Type of submission: Full paper.

Title: MITO: an Educational System for Learning Spanish Orthography

Authors: Eva MILLÁN, Cristina CARMONA, Roberto SÁNCHEZ and José Luis PÉREZ-DE-LA-CRUZ

Contact: Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga
{eva,cristina,perez}@lcc.uma.es

Abstract. An educational game is a recreational activity designed to teach people, typically children, about a certain subject or help them learn a skill as they play. These games are usually successful in engagement, but sometimes fail in triggering learning. When designing an educational game for children, a way to avoid this could be to take into account the cognitive stage of the final user, as defined in Piaget’s cognitive development theory. This paper briefly explains the fundamentals of this theory and discusses its implications in the design and development of an educational game to learn Spanish orthography, focused on children on the concrete operational stage.

Keywords: Adaptive learning environments, educational games.
MITO: an Educational System for Learning Spanish Orthography

Eva MILLÁN, Cristina CARMONA, Roberto SÁNCHEZ and José Luis PÉREZ-DE-LA-CRUZ
Departamento de Lenguajes y Ciencias de la Computación,
Universidad de Málaga
{eva,cristina, perez}@lcc.uma.es

Abstract. An educational game is a recreational activity designed to teach people, typically children, about a certain subject or help them learn a skill as they play. These games are usually successful in engagement, but sometimes fail in triggering learning. When designing an educational game for children, a way to avoid this could be to take into account the cognitive stage of the final user, as defined in Piaget’s cognitive development theory. This paper briefly explains the fundamentals of this theory and discusses its implications in the design and development of an educational game to learn Spanish orthography, focused on children on the concrete operational stage.

1 Introduction

Learner motivation is one of the main objectives of any pedagogical activity. Electronic educational games are learning and recreational environments that try to increase the learner’s motivation by embedding pedagogical activities in highly enjoyable interactions. In [1], a former review of literature on the effectiveness of games versus traditional classroom instruction is made. By analysing 68 studies from 1963-1991 in social science, math, language arts, logic, physic and biology, it was determined that games were more effective in the domains of language arts and mathematics. The reason is that, in these fields, greater specificity of content and more effective use of computers created a clear advantage for the exercises over traditional teaching methods. Furthermore, greater retention was shown in games, and students reported greater interest in game activities than in more conventional classroom instruction. However, there is little empirical evidence that electronic educational games can promote learning unless the interaction is led by teachers and integrated with other instructional activities [2]. A possible reason for this limitation is that learning how to play does not imply learning the domain [3].

Another important point that must be taken into account for learner motivation is that the educational game should adapt the proposed activities to the learner’s cognitive stage. Probably, one of the most accurate and commonly used definitions of children cognitive stages is the defined by Piaget’s theory of cognitive development [4], [5]. The cognitive abilities that Piaget studied are important when teaching young students, as they help determine how much and in what way students will understand the topic being taught.

Next section explains briefly the theory of cognitive development and the kind of games appropriate for children in each stage, and some considerations about designing and developing good educational games. Then, the electronic educational game MITO (which
stands for Multimedia Intelligent Tutor of Orthography) is presented. MITO\(^1\) is a stand-alone application focused to help children between 8 and 12 years old learn Spanish orthography. Finally, the paper concludes by a short revision of related work and presenting some conclusions and future lines of research.

2 Psychological considerations for the design and development of educational games

This section is structured as follows: first a short description of Piagetian cognitive stages is presented. Then, the more appropriate games for each stage are discussed, and finally some considerations about the relevant features of a “good” educational game are made. Piaget theorised that intelligence is built on in a series of stages. These stages always appear in the same order and can usually be determined by a child’s age. Piaget also found there was sometimes deviations from the norm as well as possible acceleration or delay in age and abilities. This lead him to believe there was more than biological maturation creating the different developmental stages [5]. These four stages are:

- **Sensorimotor stage** (0-2 years): The child’s cognitive system is limited to the motor reflexes. Through physical interactions and experiences, children start to develop new intellectual abilities by building on such reflexes, realizing that they are in control of their movements, learning what the appropriate actions are, and working on the ability to communicate with other people. The characteristic limitation of this stage is that children can only think/learn by doing.

- **Preoperational stage** (2-7 years): During this stage, children start to use mental imagery and language to represent objects. They still learn from concrete evidence and show egocentrism, which makes them unaware of another’s person perspective. Typical limitations of this period are: a) lack of the concept of conservation, which makes the child to base his/her decisions on perceptions b) tendency to center in one dimension of the event, ignoring another relevant aspects.

- **Concrete Operational stage** (7-11 years): In this stage, children are capable of taking another person’s point of view and incorporating more than one perspective simultaneously. At this stage the child begins to think logically with concrete knowledge. They understand conservation and their way of thinking is reversible. Their thought pattern is now logical and systematic, making it easier for them to find answers to simple problems (classification, combinations, etc.). Main limitations are the lack of abstraction capabilities and that usually thinking is limited to two characteristics at the same time.

- **Formal Operational stage** (11-15 years): Students in this stage are capable of thinking logically, abstractly and theoretically; to consider many possibilities for a given condition; and to use planning to think ahead. They use symbols that are related to the abstract concepts to complete problems. Children can learn by themselves, from reading and trying out new ideas as well as from helping friends and adults.

Within this formal structure of development, Piaget saw a process of assimilation and of accommodation. Assimilation occurs when new information is introduced and the person begins to integrate the new information into existing schemas. Accommodation occurs when, in order to integrate the new information, existing schemas must be modified. He also found that, although all people have the biological capacity to learn all things, learning does not happen automatically. People need to carry out the correct exercises and have the right experiences to reach their potential for learning. Piaget stressed that in situations where assimilation outweighed accommodation usually result in imaginary play, while if

\(^1\) MITO is a tool designed with educational and non-commercial purposes. Installation files and instructions are accesible at http://www.lcc.uma.es/~eva/mito.
accommodation outweighs assimilation learning occurs by imitation. So only when accommodation and assimilation are in equilibrium there is proper intelligence development and not just play.

Piaget found that, though all children went through the stages of learning in the same order; the age that an individual progressed to the next stage could be quickened or stunted depending on how stimulating the learning environment is. This consideration should be taken into account when designing educational games for children.

In [6] we can find the relevant characteristics and more appropriate games for each stage. Such information is summarized in columns 2 and 3 of Table 1, while in column 4 we show our conclusions about the implications in the design of good educational games for each period.

<table>
<thead>
<tr>
<th>STAGE</th>
<th>RELEVANT CHARACTERISTICS</th>
<th>APPROPRIATE GAMES</th>
<th>IMPLICATIONS FOR COMPUTER EDUC. GAMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENSORIMOTOR</td>
<td>Children learn acting upon an object, they engage in repetitive, motor play used to explore what objects are like and what can be done with them</td>
<td>Musical items, activity boxes, balls, containers, big blocks, grasping toys, rattles, balls, dolls.</td>
<td>The design of computer games for this period is therefore difficult as children only learn by doing and need physical objects.</td>
</tr>
<tr>
<td>PREOPERATIONAL</td>
<td>These children no longer need to physically manipulate and act on an object to learn. The child has acquired mental and representational abilities and improved in language. However, egocentrism limits their ability of reasoning logically</td>
<td>Toys to practise fine motor skills (paints, dough, colours, blocks), Toys for sorting, counting, classifying, ordering and matching Toys that allow socio-dramatic or representational play. Figurines, characters, dolls, cars, puppets</td>
<td>Appropriate exercises to be included in a computer game are drawing, painting, construction, sorting, counting, classifying, ordering, matching; story telling, identifying objects (by shape, colour, size, etc.) or making up stories, imagining what a shade or a stain might be, etc.</td>
</tr>
<tr>
<td>CONCRETE OPERATIONS</td>
<td>Children in this stage to represent things mentally and to manipulate such representations. They are able to tackle with different points of view, however they still lack abstraction capabilities.</td>
<td>Games with rules, figurines, characters, learning and informative toys, constructions, arts and crafts, remote control items, video and computer games</td>
<td>Almost any game (apart from those that need abstraction) can be included in an educational game and help in triggering significant learning.</td>
</tr>
</tbody>
</table>

Table 1. Piagetian cognitive stages, games and computer educational games

Looking for a definition of the quality of an educational game, we have made a literature review looking for relevant features that good games share. Next we present a list with useful quotations found in this literature review (together with some comments). From this quotations, a list of keywords that describe desirable features of a good educational game has been extracted. Such keywords are presented in brackets in the text, and will serve as a basis for the design of our educational game.

- “Like all instructional materials, educational games need to be developmentally appropriate. A specific game should be appealing and accessible to the target level of development. The game should challenge the learner to move up from his current Piagetian stage. A very young child may be moving from sensorimotor to preoperational, so the game should have simple controls and challenge the player to interpret symbols.
An older child may approach the formal operational stage, so the game should hide some cause-effect relationships and challenge the player to develop abstract models for these relationships” [7]. (CHALLENGING, ACCESSIBILITY, ADAPTATION).

- “Students must overcome many barriers to engagement, including fear of failure, fear of embarrassment, and aversion to losing control” [8]. (PRIVACY).

- “Game engages players through interactivity. Players take ownership of their choices, because those choices influence the outcome…. Success in a game can usually be clearly traced to effort and ability. This causality can be more immediate and clearer than conventional feedback in schools” [8]. (INTERACTIVITY, OUTCOMES, REINFORCEMENT, IMMEDIACY).

- “Good games are often distinguished by great freedom” [8]. To this respect, we would like to remark that such freedom must be supported with techniques to avoid confusion and disorientation. (NAVIGATIONAL FREEDOM, ORIENTATION).

- “A model of reinforcement and conditioning predicts that players will repeat behaviours that are rewarded and abandon behaviours that are ignored or punished” [8]. (REINFORCEMENT).

- “A good game...is one that children want to play again and again. There are several characteristics that good games share: the goal and rules are clear (SIMPLICITY, ORIENTATION); it's easy for players to keep track of their progress as they play (OUTCOMES); the game can be played with a variety of strategies; the game offers variety (for instance, because players can make different choices, or the game contains a random element such as a die) (VARIETY); and the game is so motivating that children are willing to persevere when facing challenges and to work to improve their strategies so they can become better players (MOTIVATION). Although many educational computer games available today offer attention-getting graphics, sound, and other special effects, these can become tiresome if the game itself is not well-structured and appropriately challenging” [9] (WELL-STRUCTURED, CHALLENGING). This paragraph provided with a good set of keywords (inserted in the quotation), but in our opinion a good educational game must not only fulfil the requirement “children want to play again and again”, but also trigger significant learning (LEARNING EFFECTIVENESS).

- Finally we would like to add a feature to this list: in the case that a child reaches an impasse, a good game should provide immediate assistance (by means of hints/feedback) to avoid frustration (SUPPORT).

To sum up, the list (in alphabetical order) of relevant features (keywords) of a good educational game is: ACCESSIBILITY, ADAPTATION, CHALLENGING, IMMEDIACY, INTERACTIVITY, LEARNING EFFECTIVENESS, MOTIVATION, NAVIGATIONAL FREEDOM, ORIENTATION, PRIVACY, OUTCOMES, REINFORCEMENT, SIMPLICITY, SUPPORT, VARIETY, WELL-STRUCTURED.

3 An example: the design and development of MITO

With these ideas in mind, in our group we have developed an educational game for Spanish orthography that has been developed for children in the concrete operational stage. According to the American Heritage dictionary, the definition of the word orthography is:

- The art or study of correct spelling according to established usage.

- The aspect of language study concerned with letters and their sequences in words.

- A method of representing a language or the sounds of language by written symbols; spelling.
But in the case of Spanish, the word “orthography” has a different meaning. The definition of the Real Academia de la Lengua Española dictionary could be translated as follows:

- Set of rules that determine the writing of a language.

The most significant difference between English and Spanish orthography, is that, in the case of Spanish, there is a (quite) reduced set of rules that completely determine how each word is spelt. So, though usually the best way to learn orthography is to read a lot (books, etc.) and then to the visual memory to recall how a word must be spelled, rules are always a reliable way to know the correct spell for a word. So for example, in Spanish orthography there is a rule that states:

“before p or b m and not n should be written”

A simple rule like this determines that the correct spelling is “también” and not “tanbien”, “tampoco” and not “tanpoco”, and so on. In this way, learning orthography is simpler than in the case of English, as new speakers do not need rote learning of words.

In any case, either if rote learning is needed or if there is a set of rules (with their corresponding exceptions) that completely determines word spelling, orthography is an arid domain to be taught. Yet, the importance of learning orthography is clear because the ability to write correctly is fundamental in any professional environment.

However, our view of how orthography should be taught is not based in learning the rules, but shares the directions presented in [10], which we briefly explain next: to our purposes, orthography will be used as a synonymous of “correctly spelling the words”. Therefore our main goal will be to teach the strategy that persons with good orthography apply. Solving exercises is not effective if the mental strategy is wrong, so the fundamental thing is to teach a mental process, which can be described as follows:

a) When in doubt, good writers mentally search for the image of the word and visualize it in their minds. Writing becomes then a copy of the word that has previously been stored in their minds.

b) This visual recall of the word can be good enough to be confident on its correctness, but in some cases doubts can be clarified by writing the word in the different ways. Consequently, a goal when developing MITO is to help in using visual memory for orthography (by showing correctly and incorrectly written words).

As also stated in [10], in order to learn Spanish orthography, the student must satisfy some conditions:

a) Be advanced in the concrete operational stage (about eight years),

b) Being able to write and read at a reasonable speed,

c) Being aware of the existence of rules and exceptions,

d) Being motivated to improve (though our system is designed to improve motivation).

Though MITO is a game designed for children in the concrete operational stage, it can also be used by adults. At this stage, children can understand rules and apply them to games, so the learning and use of orthography rules is an appropriate task for them.

The contents in MITO are divided in four modules that aim to teach words corresponding to different sets of rules: a) Written accent rules; b) H, G and J rules; c) B, V, C, Z, D and Q rules; and d) M, N, Y, LL, R and RR rules. As explained before, rules are not learning goals on themselves, but a way to provide support to being able to correctly spell the words. In this sense, rules are used in our system to group the exercises to be posed to the student. A Disney© character is associated to each module.

2 Disney characters were taken from http://clipart.disneysites.com and are used in our application with no commercial purposes.
For each learner, MITO creates and maintains a simple student model that keeps record of the number of correctly solved exercises of each module (represented by its associated character). To increase motivation and facilitate navigation, this simple student model is inspectable by pressing the button “Ver resultados” (show results). Figure 1 shows the initial screen and an example of such student model.

![Fig 1. Screenshots of the main menu and the inspectable student model](image)

In order to achieve the learning goals fixed, MITO presents the following features (he associated keywords are shown in brackets):

- The user can choose a different module at any moment (Navigational Freedom, Interactivity).
- Each exercise is explained briefly, but a more complete explanation can be shown by user’s demand (Simplicity, Accessibility).
- The user’s answers are checked immediately (Immediacy).
- Each group is divided in several different exercises (Variety) that progressively get more complicated (i.e, apply more or more difficult rules) as the user correctly solves them (Challenging). In order to trigger learning, the user must show knowledge about between 90% and 100% of a module’s content (either by visual memory or by direct application of its rules) to be able to finish it (Learning Effectiveness).
- The system has a help mechanism that explains the rules in an accurate and clear way. This help is context depending and can be shown by user’s demand (Simplicity, Support).
- Feedback messages are provided immediately (for both the cases of correct and incorrect answer) and are clear and brief (orthography rules are used as a basis for explanations) (Support, Immediacy).
- There are many multimedia elements (childish sounds, nice pictures, etc.) that keep the user motivated (Motivation).
- As the user goes on with the game, his/her knowledge about the topic increases and the system adaptively selects more difficult exercises. (Adaptation, Challenging, Well-Structured)
- The system keeps a simple student model that is updated in every exercise. (Outcomes)
- At any moment, the user can see his/her student model. (Outcomes, Orientation)
- Each time the user correctly solves an exercise, some points are granted (Reinforcement).
- MITO keeps record of the score reached by its registered users, which is available at any time. The ranking of results of all registered players can be seen at any moment by
pressing the button “Ver ranking”. In this way, competition triggers motivation and keep the children engaged. (MOTIVATION)

Figure 2 shows an exercise in MITO. The relevant elements are (from left to right and from up to down): user name, exercise stem, points reached, motivational feedback, window of the exercise (which in this case consists of selecting the correct word between the two possibilities), motivational goal (in this case, Pluto must reach Mickey and each correct answer will move him one position forward), number of correct and incorrect answers in this exercise and four buttons: main menu, show results, help, how to play (that provides an extended game description). When the student selects a word in the exercise, the background is changed to green if it is correct and to red if incorrect, and a childish voice congratulates or scolds the action while showing appropriate feedback (in this case, the corresponding rule).

MITO has a simple but effective architecture, which is shown in Figure 3.

The interaction begins in the Input Module, where the system gets the user information. Then, the system gives access to the Main Menu, where he/she selects a module/game to play. The user can always access Output Module and leave the game (his/her student model will be saved for future sessions). The Learner Diagnosis Module controls the user model and provides this information when requested. The modules do not communicate with the expert.
module directly, but using the Help Module and the Error Module. The expert module contains the knowledge domain and structures the contents in a hierarchical way.

4 Preliminary evaluation results

A summative evaluation of the MITO system has been performed. This evaluation had two main goals: a) to determine the degree of acceptance of the game among the users it was focused to, identifying relevant aspects that can improve learner’s motivation and b) to study the effectiveness of the game in helping children to learn orthography, identifying possible ways to improve the design and behaviour of the system from an educational point of view. At this stage of our work, the evaluation was summative, so no numerical recollection and analysis of data has been performed. Instead, seven children were asked to play and a human tutor observed their behaviour and assisted them when needed (children had different computer literacy degrees, so some of them needed more support than others, though in general we found that the system was very easy to use and children only needed assistance at the very beginning).

Regarding the motivational aspects, first results have been very encouraging. Children did really become very engaged with the game. The features of the system that they liked better were the multimedia aspects, i.e., Disney characters and childish sounds (which fully fulfilled their goal to capture children’s attention). The fact that they could help their favourite character to reach a goal was also very motivating, as also was the possibility to see their position in the ranking.

However, results in the use of feedback/help messages to trigger learning were not so good. More than half of the children did not want to pay any attention to feedback messages, even when pointed out that these messages could give a clue for the next exercise. Help was neither used by children, who only wanted to quickly get the correct answer from their tutor and keep playing. When reaching an impasse, most children asked their tutor for the correct answer, but very few of them tried to use help. In our opinion the reason is that, even when help messages are short and clear, children were too involved with the game and did not want to waste their time in reading. However, during the experiment we observed that children were willing to accept help instead of the correct answer, if it was presented as a “trick” that could provide the answer to not only the current exercise but probably to the subsequent ones. This suggested that the use of a personal helping agent (as in [11]) could improve the effectiveness of the system from an educational point of view. The helping agent could be a fairy, an angel, etc. that would be assigned to the children at the beginning of the interaction and presented as a friend that can be called to provide help by means of “tricks” (simplified orthographic rules) when needed.

Though the system has been designed for children, we have also tested it with some adults. In this case, even when the images and sounds were very childish, people usually found them funny. The main difference is that help and feedback messages had the desired effect both capturing attention and triggering comprehension and learning. Ironically, the competitive aspect was the main motivating element in adult users.

5 Related work

Examples of educational systems designed for children and based on Piagetian stages of cognitive development are not easily found in research. An interesting work in this field is presented in [12], where Piaget’s notion of cognitive development has been used in the building of pre-test that would allow improving a tutor's reasoning ability. MFD (mixed numbers, fractions and decimals) is an Intelligent Tutoring System (ITS) aimed at teaching
fractions, decimals and whole numbers to elementary school students. Students with different levels of cognitive development should behave differently in the tutor, and that is the reason why they need to be taught with different strategies. Before the students begin to use the tutor, they are given a computer-based pre-test that measure their level of cognitive development. The pre-test is composed by ten Piagetian tasks that determine if the students are at one of the last two stages of cognitive development (concrete operational stage and formal operational stage). The test includes exercises about number conservation, serialization, reciprocity; area conservation, class inclusion, functionality, reversibility, establishment of hypotheses, control of variables in experimental design, drawing of conclusions, proportionality; and combinatorial analysis. This measure predicts student performance at a variety of grain sizes: effectiveness of hints received, rate of failure, amount of time to solve problems, and number of problems students need to attempt to master a topic. Later on, same authors presented an independent, adaptive, and easy-to-integrate web-based component to evaluate a student’s cognitive development that can be used as the pre-test of any ITS [13]. This component was constructed by including existing test’s items [12] into the SIETTE [14] web-based adaptive testing system.

6 Conclusions and future work

Our main goal while developing MITO was to build an application for children that could help them in the somewhat tedious but very important task of learning Spanish orthography. To this end, motivational aspects have had a great importance in the design and development of the system, and a first summative evaluation shows encouraging results regarding motivation. This evaluation also showed some weaknesses of the system, like the limited use of feedback and help messages. The reason possibly is that children get so involved in the game that they only want to go on playing to reach the maximum score, and therefore they do not want to lose their time in reading these messages. A possible solution that will be investigated and implemented is the introduction of a personal agent, which can provide help in a friendly way, presenting it like “tricks” that not only will help in the current exercise but will also serve to pass others. In the evaluation, the tutor played this role with satisfactory results, so probably the inclusion of such agents in the system will help in triggering significant learning.

An important lesson learned during the development of this game is that an educational game can really be effective even when sophisticated tools, architectures or user modelling techniques are not used. All these elements are very simple in our game, and yet, the game really engages children and helps them to learn (though as explained before, in the educational aspect there is room for improvement by just adding a personal agent).

Other improvements of the system we are planning include the development of an interface for tutors/parents that allows the inclusion of new words, to provide a greater variety of the exercises posed to the student. Finally, a formative evaluation of the whole system will be conducted in real settings to evaluate the effectiveness of the game in terms of the gain of significant learning.

References

