3.14e+4 1.4e+3 6.03e+4 2.7e+3 1.25e+5 5.0e+3 2.69e+5 9.4e+3 6.01e+5 1.6e+4 1.34e+6 2.8e+4

PESA-II 4.15e+3 1.2e+3 8.40e+3 9.5e+2 1.73e+4 1.6e+3 3.74e+4 2.8e+3 8.36e+4 5.0e+3 1.96e+5 9.3e+3 4.78e+5 1.8e+4 1.18e+6 4.0e+4 2.93e+6 8.9e+4

PAES 3.40e+3 2.5e+3 7.25e+3 4.4e+3 1.34e+4 8.0e+3 2.57e+4 1.6e+4 4.70e+4 3.5e+4 9.07e+4 3.9e+4 1.73e+5 1.3e+5 3.68e+5 4.7e+5 –

OMOPSO 1.40e+3 4.0e+2 3.40e+3 9.0e+2 7.40e+3 1.8e+3 1.38e+4 2.8e+3 2.80e+4 4.4e+3 6.31e+4 7.4e+3 1.58e+5 1.8e+4 4.55e+5 3.4e+4 1.41e+6 1.0e+5

GDE3 2.80e+3 2.0e+2 5.30e+3 3.0e+2 1.00e+4 4.0e+2 1.81e+4 4.5e+2 3.30e+4 9.0e+2 6.10e+4 1.2e+3 1.16e+5 1.8e+3 2.40e+5 3.0e+3 5.64e+5 7.0e+3

MOCell 1.80e+3 3.0e+2 3.80e+3 6.0e+2 9.20e+3 8.0e+2 2.18e+4 1.8e+3 4.92e+4 4.0e+3 1.13e+5 6.4e+3 2.56e+5 8.6e+3 5.62e+5 1.6e+4 1.20e+6 2.7e+4

AbYSS 3.40e+3 7.0e+2 6.80e+3 9.0e+2 1.49e+4 1.8e+3 3.30e+4 2.7e+3 7.29e+4 6.1e+3 1.58e+5 7.8e+3 3.50e+5 1.2e+4 7.06e+5 2.1e+4 1.39e+6 2.6e+4

+ + + + + + + + –

TABLE IV

Evaluations for ZDT2

Algorithm 8 16 32 64 128 256 512 1024 2048
variables variables variables variables variables variables variables variables variables

NSGA-II 7.50e+3 6.0e+2 1.37e+4 8.0e+2 2.60e+4 1.6e+3 4.98e+4 3.2e+3 1.01e+5 4.8e+3 2.08e+5 1.0e+4 4.54e+5 1.8e+4 1.01e+6 2.6e+4 2.28e+6 4.5e+4

SPEA2 7.80e+3 1.0e+3 1.46e+4 1.3e+3 2.60e+4 1.7e+3 4.86e+4 3.2e+3 9.50e+4 4.4e+3 1.90e+5 6.0e+3 3.95e+5 9.0e+3 8.51e+5 1.7e+4 1.89e+6 2.6e+4

PESA-II 1.50e+4 7.8e+3 3.51e+4 2.5e+4 9.38e+4 6.0e+4 3.98e+5 4.2e+5 − − − − −
PAES 3.14e+4 4.5e+4 6.94e+4 7.1e+4 1.29e+5 1.2e+5 2.93e+5 4.2e+5 − − − − −
OMOPSO 1.75e+3 4.0e+2 3.90e+3 1.6e+3 9.70e+3 3.8e+3 1.68e+4 5.0e+3 3.06e+4 5.3e+3 5.44e+4 8.4e+3 1.11e+5 1.1e+4 2.83e+5 2.7e+4 7.71e+5 7.9e+4

GDE3 3.20e+3 2.0e+2 6.10e+3 4.5e+2 1.18e+4 6.5e+2 2.26e+4 1.2e+3 4.33e+4 1.8e+3 8.18e+4 1.3e+3 1.58e+5 2.1e+3 3.27e+5 4.2e+3 7.66e+5 9.8e+3

MOCell 2.90e+3 1.0e+3 4.90e+3 1.4e+3 8.25e+3 2.2e+3 1.74e+4 1.1e+4 4.42e+4 2.5e+4 1.26e+5 4.3e+4 2.91e+5 1.1e+4 6.60e+5 1.1e+4 1.46e+6 2.0e+4

AbYSS 4.50e+3 7.5e+2 9.10e+3 1.7e+3 1.86e+4 2.5e+3 3.96e+4 3.5e+3 8.26e+4 7.2e+3 1.75e+5 8.6e+3 3.68e+5 9.6e+3 7.74e+5 1.9e+4 1.60e+6 2.4e+4

+ + + + + + + + +

TABLE V

Evaluations for ZDT3

Algorithm 8 16 32 64 128 256 512 1024 2048
variables variables variables variables variables variables variables variables variables

NSGA-II 4.20e+3 5.0e+2 7.40e+3 6.0e+2 1.36e+4 9.5e+2 2.53e+4 1.4e+3 5.06e+4 3.1e+3 1.08e+5 4.8e+3 2.38e+5 9.0e+3 5.37e+5 1.6e+4 1.20e+6 2.5e+4

SPEA2 4.90e+3 6.0e+2 9.10e+3 7.0e+2 1.62e+4 1.0e+3 3.00e+4 2.0e+3 5.89e+4 4.0e+3 1.21e+5 5.8e+3 2.56e+5 9.4e+3 5.58e+5 1.6e+4 1.22e+6 2.5e+4

PESA-II 3.75e+3 9.0e+2 7.60e+3 1.0e+3 1.59e+4 2.0e+3 3.43e+4 3.8e+3 7.76e+4 7.8e+3 1.77e+5 8.0e+3 4.14e+5 1.5e+4 9.83e+5 3.3e+4 2.28e+6 4.5e+4

PAES 6.90e+3 8.8e+3 1.21e+4 1.2e+4 2.56e+4 3.2e+4 5.68e+4 6.1e+4 9.92e+4 1.2e+5 2.03e+5 2.0e+5 3.65e+5 6.3e+5 8.17e+5 8.4e+5 –

OMOPSO 2.60e+3 1.0e+3 5.40e+3 2.4e+3 1.01e+4 3.3e+3 2.20e+4 4.0e+3 5.06e+4 8.1e+3 1.26e+5 2.3e+4 3.53e+5 3.9e+4 1.03e+6 8.3e+4 3.17e+6 1.9e+5

GDE3 2.90e+3 2.5e+2 5.60e+3 3.0e+2 1.08e+4 4.0e+2 1.96e+4 8.0e+2 3.46e+4 9.5e+2 6.29e+4 1.3e+3 1.20e+5 1.8e+3 2.50e+5 2.8e+3 6.07e+5 7.2e+3

MOCell 1.90e+3 6.0e+2 4.20e+3 8.0e+2 9.90e+3 1.4e+3 2.30e+4 2.2e+3 5.24e+4 3.4e+3 1.16e+5 9.3e+3 2.57e+5 1.7e+4 5.44e+5 1.6e+4 1.15e+6 3.6e+4

AbYSS 3.35e+3 1.6e+3 6.75e+3 1.8e+3 1.40e+4 2.1e+3 2.87e+4 3.8e+3 6.02e+4 6.1e+3 1.23e+5 1.6e+4 2.57e+5 2.0e+4 5.47e+5 4.4e+4 1.12e+6 4.5e+4

+ + + + + + + + +

TABLE VI

Evaluations for ZDT4

Algorithm 8 16 32 64 128 256 512 1024 2048
variables variables variables variables variables variables variables variables variables

NSGA-II 1.62e+4 3.4e+3 4.38e+4 1.2e+4 1.37e+5 3.3e+4 4.25e+5 9.1e+4 1.20e+6 1.8e+5 3.29e+6 3.5e+5 8.85e+6 6.7e+5 − −
SPEA2 2.11e+4 4.2e+3 4.54e+4 8.7e+3 1.34e+5 3.1e+4 3.69e+5 6.4e+4 1.07e+6 1.3e+5 2.98e+6 2.4e+5 8.24e+6 5.9e+5 − −
PESA-II 1.84e+4 5.2e+3 5.00e+4 1.4e+4 1.51e+5 3.2e+4 4.12e+5 7.3e+4 1.06e+6 1.3e+5 2.72e+6 2.5e+5 6.69e+6 3.8e+5 − −
PAES 3.08e+4 1.1e+4 8.53e+4 4.1e+4 2.17e+5 6.4e+4 5.41e+5 1.9e+5 1.28e+6 3.0e+5 3.18e+6 7.2e+5 − − −
OMOPSO − − − − − − − − −
GDE3 1.18e+4 8.0e+2 − − − − − − − −
MOCell 8.80e+3 2.2e+3 2.04e+4 5.4e+3 5.86e+4 1.0e+4 1.65e+5 2.7e+4 4.67e+5 5.8e+4 1.23e+6 1.0e+5 3.25e+6 1.6e+5 8.14e+6 2.8e+5 −
AbYSS 1.46e+4 5.4e+3 5.46e+4 2.1e+4 1.61e+5 4.3e+4 4.82e+5 1.0e+5 1.39e+6 1.5e+5 3.81e+6 4.2e+5 − − −

+ + + − + + + − −

DURILLO et al.: A STUDY OF MULTIOBJECTIVE METAHEURISTICS WHEN SOLVING PARAMETER SCALABLE PROBLEMS 625

TABLE VII

Evaluations for ZDT6

Algorithm 8 16 32 64 128 256 512 1024 2048
variables variables variables variables variables variables variables variables variables

NSGA-II 2.31e+4 1.3e+3 4.60e+4 1.4e+3 8.84e+4 2.8e+3 1.68e+5 3.5e+3 3.24e+5 6.4e+3 6.47e+5 1.1e+4 1.33e+6 1.6e+4 2.77e+6 2.7e+4 5.80e+6 4.6e+4

SPEA2 2.64e+4 1.2e+3 5.26e+4 2.0e+3 9.94e+4 2.2e+3 1.87e+5 4.2e+3 3.53e+5 7.0e+3 6.84e+5 1.1e+4 1.37e+6 1.4e+4 2.81e+6 2.3e+4 5.82e+6 3.8e+4

PESA-II 2.16e+4 1.8e+3 4.78e+4 2.4e+3 9.85e+4 4.7e+3 2.01e+5 7.2e+3 4.10e+5 1.1e+4 8.57e+5 2.1e+4 1.83e+6 2.9e+4 3.89e+6 4.4e+4 8.32e+6 8.9e+4

PAES 6.80e+3 6.8e+3 1.62e+4 1.6e+4 3.21e+4 2.8e+4 − − − − − −
OMOPSO 2.90e+3 1.6e+3 4.20e+3 1.9e+3 7.70e+3 2.7e+3 1.38e+4 3.5e+3 2.88e+4 5.2e+3 6.10e+4 1.0e+4 1.26e+5 1.6e+4 2.76e+5 3.0e+4 6.12e+5 6.6e+4

GDE3 3.70e+3 5.0e+2 6.60e+3 5.0e+2 1.32e+4 1.1e+3 3.14e+4 2.6e+3 1.53e+5 6.7e+3 3.21e+5 3.8e+3 6.36e+5 4.0e+3 1.35e+6 7.5e+3 3.27e+6 1.8e+4

MOCell 1.07e+4 1.0e+3 2.58e+4 1.4e+3 5.65e+4 2.6e+3 1.19e+5 3.0e+3 2.47e+5 4.7e+3 5.18e+5 7.8e+3 1.10e+6 9.4e+3 2.35e+6 1.9e+4 5.00e+6 3.4e+4

AbYSS 1.23e+4 1.1e+3 2.57e+4 1.8e+3 5.26e+4 3.0e+3 1.08e+5 3.8e+3 2.26e+5 7.2e+3 4.67e+5 9.2e+3 9.60e+5 1.4e+4 1.96e+6 2.1e+4 4.00e+6 4.1e+4

+ + + + + + + + +

TABLE VIII

Hit Rate for ZDT1

Algorithm/Variables 8 16 32 64 128 256 512 1024 2048
NSGA-II

√ √ √ √ √ √ √ √ √
SPEA2

√ √ √ √ √ √ √ √ √
PESA-II

√ √ √ √ √ √ √ √ √
PAES

√ √ √ √ √ √ √ √
0.95

OMOPSO
√ √ √ √ √ √ √ √ √

GDE3
√ √ √ √ √ √ √ √ √

MOCell
√ √ √ √ √ √ √ √ √

AbYSS
√ √ √ √ √ √ √ √ √

Fig. 5. Number of evaluations when solving ZDT2.

variables. This is corroborated considering the hit rate (see
Table VIII), where all the algorithms have a hit rate of 1.0
except for PAES in the 2048 instance, which has 0.95. This
means that in five out of the 100 executions carried out for this
instance, PAES reached the maximum number of evaluations
before obtaining a Pareto front with the desired HV value.

We pay attention now to the speed, i.e., the number of
function evaluations needed by the metaheuristics to find a
Pareto front according to our success condition. In Fig. 4, we
plot the results using a logarithmic scale. We have connected
by a line the symbols of the two algorithms yielding the best
values. Thus, we can observe that OMOPSO (dotted line)
is the fastest algorithm up to 128 variables, while GDE3
scales better from 256 to 2048 variables. The lines clearly
depict that there is a tendency change in these two algorithms
at 256 variables, indicating that GDE3 tends to be faster
than the other techniques as the number of decision variables

Fig. 6. Number of evaluations when solving ZDT3.

increases, while OMOPSO exhibits the opposite behavior. This
suggests that GDE3 could be the most appropriate algorithm
to solve ZDT1 with more than 2048 variables. Accordingly,
we determine that GDE3 is the algorithm that scales the best
in problem ZDT1.

Considering the rest of techniques, MOCell is the second
fastest algorithm up to 32 variables and in the case of 2048
variables. NSGA-II, SPEA2, and AbYSS tend to need a similar
number of evaluations when the instances are larger.

Finally, we make an analysis considering the outcome
of the statistical tests included in Table IX. If we focus
on OMOPSO and GDE3, the tests are non-successful
only in the instances of 128 and 256 variables, which
does not affect the previous analysis. It is interesting to
note that PAES, the simplest of the evaluated techniques,
presents no differences in many instances compared to
NSGA-II and MOCell. We can also observe that NSGA-II

626 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 4, AUGUST 2010

TABLE IX

Non-Successful Statistical Tests of the Number of Evaluations for ZDT1

NSGA-II 128, 256, 512, 1024 8, 16 16, 32, 64, 128 2048 – 256 32

SPEA2 16, 32 2048 − − − 64

PESA-II 8 − − − 128

PAES 512, 1024 − 128, 256, 512, 1024 8, 16, 32

OMOPSO 128, 256 8, 16, 32 2048

GDE3 32 −
MOCell −

SPEA2 PESA-II PAES OMOPSO GDE3 MOCell AbYSS

TABLE X

Hit Rate for ZDT2

Algorithm/Variables 8 16 32 64 128 256 512 1024 2048
NSGA-II

√ √ √ √ √ √ √ √ √
SPEA2

√ √ √ √ √ √ √ √ √
PESA-II

√ √ √ √
0.43 0.0 0.0 0.0 0.0

PAES
√ √ √ √

0.99 0.98 0.99 0.96 0.79
OMOPSO

√ √ √ √ √ √ √ √ √
GDE3

√ √ √ √ √ √ √ √ √
MOCell

√ √ √ √ √ √ √ √ √
AbYSS

√ √ √ √ √ √ √ √ √

and SPEA2 do not present statistical confidence in four
cases.

2) ZDT2: This problem also presents a uniform density
of solutions in the search space, but it has a non-convex
Pareto front. The numbers of evaluations needed to solve the
ZDT2 problem are included in Table IV and Fig. 5. Table X
shows the hit rate of each algorithm. The problems in which
each pair of algorithms are statistically independent appear in
Table XI.

We start by commenting that some optimizers have diffi-
culties when solving this problem, as can be seen in Table IV
and Fig. 5. In particular, neither PAES nor PESA-II are able
to reach a hit rate of 1.0 in instances with more than 64
variables. These results indicate that problems having a non-
convex Pareto front can cause difficulties for some algorithms.

Consequently, the hit rate indicator shows that six algo-
rithms have a 100% success rate in all the instances. Among
the algorithms with a hit rate smaller than 1.0, PESA-II is
the algorithm having the worst value, 0.49 in the problem
with 128 variables, and 0.0 in the next ones. PAES does not
achieve a 100% of success after 128 variables but, in contrast
to PESA-II, the values are near 100% in the instances ranging
from 128 to 1024 variables.

Let us examine now the speed of the algorithms. A look
at Fig. 5 reveals that OMOPSO and GDE3 are the fastest
algorithms. The lines connecting the values of these solvers
indicate that OMOPSO requires a lower number of function
evaluations than GDE3 to get the desired Pareto fronts in all
but in the largest instance. In fact, when observing the lines we
can see that the one of GDE3 suggests again that it could scale
better than the other techniques in order to solve instances
of more than 2048 variables. MOCell, AbYSS, SPEA2, and
NSGA-II, in this order, are the following metaheuristics in
terms of speed, although they tend to get close to each

Fig. 7. Number of evaluations when solving ZDT4.

other when the number of decision variables of the problem
increases.

The pairwise tests in Table XI reveal some interesting facts.
On the one hand, the results of GDE3 and OMOPSO in the
two largest instances are non-significant; on the other hand, the
tests show the differences between MOCell and OMOPSO up
to 64 variables and between MOCell and GDE3 up to 512
variables are also non-significant.

3) ZDT3: This problem presents a uniform density of so-
lutions in the search space and its Pareto front is composed of
several discontinuous regions; therefore, the main complexity
is to find all these discontinuous regions. The evaluations re-
quired for solving the different instances are shown in Table V
and Fig. 6. Table XII presents the hit rate of the algorithms.
The problems in which there are not statistical differences
between each pair of algorithms are shown in Table XIII.

Proceeding as before, we start by analyzing which algo-
rithms are able to solve successfully all the instances of the
problem. Therefore, in Table V we see that all the algorithms

DURILLO et al.: A STUDY OF MULTIOBJECTIVE METAHEURISTICS WHEN SOLVING PARAMETER SCALABLE PROBLEMS 627

TABLE XI

Non-Successful Statistical Tests of the Number of Evaluations for ZDT2

NSGA-II 8, 16, 32, 64, 128 – – – – – –

SPEA2 – – – – – 128, 256, 512

PESA-II 8, 16, 32, 64 – – – –

PAES – – – –

OMOPSO 32, 1024, 2048 16, 32, 64 –

GDE3 8, 16, 64, 128, 256, 512 –

MOCell –

SPEA2 PESA-II PAES OMOPSO GDE3 MOCell AbYSS

TABLE XII

Hit Rate for ZDT3

Algorithm/Variables 8 16 32 64 128 256 512 1024 2048
NSGA-II

√ √ √ √ √ √ √ √ √
SPEA2

√ √ √ √ √ √ √ √ √
PESA-II

√ √ √ √ √ √ √ √ √
PAES

√ √ √ √ √ √ √ √
0.88

OMOPSO
√ √ √ √ √ √ √ √ √

GDE3
√ √ √ √ √ √ √ √ √

MOCell
√ √ √ √ √ √ √ √ √

AbYSS
√ √ √ √ √ √ √ √ √

TABLE XIII

Non-Successful Statistical Tests of the Number of Evaluations for ZDT3

NSGA-II 2048 8, 16 – 128 – 128, 1024 8, 16, 32, 1024

SPEA2 32 8, 16, 32, 64, 1024 256 – 256, 512, 1024 64, 128, 256, 512, 1024

PESA-II 32, 64 1024 – – 8, 16

PAES 512 – – –

OMOPSO 8, 16, 32 8, 32, 64, 128 256

GDE3 32 –

MOCell 512, 1024, 2048
SPEA2 PESA-II PAES OMOPSO GDE3 MOCell AbYSS

TABLE XIV

Hit Rate for ZDT4

Algorithm/Variables 8 16 32 64 128 256 512 1024 2048
NSGA-II

√ √ √ √ √ √ √
0.0 0.0

SPEA2
√ √ √ √ √ √ √

0.0 0.0
PESA-II

√ √ √ √ √ √ √
0.0 0.0

PAES
√ √ √ √ √ √

0.85 0.0 0.0
OMOPSO 0.66 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GDE3

√
0.96 0.86 0.7 0.0 0.0 0.0 0.0 0.0

MOCell
√ √ √ √ √ √ √ √

0.0
AbYSS

√ √ √ √ √ √
0.40 0.16 0.22

solve all the instances, except for PAES, which fails in the
largest one.

Concerning the speed of the algorithms, in Table V and
Fig. 6 we can see which algorithms need a lower number of
function evaluations to reach the target results. We have drawn
a dotted line joining the points of GDE3, which shows clearly
that this optimizer is the best when solving this problem,
considering scalability. The dashed line joins the number of
evaluations required by NSGA-II, which is the second fastest
algorithm in ZDT3 from 128 to 1024 variables. We can see that
NSGA-II, MOCell, and SPEA2 are very close, and we observe
in Fig. 6 that they tend to similar values when the number of
decision variables of the problem is higher. OMOPSO appears

as the worst algorithm with 1024 and 2048 variables, so it
scales as well as other algorithms in this problem.

The pairwise tests in Table XIII do not alter the previous
discussion. All the differences between GDE3 and NSGA-II
have statistical confidence. Considering MOCell and NSGA-II,
the tests are non-successful in only two instances (128 and
1024). We note that SPEA2 does not provide statistical differ-
ences with respect to PAES and AbYSS in five instances.

4) ZDT4: This problem has a total of 100 differ-
ent Pareto optimal fronts of which only one is global.
Consequently, the main difficulty for the different algo-
rithms is to reach this global front. The number of eval-
uations required by the different algorithms is shown in

628 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 4, AUGUST 2010

TABLE XV

Non-Successful Statistical Tests of the Number of Evaluations for ZDT4

NSGA-II 16, 32, 64, 512 8, 16, 32, 64 128, 256, 512 – – – 8

SPEA2 8, 16, 32, 64, 128 – – 32 – 16

PESA-II 16 – – 16 16, 32

PAES – – – 64, 128

OMOPSO – – 512

GDE3 – 512

MOCell –
SPEA2 PESA-II PAES OMOPSO GDE3 MOCell AbYSS

Fig. 8. Number of evaluations when solving ZDT6.

Table VI and Fig. 7. The hit rate indicator is presented in
Table XIV. The problems in which there are no statistical
differences in each pair of algorithms are shown in Table XV.

The fact that the problem has many sub-optimal Pareto
fronts represents a great challenge for the different algorithms,
as can be concluded from seeing Table VI and Fig. 7. On the
one hand, none of them is able to solve the problem suc-
cessfully with 2048 variables. Only MOCell needs a number
of evaluations lower than the maximum established for 1024
variables. On the other hand, OMOPSO and GDE3, which are
among the most effective algorithms for the problems analyzed
until now, cannot solve successfully any of the instances
(except for the one with eight variables, in the case of GDE3).

Looking at the hit rate of the different algorithms
(Table XIV), the only solver able to reach sometimes the
Pareto optimal front in all the instances is AbYSS, the scatter
search algorithm. The rest of the algorithms have a hit rate
of 0 with 1024 and 2048 (with the exception of MOCell with
1024 variables).

Analyzing the speed of the algorithms, we see in
Table VI that MOCell needs less than half of the func-
tion evaluations than the next fastest solvers, PESA-II and
NSGA-II.

The tests included in Table XV show the instances of the
problem where the differences are non-significant. However,
they do not change the main conclusion about ZDT4, which
is that, given that MOCell needs more than eight million
function evaluations to achieve the stopping condition in the
1024 variables instance, it is clear that none of the analyzed
techniques scales well on this problem.

5) ZDT6: This problem presents a non-convex Pareto
front, in which the density of solutions across the Pareto-
optimal region is not uniform. Table VII and Fig. 8 show
the number of evaluations required for reaching a front with
the target HV value. Table XVI presents the hit rate of the
algorithms. In Table XVII, the problems in which there are
no statistical differences for each pair of algorithms appear.

As before, we start analyzing which algorithms are able to
achieve the desired results in the different instances of the
problem. Looking at Fig. 8 and Table VII we see that all the
optimizers, except for PAES, are able to solve the problem in
all cases. Anyway, if we have a look at the hit rate indicator
(Table XVI), we can observe that PAES achieves values near
100% in the instances ranging from 64 to 2048 variables.

We focus now on the speed of the algorithms. We can
clearly see in Table VII and Fig. 8 that the fastest algorithm is
OMOPSO, followed by GDE3. The lines joining the values of
these algorithms in Fig. 8 indicate that both of them scale well
and they would probably successfully solve larger instances.
In fact, this conclusion could be applied to all the algorithms
but PAES.

If we analyze the tests included in Table XVII, the most
remarkable fact is that the differences between OMOPSO
and GDE3 that are non-significant affect only the smallest
instances (8, 16, and 32 variables).

VI. Discussion of Results

In this section, we analyze the results globally, trying to
identify the strengths and weaknesses of the algorithms when
executing the full set of experiments. To facilitate this discus-
sion, we have made first a rank of the algorithms according
to their scalability and speed. Second, we analyze the poor
behavior of OMOSPO and GDE3 when solving problem
ZDT4 and indicate ways of improving these algorithms. After
that, we analyze the rest of the techniques. Finally, we compare
the results of this paper with our previous paper [11].

A. Scalability and Speed

The scalabity ranking is presented in Table XVIII. This
ranking considers first those algorithms solving the problems
with the highest number of decision variables. The ties are
broken considering the number of evaluations in the most
difficult instances. To make the discussion clearer, we have
marked in boldface those optimizers having a hit rate lower
than 1.0 in at least one experiment, which indicates that the
algorithm does not scale well.

DURILLO et al.: A STUDY OF MULTIOBJECTIVE METAHEURISTICS WHEN SOLVING PARAMETER SCALABLE PROBLEMS 629

TABLE XVI

Hit Rate for ZDT6

Algorithm/Variables 8 16 32 64 128 256 512 1024 2048
NSGA-II

√ √ √ √ √ √ √ √ √
SPEA2

√ √ √ √ √ √ √ √ √
PESA-II

√ √ √ √ √ √ √ √ √
PAES

√ √ √
0.99 0.99 0.98 0.98 0.99 0.94

OMOPSO
√ √ √ √ √ √ √ √ √

GDE3
√ √ √ √ √ √ √ √ √

MOCell
√ √ √ √ √ √ √ √ √

AbYSS
√ √ √ √ √ √ √ √ √

TABLE XVII

Non-Successful Statistical Tests of the Number of Evaluations for ZDT6

NSGA-II 1024, 2048 8, 16 – – – – –

SPEA2 32, 64 – – – – –

PESA-II – – – – –

PAES – – – –

OMOPSO 8, 16, 32 – –

GDE3 – –

MOCell 8, 16, 32
SPEA2 PESA-II PAES OMOPSO GDE3 MOCell AbYSS

According to this ranking, GDE3 is the most impressive
metaheuristic: it achieves three best and one second best ranks.
However, given the difficulties of this algorithm when solving
ZDT4, MOCell is the technique that appears as the most
reliable, in the sense that it is able to solve all the instances
considered in this paper but the largest one on ZDT4, and it
occupies the first rank on ZDT4. OMOPSO scales the best
in one problem (ZDT6), and it is the second best on ZDT2
(although recall that its results on ZDT2 and 2048 variables
and those obtained by GDE3 have no statistical confidence).
However, it is unable to solve ZDT4 and it tends to require
more evaluations than other algorithms when solving the larger
instances of ZDT1 and ZDT3. SPEA2, AbYSS, and NSGA-II
are in the middle of the ranking: they never obtain the best
result nor they are beyond the sixth position in the ranking.
PESA-II is in the lower positions mainly because it does
not scale well in ZDT2 and ZDT4. Finally, PAES is the last
algorithm in the ranking because of its low hit-rate in many
experiments.

The ordering in Table XIX relies on the algorithms requiring
globally lower numbers of evaluations to find the target Pareto
front, i.e., we sort them according to their speed. To make
this ranking, we consider all the instances, not only the largest
ones. Thus, for each problem we have sorted the evaluations of
the algorithms when solving each of the instances, and the sum
of the obtained positions determine the order of the techniques.

If we do not consider the ZDT4 problem, OMOPSO is
globally the fastest algorithm: it requires the lowest num-
ber of evaluations in problems ZDT1, ZDT2, ZDT6, and
it is the fourth one in the ranking of ZDT3. GDE3 is the
second algorithm in the ranking, because it is first one in
a problem, ZDT3, and the second one in ZDT1, ZDT2,
and ZDT6. The next algorithms are MOCell (first rank in
ZDT4, a second position, and two third ones), AbYSS,

SPEA2 (the first GA in the speed ranking), and NSGA-II.
Among the slowest metaheuristics we find again PESA-II and
PAES.

An interesting fact is that, if we observe the two tables, the
rankings are almost the same in problems ZDT2, ZDT4, and
ZDT6. This suggests that when an algorithm scales well with a
problem, it may require a low number of function evaluations
to solve it.

The ZDT benchmark is very well-known, but it is not fully
representative in the sense that there are MOPs having features
not covered by ZDT [15] (e.g., linear or degenerate geometry,
variable linkage, etc.). This paper is a first step in the study
of the behavior of multiobjective metaheuristics when solving
parameter scalable problems; an extension including other
problem families, such as DTLZ [9] and WFG [16], would
allow more general conclusions to be drawn. However, many
researchers may find useful insights from the results obtained
in this paper when facing the solution of MOPs having a
large number of parameters. For example, the two reference
algorithms in the field, NSGA-II and SPEA2, are expected to
work well, but MOCell can scale better and provide results
faster; and GDE3 and OMOPSO are techniques to consider
if we are looking for efficiency, although there is a risk
that they cannot solve the problem if this is a multifrontal
one.

B. OMOPSO and Multifrontal Problems

If we do not take into account problem ZDT4, one of the
most outstanding algorithms in our study is OMOPSO. In
this section, we analyze whether its inefficacy when dealing
with ZDT4 is particular of that problem or it happens with
multifrontal problems in general.

To explore this issue, we have defined two multimodal
problems using the methodology described in [7]. In this paper,

630 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 4, AUGUST 2010

TABLE XVIII

Ranking of the Algorithms: Scalability

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
1. GDE3 1. GDE 1. GDE3 1. MOCell 1. OMOPSO
2. MOCell 2. OMOPSO 2. AbYSS 2. PESA-II 2. GDE3
3. SPEA2 3. MOCell 3. MOCell 3. SPEA2 3. AbYSS
4. AbYSS 4. AbYSS 4. NSGA-II 4. NSGA-II 4. MOCell
5. OMOPSO 5. SPEA2 5. SPEA2 5. PAES 5. NSGA-II
6. NSGA-II 6. NSGA-II 6. PESA-II 6. AbYSS 6. SPEA2
7. PESA-II 7. PAES 7. OMOPSO 7. GDE3 7. PESA-II
8. PAES 8. PESA-II 8. PAES 8. OMOPSO 8. PAES

TABLE XIX

Ranking of the Algorithms: Speed

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

1. OMOPSO 1. OMOPSO 1. GDE3 1. MOCell 1. OMOPSO
1. GDE3 2. GDE3 2. MOCell 2. PESA-II 2. GDE3
3. MOCell 3. MOCell 3. NSGA-II 3. SPEA2 3. AbYSS
4. PAES 4. AbYSS 4. OMOPSO 4. NSGA-II 4. MOCell
5. SPEA2 5. SPEA2 5. AbYSS 5. AbYSS 5. NSGA-II
6. NSGA-II 6. NSGA-II 6. SPEA2 6. PAES 6. PESA-II
6. AbYSS 7. PESA-II 7. PESA-II 7. GDE3 7. SPEA2
8. PESA-II 8. PAES 8. PAES 8. OMOPSO 8. PAES

it is pointed out that given a function g(�x), a two-objective
problem can be defined as the minimization of

f1(x1, �x) = x1

f2(x1, �x) = g(�x)/x1.

This problem has a local or global Pareto-optimal solution
(x1, �x), where �x is the locally or globally minimum solution
of g(�x), respectively, and x1 can take any value.

This way, given a mono-objective function with local op-
timal solutions, we can construct a multifrontal bi-objective
MOP. We have selected two well-known problems hav-
ing local minimal solutions, Griewank and Ackley (see
Table XX). The resulting problems have been solved by the
eight metaheuristics we are dealing with. Our experiments
revealed that OMOPSO does not converge to the corre-
sponding Pareto fronts. To illustrate this fact, we include
in Figs. 9 and 10 the fronts obtained by OMOPSO and
NSGA-II.

In [11], we argued that the reason for this behavior could
be related to an imbalance between (low) diversification and
(high) intensification, given that OMOPSO appears to be a
fast algorithm. Here we go deeper into this issue, in order
to find the explanation and propose a solution. Let us recall
that OMOPSO is a PSO-based metaheuristic, in which the
potential solutions to the problem are called particles and the
population of solutions is called the swarm. The way in which
PSO updates particle xi at generation t is by applying the
following formula:

xi(t) = xi(t + 1) + vi(t) (2)

where the factor vi(t) is known as velocity and it is given by

vi(t) = w ∗ vi(t − 1) + C1 ∗ r1 ∗ (xibest − xi)
+ C2 ∗ r2 ∗ (xglobal − xi).

(3)

In this formula, xibest is the best solution stored by xi, xglobal

is the best particle that the entire swarm has viewed, w

Fig. 9. OMOPSO solving Griewank’s test problem.

is the inertia weight of the particle and controls the trade-
off between global and local experience, r1 and r2 are two
uniformly distributed random numbers in the range [0, 1],
and C1 and C2 are specific parameters which control the
effect of the personal and global best particles. If the resulting
position of a particle is out of the limits of its allowable
values, the approach taken in OMOPSO is to assign the
limit value to the particle and to change the direction of the
velocity.

We have monitored the velocity of the particle representing
the second decision variable in ZDT4 (this variable takes val-
ues in the interval [−5, +5], which provides a better illustration
of the following analysis than using the first variable, which
ranges in [−1, +1]). Fig. 11 depicts the velocity of OMOPSO
in the 250 iterations. The x-axis represents the number of
iterations. We can observe that the velocity values suffer a
kind of erratic behavior, alternating very high with very low

DURILLO et al.: A STUDY OF MULTIOBJECTIVE METAHEURISTICS WHEN SOLVING PARAMETER SCALABLE PROBLEMS 631

Fig. 10. OMOPSO solving Ackley’s test problem.

Fig. 11. OMOPSO: velocity of one particle in the swarm.

values, in some points of the execution. Let us note that the
limits of the second variable in ZDT4 are [−5, +5], and the
velocity takes values higher than ±20. Thus, as a consequence,
this particle is moving to its extreme values continuously, so
it is not contributing to guide the search.

To determine whether this is the reason making OMOPSO
unable to solve multifrontal MOPs, we have modified it
including a velocity constraint mechanism, similar to the one
proposed in [4]. In addition, the accumulated velocity of each
variable j (in each particle) is also bounded by means of the
following equation:

vi,j(t) =

⎧⎪⎪⎨
⎪⎪⎩

deltaj, if vi,j(t) > deltaj

−deltaj, if vi,j(t) ≤ −deltaj

vi,j(t), otherwise

(4)

where

deltaj =
(upper limitj − lower limitj)

2
. (5)

This way, we can ensure an effective new position calcu-
lation, and hence avoid erratic movements. We have called
the resulting algorithm speed-constrained multiobjective PSO
(SMPSO).

In Fig. 12, we show again the velocity of the particle
representing the second parameter of ZDT4. We can observe

Fig. 12. SMPSO: velocity of one particle in the swarm.

TABLE XX

Griewank and Ackley Mono-Objective Formulation

Problem Functions Variables

Griewank g(x) = 1 +
∑p

1

x2
i

400 −
∏p

1 cos xi√
i

10

Ackley g(x) = 20 + e + −20exp(−0.2
√

1
p

∑p

1 x2
i) 3

that the erratic movements of the velocity have disappeared,
so the particle has taken new values and thus it has explored
different regions of the search space.

To evaluate the effect of the changes in SMPSO, we have
used it to solve all the problems, following the same method-
ology. The results are included in Table XXI. To illustrate its
search capabilities we have included in Fig. 13 five pictures
showing the values of SMPSO and OMOPSO, except for
ZDT4, where the evaluations of MOCell are included instead
of those of OMOPSO. Let us comment on this last case
first. We can observe that the results of SMPSO on ZDT4
are surprisingly good: SMPSO is not only capable of solving
ZDT4, but it scales up to 2048 variables, requiring a very low
number of evaluations (which are several orders of magnitude
lower than those required by MOCell). If we consider the
other problems, we see that in general SMPSO is faster than
OMOPSO up to 64 variables, but OMOPSO scales better.
So, with SMPSO we have a PSO metaheuristic which is
more robust than OMOPSO (in the sense that it can solve
all the problems considered in this paper) and faster when the
problems have few decision variables, but at the price of not
being able to scale as well as OMOPSO.

We would like to remark that we have not tried to find
the best possible configuration for SMPSO, i.e., SMPSO has
the same parameter settings as OMOPSO, except for those
affecting the velocity constraint. Thus, there is clearly room
for improvement here.

C. Improving GDE3

GDE3 shows similarities to OMOPSO in the sense that it
is among the top techniques in four problems, but it fails
in ZDT4. It is clear that the factors leading to the poor
performance of GDE3 in ZDT4 are different to those affecting
OMOPSO, especially because the search capabilities of a
differential evolution metaheuristic depend on the values of
the parameters CR and F . A deeper study that attempts to
find the best values for these parameters is beyond the scope

632 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 4, AUGUST 2010

Fig. 13. Results of SMPSO on the ZDT problem family.

TABLE XXI

SMPSO: Evaluations

Problem 8 16 32 64 128 256 512 1024 2048
variables variables variables variables variables variables variables variables variables

ZDT1 1.40e+3 3.5e+2 2.50e+3 7.0e+2 5.20e+3 1.3e+3 1.33e+4 3.0e+3 3.37e+4 6.2e+3 9.17e+4 1.7e+4 2.31e+5 2.7e+4 6.44e+5 7.4e+4 1.81e+6 9.4e+4

ZDT2 1.40e+3 3.0e+2 2.30e+3 6.0e+2 4.60e+3 1.5e+3 1.16e+4 3.8e+3 2.80e+4 6.0e+3 7.26e+4 1.4e+4 1.77e+5 2.8e+4 4.55e+5 5.9e+4 1.20e+6 2.2e+5

ZDT3 1.90e+3 6.0e+2 3.60e+3 9.0e+2 8.00e+3 3.0e+3 2.18e+4 6.2e+3 6.30e+4 1.2e+4 1.72e+5 2.5e+4 4.85e+5 6.3e+4 1.43e+6 1.2e+5 4.38e+6 1.7e+5

ZDT4 3.90e+3 8.0e+2 4.65e+3 1.0e+3 5.25e+3 1.4e+3 5.90e+3 1.2e+3 6.75e+3 1.4e+3 6.95e+3 1.4e+3 7.40e+3 1.8e+3 8.15e+3 2.0e+3 9.10e+3 2.6e+3

ZDT6 2.45e+3 8.5e+2 3.40e+3 1.4e+3 7.15e+3 2.7e+3 1.60e+4 4.4e+3 3.65e+4 8.0e+3 8.67e+4 1.6e+4 1.94e+5 3.1e+4 4.45e+5 5.6e+4 1.03e+6 1.0e+5

of this paper; instead, we take the approach of keeping CR

and F unchanged and applying polynomial mutation to the
new generated solutions, as is suggested in [22]. The obtained
results are included in Table XXII.

We proceed now as for OMOPSO, showing a figure con-
taining a comparison between GDE3 and its variant using
mutation, except for ZDT4, where MOCell is included. The
results indicate that GDE3 with mutation is able to solve
ZDT4 instances of up to 128 variables, while in the rest
of the problems it needs more evaluations than the original
GDE3, although it can be observed in the figures that the two
algorithms have a very similar behavior.

As in the case of PSO and OMOPSO/SMPSO, differential
evolution appears to be a technique worth considering to solve
problems like those considered in this paper.

D. About the Other Algorithms
In the two previous sections we have analyzed OMOPSO

and GDE3, aiming to improve their search capabilities. We
discuss here the rest of the techniques adopted in our compar-
ative study. Although they are different algorithms (NSGA-II,
SPEA2, and PESA-II are GAs, MOCell is a cellular GA,
PAES is an evolution strategy, and AbYSS is a scatter search
approach), all of them share the use of polynomial mutation
and, except for PAES, the SBX crossover operator. This means
that the main way to modify the search capabilities of these
metaheuristics is by modifying the distribution indices that
govern these operators.

We have made a number of preliminary experiments with
MOCell considering different values, ranging from 5.0 to
200.0, in both indexes, and we have not observed noticeable

DURILLO et al.: A STUDY OF MULTIOBJECTIVE METAHEURISTICS WHEN SOLVING PARAMETER SCALABLE PROBLEMS 633

Fig. 14. Results of GDE3 with polynomial mutation on the ZDT problem family.

TABLE XXII

GDE3 with Polynomial Mutation: Evaluations

Problem 8 16 32 64 128 256 512 1024 2048
variables variables variables variables variables variables variables variables variables

ZDT1 3.30e+3 3.0e+2 6.50e+3 4.0e+2 1.18e+4 5.0e+2 2.12e+4 8.0e+2 3.80e+4 9.0e+2 6.98e+4 1.4e+3 1.33e+5 2.4e+3 2.74e+5 3.5e+3 6.45e+5 8.4e+3

ZDT2 4.10e+3 3.0e+2 8.00e+3 5.0e+2 1.54e+4 7.5e+2 2.88e+4 9.0e+2 5.41e+4 1.6e+3 1.02e+5 1.8e+3 1.98e+5 3.4e+3 4.14e+5 4.4e+3 9.91e+5 1.4e+4

ZDT3 2.60e+3 1.0e+3 5.40e+3 2.4e+3 1.01e+4 3.3e+3 2.20e+4 4.0e+3 5.06e+4 8.1e+3 1.26e+5 2.3e+4 3.53e+5 3.9e+4 1.03e+6 8.3e+4 3.17e+6 1.9e+5

ZDT4 2.11e+4 1.4e+3 5.98e+4 4.8e+3 1.88e+5 1.4e+4 7.78e+5 6.9e+4 3.41e+6 4.6e+5 – – – –
ZDT6 4.50e+3 4.0e+2 9.10e+3 7.5e+2 1.90e+4 2.0e+3 5.02e+4 5.2e+3 2.24e+5 8.0e+3 4.67e+5 5.0e+3 9.39e+5 7.4e+3 2.02e+6 1.4e+4 4.97e+6 3.3e+4

changes in the behavior of the technique. This, however, does
not mean that there is no room for improvement; the use of
different mutation and crossover operators may change the
search capabilities of a GA.

E. Comparison with Previous Paper

In this section, we compare the results of this paper with
those obtained in some of our previous paper [11]. In that
paper, the main conclusions were that, considering scalabil-
ity, PAES was the most competitive algorithm followed by
OMOPSO, while the latter appeared as the fastest algorithm.
In this paper, however, PAES appears in the last positions in
the scalabily ranking. This is explained by the fact that we
have not considered here the impact of not having a 100%
hit rate in the tables containing the computed evaluations,
which undoubtedly has penalized PAES in practically all the
problems considered.

If we consider OMOPSO, its results in [11] remain ba-
sically the same. The inclusion in this paper of GDE3 and
AbYSS has affected OMOPSO only in the scalabity ranking,
and OMOPSO is still among the fastest algorithms assessed
(excluding the ZDT4 test problem).

Finally, we would like to mention the effort that has been
required to carry out this paper. If we consider that we
have studied eight algorithms to solve nine instances of five
problems, the number of experiments is 360. As we have
executed one hundred independent runs per experiment, this
means a total of 36 000 runs. Furthermore, the experiments
with SMPSO and GDE3 with mutation have required 9000
additional runs. Taking into account also the pilot tests with
the other algorithms to study the influence of the distribution
indices in the mutation and crossover operators, the total
number of runs have been in the order of 50 000. The fact
that we have used a stronger termination condition (98%

634 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 4, AUGUST 2010

instead of 95% of the hypervolume of the Pareto front) and
that the maximum number of evaluations have been raised
from 500 000 in [11] to 10 000 000 in this paper, has had
as a consequence the fact that the computational time of the
algorithms unable to solve the problems with 1024 and 2048
variables was higher than one hour.

To execute this large number of experiments, we have
used the computers of the laboratories of the Department of
Computer Science of the University of Málaga, in Spain. Most
of them are equipped with modern dual core processors so,
taking into account that there are more than 180 computers,
that means that up to 360 cores have been available. To run all
the programs, we have used Condor [31], a middleware that
acts as a distributed scheduler, which has proven to be an ideal
tool to cope with the large amount of tasks we have dealt with.

VII. Conclusion and Future Work

We have evaluated eight state-of-the-art metaheuristics over
a set of parameter scalable problems in order to study the
behavior of the algorithms concerning their capabilities to
solve problems having a large number of decision variables.
The benchmark has been composed of five problems from
the ZDT family, using instance sizes ranging from 8 to 2048
variables. We have also studied the speed of the techniques
when solving the problems. The stopping condition has been
to reach a front with a hypervolume higher than the 98% of the
hypervolume of the true Pareto front, or to compute 10 000 000
function evaluations.

Our study has revealed that differential evolution and par-
ticle swarm optimization are the most promising approaches
to deal with the scalable problems used in this paper. GDE3
and OMOPSO do not only scale well, but they are among
the fastest algorithms. Furthermore, we have shown that their
search capabilities can be improved to solve ZDT4, the prob-
lem which has appeared as the most difficult one to solve.

Two modern optimizers, MOCell and AbYSS, have shown
a high degree of regularity in the tests. With the exception
of MOCell in ZDT4 (where it is the overall best technique),
they are not in the first position in the scalabily and the speed
rankings, but also they are always around the third and fifth
positions. Both metaheuristics are in the group of algorithms
having solved a higher number of instances. In this group we
find NSGA-II and SPEA2, which are, in general, very close in
the rankings, but they usually appear after MOCell. PESA-II
has difficulties in ZDT2 and it normally appears among the
algorithms requiring higher numbers of function evaluations
to reach a front with the target HV value.

Finally, PAES, the simplest of the optimizers in the paper,
is the algorithm scaling the worst, due to the low hit rates it
obtains in many instances.

We have presented a paper about the behavior of eight
multiobjective metaheuristics concerning their scalability and
speed when solving a scalable benchmark. The next step is an
extension including more scalable problems (e.g., DTLZ and
WFG) to assess whether or not the features of these problems
confirm the results obtained in this paper. Our analysis of
OMOPSO and GDE3 has also shown that an open research
line is to study variations and different parameter settings of

the existing multiobjective metaheuristics in order to improve
their scalability, and that is another path for future research
that we aim to explore.

References

[1] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,” ACM Comput. Surveys, vol. 35,
no. 3, pp. 268–308, 2003.

[2] D. Brockhoff and E. Zitzler, “Are all objectives necessary? On di-
mensionality reduction in evolutionary multiobjective optimization,”
in Proc. Ninth Int. Conf. Parallel Problem Solving Nature (PPSN),
Lecture Notes in Computer Science 4193. Reykjavik, Iceland, Sep. 2006,
pp. 533–542.

[3] E. K. Burke and G. Kendall, Search Methodologies: Introductory Tu-
torials in Optimization and Decision Support Techniques. New York:
Springer, 2005.

[4] M. Clerc and J. Kennedy, “The particle swarm: Explosion, stability, and
convergence in a multidimensional complex space,” IEEE Trans. Evol.
Comput., vol. 6, no. 1, pp. 58–73, 2002.

[5] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen,
Evolutionary Algorithms for Solving Multiobjective Problems, 2nd ed.
New York: Springer, Sep. 2007.

[6] D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates, “PESA-II:
Region-based selection in evolutionary multiobjective optimization,” in
Proc. Genetic Evol. Comput. Conf. (GECCO), San Mateo, CA: Morgan
Kaufmann, 2001, pp. 283–290.

[7] K. Deb, Multiobjective Optimization Using Evolutionary Algorithms.
Chichester, U.K.: Wiley, 2001.

[8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[9] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test problems
for evolutionary multiobjective optimization,” in Evolutionary Mul-
tiobjective Optimization: Theoretical Advances and Applications, A.
Abraham, L. Jain, and R. Goldberg, Eds. New York: Springer, 2005,
pp. 105–145.

[10] F. di Pierro, S. Khu, and D. A. Savić, “An investigation on preference
order ranking scheme for multiobjective evolutionary optimization,”
IEEE Trans. Evol. Comput., vol. 11, no. 1, pp. 17–45, Feb. 2007.

[11] J. J. Durillo, A. J. Nebro, C. A. Coello Coello, F. Luna, and E. Alba, “A
comparative study of the effect of parameter scalability in multiobjective
metaheuristics,” in Proc. Congr. Evol. Comput. (CEC), Jun. 2008, pp.
1893–1900.

[12] J. J. Durillo, A. J. Nebro, F. Luna, B. Dorronsoro, and E. Alba,
“Jmetal: A Java framework for developing multiobjective optimization
metaheuristics,” Dept. Lenguajes Ciencias Computación, Univ. Málaga,
ETSI Informática, Málaga, Spain, Tech. Rep. ITI-2006-10, 2006.

[13] F. W. Glover and G. A. Kochenberger, Handbook of Metaheuristics.
Norvell, MA: Kluwer, 2003.

[14] S. Ho, L. Shu, and J. Chen, “Intelligent evolutionary algorithms for large
parameter optimization problems,” IEEE Trans. Evol. Comput., vol. 8,
no. 6, pp. 522–541, Dec. 2004.

[15] S. Huband, L. Barone, R. L. While, and P. Hingston, “A scalable
multiobjective test problem toolkit,” in Proc. Third Int. Conf. Evol.
Multicriterion Optimization (EMO), Lecture Notes in Computer Science
3410. Berlin, Germany: Springer, 2005, pp. 280–295.

[16] S. Huband, P. Hingston, L. Barone, and L. While, “A review of
multiobjective test problems and a scalable test problem toolkit,” IEEE
Trans. Evol. Comput., vol. 10, no. 5, pp. 477–506, Oct. 2006.

[17] V. Khare, X. Yao, and K. Deb, “Performance scaling of multiobjec-
tive evolutionary algorithms,” in Proc. Second Int. Conf. Evol. Multi-
Criterion Optimization (EMO), Lecture Notes in Computer Science
2632. Faro, Portugal, Apr. 2003, pp. 376–390.

[18] J. Knowles and D. Corne, “The pareto archived evolution strategy: A
new baseline algorithm for multiobjective optimization,” in Proc. Congr.
Evol. Comput., 1999, pp. 98–105.

[19] J. D. Knowles and D. W. Corne, “Approximating the nondominated
front using the pareto archived evolution strategy,” Evol. Comput., vol. 8,
no. 2, pp. 149–172, 2000.

[20] S. Kukkonen and J. Lampinen, “GDE3: The third evolution step of
generalized differential evolution,” in Proc. IEEE Congr. Evol. Comput.
(CEC), 2005, pp. 443–450.

[21] J. Lampinen, “DE’s selection rule for multiobjective optimization,” Dept.
Inf. Technol., Lappeenranta Univ. Technol., Lappeenranta, Finland,
Tech. Rep., 2001.

DURILLO et al.: A STUDY OF MULTIOBJECTIVE METAHEURISTICS WHEN SOLVING PARAMETER SCALABLE PROBLEMS 635

[22] H. Li and Q. Zhang, “Multiobjective optimization problems with compli-
cated pareto set, MOEA/D and NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 2, no. 12, pp. 284–302, Apr. 2009.

[23] A. J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J. J. Durillo, and A. Be-
ham, “AbYSS: Adapting scatter search to multiobjective optimization,”
IEEE Trans. Evol. Comput., vol. 12, no. 4, pp. 439–457, Aug. 2008.

[24] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, “A cellu-
lar genetic algorithm for multiobjective optimization,” in Proc. Workshop
Nature Inspired Cooperative Strategies Optimization (NICSO), Granada,
Spain, 2006, pp. 25–36.

[25] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, “Design
issues in a multiobjective cellular genetic algorithm,” in Proc. Fourth
Int. Conf. Evol. Multi-Criterion Optimization (EMO), Lecture Notes in
Computer Science 4403. 2007, pp. 126–140.

[26] K. Praditwong and X. Yao, “How well do multiobjective evolutionary
algorithms scale to large problems,” in Proc. IEEE Congr. Evol. Comput.
(CEC), Sep. 2007, pp. 3959–3966.

[27] R. C. Purshouse and P. J. Fleming, “On the evolutionary optimization
of many conflicting objectives,” IEEE Trans. Evol. Algorithms, vol. 11,
no. 6, pp. 770–784, Dec. 2007.

[28] M. Reyes and C. A. Coello Coello, “Improving PSO-based multiobjec-
tive optimization using crowding, mutation and ε-dominance,” in Proc.
Third Int. Conf. Evol. Multicriterion Optimization (EMO), Lecture Notes
in Computer Science 3410. Berlin, Germany: Springer, 2005, pp. 509–
519.

[29] D. K. Saxena and K. Deb, “Non-linear dimensionality reduction pro-
cedures for certain large-dimensional multiobjective optimization prob-
lems: Employing correntropy and a novel maximum variance unfolding,”
in Proc. Fourth Int. Conf. Evol. Multicriterion Optimization (EMO),
Lecture Notes in Computer Science 4403. Matsushima, Japan, Mar.
2007, pp. 772–787.

[30] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, 4th ed. New York: Chapman & Hall/CRC Press, 2007.

[31] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: The condor experience,” Concurrency Comput. Practice Expe-
rience, vol. 17, nos. 2–4, pp. 323–356, Feb. 2005.

[32] D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary
algorithm research: A history and analysis,” Dept. Elec. Comput. Eng.,
Graduate School Eng., Air Force Inst. Technol., Wright-Patterson Afb,
OH, Tech. Rep. TR-98-03, 1998.

[33] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 8, no. 11,
pp. 712–731, 2008.

[34] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective
evolutionary algorithms: Empirical results,” Evol. Comput., vol. 8,
no. 2, pp. 173–195, 2000.

[35] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength pareto evolutionary algorithm,” in Proc. Evol. Methods Design
Optimization Control Applicat. Ind. Problems (EUROGEN), Athens,
Greece, 2002, pp. 95–100.

[36] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A
comparative case study and the strength pareto approach,” IEEE Trans.
Evol. Comput., vol. 3, no. 4, pp. 257–271, Nov. 1999.

Juan J. Durillo (S’08) received the Engineering
degree in computer science from the University of
Málaga, Málaga, Spain, in 2006. He is currently
pursuing the Ph.D. degree from the Departamento de
Lenguajes y Ciencias de la Computación, University
of Málaga.

His research interests include multiobjective opti-
mization and the design of new models for parallel
multiobjective metaheuristics.

Antonio J. Nebro received the M.S. and Ph.D.
degrees in computer science from the University of
Málaga, Málaga, Spain, in 1992 and 1999, respec-
tively.

He is currently an Associate Professor of Com-
puter Science with the Departamento de Lenguajes
y Ciencias de la Computación, University of Málaga.
Since 1999, he has published more than ten scien-
tific papers in international indexed journals, more
than 20 papers in international conferences, and co-
authored 12 book chapters. His current research

interests include the design and implementation of parallel evolutionary
algorithms, multiobjective optimization with metaheuristics, grid computing
applied to metaheuristic techniques, and the application of these techniques
to real-world problems.

Carlos A. Coello Coello (SM’04) received the B.S.
degree in civil engineering from the Universidad
Autónoma de Chiapas, Chiapas, Mexico, in 1991,
and the M.S. and Ph.D. degrees in computer science
from Tulane University, New Orleans, LA, in 1993
and 1996, respectively.

He is currently a Professor with the Department
of Computer Science, Center of Research and Ad-
vanced Studies, Mexico City, Mexico. He has au-
thored and coauthored over 200 technical papers and
several book chapters, which report over 3600 cita-

tions (half of them in the Institute for Scientific Information Web of Science).
He coauthored the book Evolutionary Algorithms for Solving Multiobjective
Problems (2nd ed., New York: Springer, 2007).

Dr. Coello is currently an Associate Editor of the IEEE Transactions on

Evolutionary Computation and serves in the Editorial Board of 11 other
international journals. He also chairs the IEEE Computationally Intelligent
Society Task Force on Multiobjective Evolutionary Algorithms. He received
the 2007 National Research Award from the Mexican Academy of Sciences in
the area of Exact Sciences. He is a member of the Association for Computing
Machinery, Sigma Xi, and the Mexican Academy of Sciences.

José García-Nieto received the Engineering degree
in computer science and the Master degree in ar-
tificial intelligence from the University of Málaga,
Málaga, Spain, in 2006 and 2008, respectively.
He is currently working toward the Ph.D. degree
in optimization algorithms at the Departamento de
Lenguajes y Ciencias de la Computación, University
of Málaga.

His research interests include swarm intelligence
and general metaheuristics, and their application
to complex real-world problems in the domains

of telecommunications, bioinformatics, real-parameter, and multiobjective
optimization.

Francisco Luna received the Ph.D. degree in
computer science from the University of Málaga,
Málaga, Spain, in 2008.

He is currently an Assistant Researcher of com-
puter science with the Departamento de Lenguajes
y Ciencias de la Computación, University of Málaga.
He has published more than ten scientific papers
in international indexed journals and more than
20 papers in international conferences. His current
research interests include the design and implemen-
tation of parallel and multiobjective metaheuristics,

and their application to solve complex problems in the domain of telecom-
munications and combinatorial optimization.

Enrique Alba received the Ph.D. degree in com-
puter science on parallel and distributed genetic
algorithms, in 1999.

He is currently a Full Professor of Computer
Science with Departamento de Lenguajes y Ciencias
de la Computación, University of Málaga, Málaga,
Spain. Since 1999, he has published more than 30
scientific papers in international indexed journals
and more than 150 papers in international con-
ferences. His research interests include the design
and application of evolutionary algorithms and other

metaheuristic procedures to real problems, including telecommunications,
combinatorial optimization, and bioinformatics. The main focus of all his
work is on parallelism.

Dr. Alba has won several awards for his research quality.

