
Pascal-FC
Version 5

Language Reference Manual

G.L. Davies
University of Bradford, UK

 G.L. Davies 1992. Permission to copy without fee all or part of this document is granted provided that the copies are not
made or distributed for direct commercial advantage.

Pascal-FC LRM

1. INTRODUCTION

1.1. Purpose of Pascal-FC
Pascal-FC5 is a dialect of Pascal which has been designed specifically as a teaching tool.
Its purpose is to provide students with practical experience of concurrent programming.
In courses in this subject, it is usual to consider a variety of facilities for inter-process
communication. For example, Ben Ari2, in a widely-used text, considers semaphores,
monitors and the Ada rendezvous. For practical work, he provides a dialect of Pascal
which includes an implementation of semaphores, but which lacks monitors and the Ada
rendezvous. Pascal-FC, on the other hand, includes the following:

• semaphores;

• monitors;

• an occam/CSP style rendezvous;

• an Ada-style rendezvous;

• resources, which combine some of the features of Conditional Critical Regions7 and
monitors.

The aim of the system is to expose students to a variety of styles of inter-process
communication without the distraction of having to learn the syntax of several different
languages.

In addition to its concurrency facilities, the language also includes optional features
which enable it to be used for teaching the programming of real-time embedded systems
where suitable hardware is available. These optional features are concerned with the
timing of events, and with low-level programming, including interrupt-handling.

1.2. Historical Background
Pascal-FC is a major extension of Ben Ari’s concurrent Pascal-S. However, Ben Ari in
turn based his system on a purely sequential Pascal-S developed by Wirth (see Berry4).
Wirth’s ’S’ language was a subset of standard Pascal, from which had been omitted a
number of features (for example, sets, files and dynamic data structures) found in
standard Pascal. The reader experienced in standard Pascal will find, therefore, that these
familiar features are not supported by Pascal-FC.

1.3. Scope of the Manual
Some of the features of the language are intended for real-time applications, and the
inclusion and restrictions imposed on such features are necessarily implementation-
dependent. This manual does not describe any specific implementation, so that only the
general form of such features is given here: information specific to particular
implementations will be provided in the User Guide for the implementation.

1.4. Syntax Notation
This Manual uses a notation similar to the one adopted in the Ada Language Reference
Manual1. Specifically, the syntax is described in a variant of Backus-Naur Form (BNF),

FC-LRM-1/1.1 - 2 -

Pascal-FC LRM

supplemented with ordinary English. Semantics are described in ordinary English.

The following conventions are adopted for the BNF notation.

• Each rule is introduced by the name of a syntactic category followed by "::=".

• Lower-case words, some of which contain underscore characters, are used to denote
syntactic categories. For example:

identifier
select_statement

• Bold-face words are used to denote reserved words. For example:

begin
process

• A character enclosed in double quotes stands for itself, and is not a syntactic
category or special symbol. For example, in the rule:

exponent_part ::=

["e"|"E"] [+|-] unsigned_integer

the characters "e" and "E" are not the names of syntactic categories.

• Square brackets enclose optional items, except when enclosed in double quotes,
when they stand for themselves. For example:

if_statement ::=

if boolean_expression then
statement

[else
statement]

array_index ::=

"["ordinal_expression{,ordinal_expression}"]"

The optional part is either absent, or one such part is permitted.

• Braces enclose repeated items, except when enclosed in double quotes, when they
stand for themselves. For example:

identifier ::=

letter{letter | digit}

comment ::=

comment_start {character} comment_end

FC-LRM-1/1.1 - 3 -

Pascal-FC LRM

comment_start ::=

"{" | (*

comment_end ::=

"}" | *)

When braces enclose a repeated item, the item may be repeated zero or more times.

• Alternatives are separated by the "|" character, as in the above examples.

• Italics are used to convey some semantic information. For example:

boolean_expression

Such information is provided as a hint to the reader: a context-free grammar is, of
course, not capable of representing the difference between, for example, a boolean
expression and an integer expression.

FC-LRM-1/1.1 - 4 -

Pascal-FC LRM

2. PROGRAM STRUCTURE, DECLARATIONS AND
STATEMENTS
The only compilation unit in Pascal-FC is the program. The next section describes the
overall form of a program and some of its components: later sections describe
declarations and statements.

2.1. Program
A program is defined a follows:

program ::=

program_header
global_declaration_part

begin
main_statement_part

end.

program_header ::=

program identifier;

identifier ::=

letter{letter | digit}

Here, letter signifies the normal upper- and lower-case alphabetical characters, and
digit denotes the decimal digits. The case of alphabetical characters in identifiers is
not significant.

Certain forms of declaration are only permitted in a global declaration part: these
include monitor, resource and process declarations. The following syntax lists the
possible forms of declaration:

FC-LRM-2/1.1 - 5 -

Pascal-FC LRM

global_declaration_part ::=

{
constant_declaration

| type_declaration
| variable_declaration
| monitor_declaration
| resource_declaration
| procedure_declaration
| function_declaration
| process_type_declaration
| process_object_declaration

}

The main statement part is the only place where a concurrent statement may be placed,
and there may be at most one of these. The allowable forms of the main statement part
are:

main_statement_part ::=

statement_sequence
[;concurrent_statement
[;statement_sequence]]
| concurrent _statement
[;statement_sequence]

statement_sequence ::=

statement
{;statement}

The concurrent statement and its use are described in Chapter 3.

2.2. Declarations
Monitor, resource, process and entry declarations are ignored here, as they are covered in
later chapters. The remaining forms are, for the most part, like those of Pascal, but with
some additions and restrictions. One such restriction is that there are no label
declarations. One sense in which Pascal-FC is less restrictive than Pascal is that the
order of different types of declaration is not fixed. Like Pascal, Pascal-FC is based on the
principle of declaration-before-use.

FC-LRM-2/1.1 - 6 -

Pascal-FC LRM

2.2.1. Constant declarations
Constants are declared by means of a const declaration, which has the following form:

constant_declaration ::=

const
identifier = constant;
{identifier = constant;}

where:

constant ::=

constant_identifier
| integer_literal
| real_literal
| character_literal

Note that, unlike Pascal, there are no string constants.

2.2.1.1. Character literals
As in Pascal, the syntax of a character literal is:

character_literal ::=

’character’

The set of permissible characters is not defined by the language.

2.2.1.2. Integer literals
There are two basic forms of integer literal: decimal and based. Based literals allow a
number to be expressed in bases other than 10.

integer_literal ::=

decimal_integer
| based_integer

decimal_integer ::=

[+|-] unsigned_integer

unsigned_integer ::=

decimal_digit{decimal_digit}

FC-LRM-2/1.1 - 7 -

Pascal-FC LRM

based_integer ::=

base#digit_character{digit_character}

base ::=

unsigned_integer

NOTES

1. The value for the base of a based integer may be restricted by the implementation.

2. The interpretation of a based integer (for example, unsigned integer or two’s
complement integer) is implementation-dependent.

3 The compiler will ensure that the digit characters used in a based integer are
appropriate for the value of base selected.

2.2.1.3. Real literals
Real literals have the same form as in Pascal.

real_literal ::=

[+|-] unsigned_real

unsigned_real ::=

unsigned_integer exponent_part
| unsigned_integer fractional_part [exponent_part]

exponent_part ::=

["e"|"E"] [+|-] unsigned_integer

fractional_part ::=

.unsigned_integer

2.2.2. Type declarations
As in Pascal, a type declaration has the form:

type_declaration ::=

type
identifier = type;
{identifier = type;}

The allowable forms for a type are slightly different: Pascal-FC does not have subrange,
set or pointer types, but it does introduce an additional channel type.

FC-LRM-2/1.1 - 8 -

Pascal-FC LRM

type ::=

type_identifier
| enumeration_type
| array_type
| record_type
| channel_type

Certain type identifiers are pre-defined (the so-called "standard types"). These, and the
operations defined on the standard types, are given in Appendix C.

Types fall into two categories: scalar and structured. The scalar types are:
boolean, char, integer and real. Of these, the first three are called "ordinal"
types. Channel type declarations will not be considered here: they are described in
Chapter 7.

2.2.2.1. Enumeration types
Enumeration types are like those of Pascal. The declaration of an enumeration type has
the form:

enumeration_type ::=

(identifier_list)

identifier_list ::=

identifier{,identifier}

NOTE

Each identifier must be unique in the current scope.

2.2.2.2. Array types
These have the form:

array_type ::=

array index_type{index_type} of type

index_type ::=

"["ordinal_range{,ordinal_range}"]"

ordinal_range ::=

ordinal_constant..ordinal_constant

FC-LRM-2/1.1 - 9 -

Pascal-FC LRM

2.2.2.3. Record types
Pascal-FC differs from Pascal in two ways: variant records are not allowed, and an
"offset indicator" may be given to fields.

record_type ::=

record
field_list

end

field_list ::=

field_declaration {;field_declaration}

field_declaration ::=

identifier[offset_indicator]
{,identifier [offset_indicator]}
: type

offset_indicator ::=

at offset integer_constant

The significance of the offset indicator is explained in Chapter 11.

2.2.3. Variable declarations
Variable declarations are similar to Pascal, but with the addition of an optional "mapping
indicator".

variable_declaration ::=

var
variable_list : type;
{variable_list : type;}

variable_list ::=

identifier [mapping_indicator]
{,identifier [mapping_indicator]}

mapping_indicator ::=

at integer_constant

The significance of the mapping indicator is described in Chapter 11.

FC-LRM-2/1.1 - 10 -

Pascal-FC LRM

2.2.4. Procedure and function declarations
In Pascal-FC, there are three classes of subprogram: procedures, functions and processes.
The first two of these are known as "sequential subprograms". Processes are considered
in Chapter 3.

Procedure and function declarations are largely as in Pascal. Forward declarations
are supported. However, there are no conformant array parameters, or parameters that
are themselves subprograms.

sequential_subprogram_declaration ::=

full_sequential_subprogram_declaration
| deferred_sequential_subprogram_declaration

full_sequential_subprogram_declaration ::=

sequential_subprogram_header
[declaration_part]

begin
statement_sequence

end;

sequential_subprogram_header ::=

procedure_header
| function_header

procedure_header ::=

procedure identifier [formal_part];

function_header ::=

function identifier [formal_part]
: type_identifier;

formal_part ::=

([var] identifier_list : type_identifier
{;[var] identifier_list : type_identifier})

FC-LRM-2/1.1 - 11 -

Pascal-FC LRM

declaration_part ::=

{
constant_declaration

| type_declaration
| variable_declaration
| procedure_declaration
| function_declaration

}

deferred_sequential_subprogram_declaration ::=

procedure_header forward; procedure_stub
| function_header forward; function_stub

procedure_stub ::=

procedure identifier;
[declaration_part]

begin
statement_sequence

end;

function_stub ::=

function identifier;
[declaration_part]

begin
statement_sequence

end;

NOTES

1. When a deferred declaration is used, other declarations may separate the header
from the stub.

2. The type identifier in a function header declares the type of the returned result, and
it must be of a scalar type.

3. The result of a function is returned by an assignment statement in the enclosed
sequence of statements, in which the function name appears on the left of the
assignment operator.

4. If a function is exited without the execution of the above type of assignment, no
error need be signalled, but the returned result is undefined.

5. var parameters ("variable parameters") are passed by reference. Other parameters
are called "value parameters", and are passed by value.

FC-LRM-2/1.1 - 12 -

Pascal-FC LRM

2.3. Statements
The allowable statements in Pascal-FC are described by the following syntax.

statement ::=

assignment_statement
| procedure_call
| for_statement
| repeat_statement
| while_statement
| if_statement
| case_statement
| compound_statement
| empty_statement
| concurrent_statement
| process_activation
| monitor_call
| channel_operation
| select_statement
| entry_call
| accept_statement
| resource_call
| requeue_statement
| null_statement

Assignment statements, procedure calls, the empty statement, the compound statement
and if and case statements have the same form as in Pascal. The loops are also
similar, except that the for statement has no downto variant, and the repeat
statement is slightly extended.

Many of the above statements are concerned with the concurrency features of
Pascal-FC. They will not be described here, but in the appropriate later chapters.

2.3.1. The assignment statement
This has the same form as in Pascal:

assignment_statement ::=

variable := expression

variable ::=

variable_identifier{selector}

FC-LRM-2/1.1 - 13 -

Pascal-FC LRM

selector ::=

array_subscript
| field_selector

array_subscript ::=

"["ordinal_expression{,ordinal_expression}"]"

expression ::=

simple_expression {rel_op simple_expression}

rel_op ::=

< | <= | > | >= | = | <> | in

simple_expression ::=

[+|-] term {add_op term}

add_op ::=

+ | - | or

term ::=

factor {mul_op factor}

mul_op ::=

* | / | div | mod | and

factor ::=

unsigned_integer
| based_integer
| unsigned_real
| constant_identifier
! variable
! function_identifier [(actual_parameters)]
| not factor
! bitset_literal
| (expression)

FC-LRM-2/1.1 - 14 -

Pascal-FC LRM

actual_parameters ::=

expression {,expression}

bitset_literal ::=

"[""]"
| "["integer_expression{,integer_expression}"]"

field_selector ::=

.record_field_identifier

Pascal-FC is strongly typed, so that the types of the two operands of the assignment
operator (":=") must be equivalent.

2.3.2. The case statement
The case statement is the same as in Pascal. Its syntax is:

case_statement ::=

case ordinal_expression of
case_alternative
{;case_alternative}

end

case_alternative ::=

case_label{,case_label}:statement

case_label ::=

ordinal_constant

NOTES

1. The expression following the reserved word, case (known as the "selector
expression"), and the case labels must have equivalent types.

2. It is a compile-time error to have the same value of case label appearing more than
once in a single case statement.

3. It is a run-time error if the value of the selector expression does not equal any of the
case labels.

4. At run time the statement which has a label equal to the selector expression will be
executed (if there is one) and the case statement will then be exited.

FC-LRM-2/1.1 - 15 -

Pascal-FC LRM

2.3.3. The compound statement
As in Pascal, the compound statement has the form:

compound_statement ::=

begin
statement_sequence
end

2.3.4. The empty statement
This is included for consistency with Pascal, but it is recommended that the null
statement be used as a more readable alternative.

empty_statement ::=

{white_space_character}

2.3.5. The for statement
This is a slightly restricted version of the for statement found in Pascal, in that there is
no downto variant. The syntax is:

for_statement ::=

for variable := expression to expression do
statement

NOTES

1. The variable (known as "the loop control variable") and the two expressions (known
respectively as "the initial value" and "the terminal value") must be equivalent
ordinal types.

2. The value of the loop control variable is undefined on exit from the loop.

3. If the initial value is greater than the terminal value, no iterations are performed and
the loop is immediately exited.

4. If the initial value is less than or equal to the terminal value, the number of
iterations will be 1 + (terminal value - initial value).

5. The number of iterations cannot be modified by making an assignment to the loop
control variable in the nested statement.

2.3.6. The if statement
As in Pascal, the if statement has the form:

FC-LRM-2/1.1 - 16 -

Pascal-FC LRM

if_statement ::=

if boolean_expression then
statement

[else
statement]

2.3.7. Procedure call
As in Pascal, this has the form:

procedure_call ::=

procedure_identifier [(actual_parameters)]

The expressions in the actual parameters must agree in number, type and mode with the
formal part of the procedure declaration.

2.3.8. The null statement
The null statement has the form:

null_statement ::=

null

The execution of a null statement has no effect, and it may be used instead of the
empty statement for enhanced readability.

2.3.9. The repeat statement
Compared with Pascal, the repeat statement is augmented to be:

repeat_statement ::=

repeat
statement_sequence

repeat_limit

repeat_limit ::=

until boolean_expression
| forever

2.3.10. The while statement
As in Pascal, this has the form:

FC-LRM-2/1.1 - 17 -

Pascal-FC LRM

while_statement ::=

while boolean_expression do
statement

2.4. Comments
Comments in a Pascal-FC progrm have the form:

comment ::=

comment_start {character} comment_end

comment_start ::=

"{" | (*

comment_end ::=

"}" | *)

NOTE

Comments must not be nested.

FC-LRM-2/1.1 - 18 -

Pascal-FC LRM

3. PROCESSES
Pascal-FC has a "flat" process structure in that processes may only be declared at the
outermost lexical level. The declaration of a process is not sufficient to bring it into
execution: process activation is required to achieve this.

3.1. Process States
The process state model of Pascal-FC is comparatively simple. It is illustrated in Figure
3.1.

non-existing

created

executable terminated

destroyed

non-existing

awaiting
interrupt

suspended

delayed termstate

Figure 3.1: Process States and Transitions

NOTES

1. A process is "created" by a process object declaration.

2. A process is made "executable" by a process activation.

3. A process becomes "terminated" when it has finished its execution.

4. When all processes have become "terminated", they are all "destroyed"
simultaneously.

5. A process that is "delayed" is one that is non-executable for a bounded time (see
Chapter 10).

6. A "suspended" process is one whose non-executable period is not necessarily
bounded. It is suspended on some inter-process communication primitive and is
dependent on some other process to make it executable again (see Chapters 4 - 9).

7. A process that is "awaiting interrupt" is blocked on a semaphore, channel or entry
that has been mapped to a source of interrupts (see Chapter 11).

FC-LRM-3/1.1 - 19 -

Pascal-FC LRM

8. For an explanation of "termstate", see Chapter 9.

9. The term "blocked" will sometimes be used to refer to a process in any of the states
"awaiting interrupt", "suspended", "delayed" or "termstate".

3.2. Process Declarations
Process declarations are either process object declarations or process type declarations.

3.2.1. Process Type Declarations
process_type_declaration ::=

[process_type_provides_declaration]
process_type_body_declaration

process_type_provides_declaration ::=

process type identifier[formal_part] provides
entry_declaration
{entry_declaration}

end;

process_type_body_declaration ::=

process type identifier[formal_part];
{entry_declaration}
[declaration_part]

begin
statement_sequence

end;

Entry declarations will be described in Chapter 8.

Where the optional "provides" declaration is used, the following points should be
noted:

1. There must be a corresponding body declared later in the same declaration part.

2. These two components may be separated by other declarations.

3. The two parts must correspond exactly in their formal parts.

4. The number of entries, their identifiers and the formal parts of the entries, must
match exactly.

5. The order of declaration of the entries is not constrained to be the same.

The declaration of a process type does not bring into existence any objects of that
type, but instead introduces a type identifier which may be used in type and variable
declarations. Process types can be elements of arrays, but not of records. The formal
parameters of a process have the same form as the formal parameters of procedures and
functions.

FC-LRM-3/1.1 - 20 -

Pascal-FC LRM

formal_part ::=

([var] identifier_list : type_identifier
{;[var] identifier_list : type_identifier})

There are certain restrictions on the types of formal parameters. Process type identifiers
are not permitted, and identifiers of types containing semaphores, conditions or channels
must be var parameters.

3.2.2. Process Object Declarations
A process object declaration brings into existence an executable instance of a process
type (anonymous or named). It introduces an identifier which may then be used in a
process activation. In terms of Figure 3.1, declaration of a process object causes the
process to make the transition from "non-existing" to "created".

process_object_declaration ::=

anonymous_process_type_declaration
| process_variable_declaration

anonymous_process_type_declaration ::=

[provides_declaration]
process_body_declaration

The forms of the "provides" and "body" declarations are the same as those described in
the previous section, except that type is omitted. Restrictions are also the same. A
process variable declaration may only appear in a var declaration in a global
declaration part, and has the following form:

process_variable_declaration ::=

identifier_list : process_type;

process_type ::=

process_identifier
| process_array_type

3.3. Process Activation
A process object declaration brings into existence an instance of a process type, but it
does not automatically make it executable: a process activation is required. In terms of
Figure 3.1, the activation of a process causes it to make the transition from "created" to
"executable".

FC-LRM-3/1.1 - 21 -

Pascal-FC LRM

process_activation ::=

process_object_identifier[array_index][(actual_parameters)]

A process activation can only be placed in a concurrent statement.

3.3.1. The concurrent statement
A concurrent statement has the form:

concurrent_statement ::=

cobegin
statement_sequence
coend

NOTES

1. Although arbitrary statements may be placed in a concurrent statement, only
processes are executed concurrently.

2. Within the concurrent statement, any particular process may only be activated once.

3. The language prescribes no particular scheduling policy for processes.

4. No process will begin its execution before all processes activated in the concurrent
statement have been made executable.

5. The concurrent statement cannot terminate until all activated processes have
terminated.

6. If any process encounters a fatal error during its execution, the entire program is
aborted.

3.3.2. Activating elements of an array of processes
Given the following declarations:

const
max = 5;

process type proc;
(* declarations *)

begin
(* statements *)

end;

var
p: array[1..max]of proc;

One method of activating the elements of the array would be:

FC-LRM-3/1.1 - 22 -

Pascal-FC LRM

cobegin
p[1];
p[2];
p[3];
p[4];
p[5]

coend

This quickly becomes tedious, however, and Pascal-FC allows a for loop to be used as
a shorthand notation. Given a suitable declaration for the loop control variable, the above
could more succinctly be expressed as:

cobegin
for i := 1 to max do

p[i]
coend

The repeat and while loops can also be used for the same purpose.

3.4. Phases of Execution of a Pascal-FC Program
In general, there will be four distinct phases in the execution of a Pascal-FC program:

1. A preliminary sequential phase, which will usually be used to prepare the execution
environment for concurrent processes (for example, by the initialisation of global
variables). This is the set of statements before the cobegin.

2. A process activation phase, during which the concurrent processes themselves are
prepared for execution (that is, they make the transition from "created" to
"executable").

3. Concurrent execution of processes.

4. A sequential completion phase , which begins only when the last concurrent
process has terminated. This corresponds with the statements following the
coend.

3.5. Process Scheduling and Priority
The order of activation of processes within the concurrent statement is not significant,
and the language does not specify any particular scheduling policy. However, a standard
procedure, priority, is provided. A call has the form:

priority(p)

where p is an integer expression. The procedure sets the priority of the current process
to the indicated value. The procedure may be called from any part of a program.

NOTES

1. An implementation is free to treat this procedure as a null statement.

2. The range of the argument may be constrained by an implementation.

FC-LRM-3/1.1 - 23 -

Pascal-FC LRM

3. The interpretation of the argument is implementation-dependent.

4. An implementation may assign default priorities to processes and the main
statement part.

3.6. An Example: Multiple Update of a Shared Variable
The following program illustrates the declaration and activation of concurrent processes
and the use of the initial and completion phases of the main program statement part. It
also illustrates the problem of concurrent update of a shared variable: depending on the
process scheduler in use, the output value may display variation.

program gardens1;

(* Multiple Update *)

var
count: integer;

process turnstile1;

var
loop: integer;

begin
for loop := 1 to 20 do

count := count + 1
end; (* turnstile1 *)

process turnstile2;

var
loop: integer;

begin
for loop := 1 to 20 do

count := count + 1
end; (* turnstile2 *)

begin
count := 0;
cobegin

turnstile1;
turnstile2

coend;
writeln(’Total admitted: ’,count)

end.

FC-LRM-3/1.1 - 24 -

Pascal-FC LRM

3.7. Deadlock
The definition of "deadlock" in Pascal-FC is:

Deadlock is a state in which no process is executable, and at least one process is
"suspended".

MOTES

1. An implementation must abort the program if a state of deadlock occurs during its
execution.

2. A program cannot deadlock as long as at least one process is "awaiting interrupt".

3. A program cannot deadlock as long as at least one process is "delayed".

FC-LRM-3/1.1 - 25 -

Pascal-FC LRM

4. SEMAPHORES
In this chapter, it is assumed that the reader is familiar with the concept of semaphores6.
See, for example, Ben Ari2, 3 for an introduction.

4.1. Declaration
Semaphore objects are introduced in var declarations. A standard type, semaphore,
is included. Semaphores may be declared singly, or as components in arrays or records
(types or variables).

NOTES

1. Semaphores, or objects containing them, may only be declared in a global
declaration part.

2. Semaphore objects may be passed as parameters to subprograms, but the
corresponding formal parameters must be var parameters.

3. Semaphores are guaranteed to have no processes blocked on them initially, but the
value is undefined until the semaphore has been passed to the initial procedure.

4.2. Operations on Semaphores
The allowable operations on semaphores are restricted to:

• The wait and signal procedures;

• the initial procedure;

• the write(ln) procedure.

Each of wait and signal takes a single parameter, which must be a semaphore.

4.2.1. The initial procedure
A call to the initial procedure has the form:

initial(s,v)

where s is a semaphore and v is an integer expression.

NOTES

1. An implementation must not permit the execution of initial when v is less
than zero.

2. Only the main program thread must be allowed to execute this procedure. Such a
call can appear in the main statement part, or in the statement part of a subprogram
called by the main program. (The implementation must not permit a process to
execute initial by calling such a subprogram).

4.2.2. The wait procedure
A call to this procedure has the form:

FC-LRM-4/1.1 - 26 -

Pascal-FC LRM

wait(s)

where s is a semaphore.

NOTE

If the semaphore value is 0 at the time of execution, the calling process becomes
"suspended" if the semaphore is not mapped to a source of interrupts (see Chapter 11) or
enters the state "awaiting interrupt" if it is so mapped.

4.2.3. The signal procedure
A call to this procedure has the form:

signal(s)

where s is a semaphore.

NOTE

The language does not prescribe any particular queuing discipline on semaphores: if a
signal is carried out on a semaphore on which several processes are currently
"suspended", one of them will be allowed to proceed, but the decision as to which is
arbitrary.

4.3. An Example: Multiple Update
Chapter 3 introduced a program that displayed the problem of concurrent update of a
shared variable. The following program uses one semaphore to enforce mutually
exclusive access to the variable. The final value in this case is always 40, regardless of
the scheduler in use.

program gardens2;

(* Semaphore solution to multiple update *)

var
count: integer;
mutex: semaphore;

FC-LRM-4/1.1 - 27 -

Pascal-FC LRM

process turnstile1;

var
loop: integer;

begin
for loop := 1 to 20 do

begin
wait(mutex);
count := count + 1;
signal(mutex)
end

end; (* turnstile1 *)

process turnstile2;

var
loop: integer;

begin
for loop := 1 to 20 do

begin
wait(mutex);
count := count + 1;
signal(mutex)
end

end; (* turnstile2 *)

begin
count := 0;
initial(mutex,1);
cobegin

turnstile1;
turnstile2

coend;
writeln(’Total admitted: ’,count)

end.

4.4. Process States and Transitions
This section summarises the effects on process state of the features described in this
chapter.

1. A process executing a wait at a time when the named semaphore is zero becomes
"suspended" if the semaphore is not mapped to a source of interrupts, or "awaiting
interrupt" if it is so mapped.

2. A process suspended on a semaphore can be made executable by a signal
operation on the semaphore or (in the case of a semaphore mapped to a source of

FC-LRM-4/1.1 - 28 -

Pascal-FC LRM

interupts) by the occurrence of an appropriate interrupt.

FC-LRM-4/1.1 - 29 -

Pascal-FC LRM

5. MONITORS
Pascal-FC’s implementation of monitors follows closely the suggestions made by
Hoare8. The only operations that are exported from monitors are procedures. thec
ompiler guarantees mutually exclusive access to monitors, and condition synchronisation
is done by means of condition variables, which are also described in this chapter.

5.1. Declaration
A monitor is one of the forms of declaration that are permitted only in a global
declaration part. It has the following form:

monitor_declaration ::=

monitor identifier;
export_list
[declaration_part]

[monitor_body]
end;

export_list ::=

export procedure_identifier_list;
{export procedure_identifier_list;}

monitor_body ::=

begin
statement_sequence

NOTES

1. Certain instances of type and variable declaration are not permitted in a monitor:
specifically, those involving processes, semaphores and channels (types or
variables).

2. The only declarations in a monitor that are visible from outside that monitor are
procedures whose identifiers appear in the export list (these are called "exported
procedures").

3. It is a compile-time error for such an identifier not to have a corresponding
procedure declared in the monitor.

4. Exported procedures may not be nested within subprogram declarations.

5. The body of a monitor, if present, is executed once, before the first statement of the
main statement part.

6. If there are several monitors declared in a program, the order in which their bodies
are executed is not defined by the language.

FC-LRM-5/1.2 - 30 -

Pascal-FC LRM

7. Code within a monitor is guaranteed to be executed under mutual exclusion. A
boundary queue is used to block processes wishing to gain access to a monitor
already occupied by a process.

8. The boundary queue is defined to be a priority queue: within a given priority value,
a FIFO discipline is used. The queuing scheme hence degenerates to plain FIFO in
an implementation in which process priorities are not discriminated.

5.2. Calls to monitors
A monitor call is a call to an exported procedure of a monitor. In general, it takes the
form:

monitor_call ::=

monitor_identifier.exported_procedure_identifier
[(actual_parameters)]

If the called procedure is declared within the same monitor as the call, a shorter form
may be used as an alternative:

exported_procedure_identifier[(actual_parameters)]

This is semantically equivalent to the longer form. In particular, there is no attempt in
either case to gain mutually exclusive access, since the calling process must already have
such access.

Nested monitor calls are permitted: in this case, mutual exclusion on the monitor
from which the call is made is retained.

5.3. Condition Variables

5.3.1. Declaration
Condition objects are introduced by var declarations. The standard type,
condition, is provided. Condition variables may be declared, but there are no
constants of this type. Conditions may be declared as simple variables, or as components
of arrays or records (types or variables).

NOTES

1. Type declarations involving this type may be made in a global declaration part or in
the declaration part of a monitor.

2. Declarations of variables involving this type may only be made in the declaration
part of a monitor.

3. Conditions declared as formal parameters to subprograms must be var parameters.

4. Conditions are defined to be priority queues. Within a given priority value, a FIFO
discipline is used. Hence, conditions degenerate to FIFO queues in
implementations which do not discriminate process priority.

FC-LRM-5/1.2 - 31 -

Pascal-FC LRM

5. Conditions are guaranteed to be initialised to the empty queue on declaration.

5.3.2. Operations on conditions
The operations on conditions are restricted to:

• the delay and resume procedures;

• the empty function.

5.3.2.1. The delay procedure
A call to this procedure has the form:

delay(c)

where c is a condition. The calling process becomes "suspended" and releases mutual
exclusion on the monitor.

5.3.2.2. The resume procedure
A call to this procedure has the form:

resume(c)

where c is a condition.

NOTES

1. If there are no processes currently suspended on c, the call has the same effect as a
null statement.

2. If a resume operation unsuspends a process, the unsuspended process inherits
mutual exclusion on the monitor. The process that called resume joins the
chivalry queue associated with that monitor (there is one such queue per monitor).
The queuing discipline on such a queue is the same as for the boundary queue.

3. Processes suspended on a chivalry queue have preference over any waiting on the
same monitor’s boundary queue when mutual exclusion of that monitor is released
by another process.

5.3.2.3. The empty function
This is a boolean function. The single parameter must be a condition. The
function returns true if there are no processes currently suspended on the named
condition.

5.4. An Example: the Bounded Buffer
The following program illustrates the declaration and use of monitors and condition
variables. It shows the communication of a producer and a consumer via a bounded
buffer.

FC-LRM-5/1.2 - 32 -

Pascal-FC LRM

program PCON4;

(* producer-consumer problem - monitor solution *)

monitor BUFFER;

export
PUT, TAKE;

const
BUFFMAX = 4;

var
STORE: array[0..BUFFMAX] of char;
COUNT: integer;
NOTFULL, NOTEMPTY: condition;
NEXTIN, NEXTOUT: integer;

procedure PUT(CH: char);

begin
if COUNT > BUFFMAX then

delay(NOTFULL);
STORE[NEXTIN] := CH;
COUNT := COUNT + 1;
NEXTIN := (NEXTIN + 1) mod (BUFFMAX + 1);
resume(NOTEMPTY)

end; (* PUT *)

procedure TAKE(var CH: char);

begin
if COUNT = 0 then

delay(NOTEMPTY);
CH := STORE[NEXTOUT];
COUNT := COUNT - 1;
NEXTOUT := (NEXTOUT + 1) mod (BUFFMAX + 1);
resume(NOTFULL)

end; (* TAKE *)

begin (* body of BUFFER *)
COUNT := 0;
NEXTIN := 0;
NEXTOUT := 0

end; (* BUFFER *)

FC-LRM-5/1.2 - 33 -

Pascal-FC LRM

process PRODUCER;

var
LOCAL: char;

begin
for LOCAL := ’a’ to ’z’ do

BUFFER.PUT(LOCAL);
end; (* PRODUCER *)

process CONSUMER;

var
CH: char;

begin
repeat

BUFFER.TAKE(CH);
write(CH)

until CH = ’z’;
writeln

end; (* CONSUMER *)

begin (* main *)
cobegin

PRODUCER;
CONSUMER

coend
end.

5.5. Process States and Monitors
This section summarises the effects on process state of the features described in this
chapter.

1. A process that attempts to enter a monitor that is already occupied becomes
"suspended" on the monitor boundary queue.

2. A process that executes a delay becomes "suspended" on the named condition.

3. A process that executes a resume that has the effect of unsuspending a process
becomes "suspended" on the monitor chivalry queue.

4. A process suspended on a condition can be made "executable" by the resume
operation.

5. A process suspended on a monitor boundary queue can be made executable by a
process leaving the monitor.

FC-LRM-5/1.2 - 34 -

Pascal-FC LRM

6. A process suspended on a chivalry queue can be made executable by a process
leaving the monitor.

6. When a process leaves a monitor and other processes are blocked on both the
boundary and the chivalry queues, the latter queue has priority.

FC-LRM-5/1.2 - 35 -

Pascal-FC LRM

6. RESOURCES
Resources in Pascal-FC provide some of the features of the protected record of
Ada 9X9. Resources are similar to monitors in that they provide compiler-guaranteed
mutual exclusion of access to enclosed data, but condition synchronisation is effected by
barriers on procedures, rather than by condition variables.

6.1. Declaration
The rules concerning the place of declaration of resources are the same as those for
monitors: in particular, a resource may only be declared in a global declaration part. The
syntax of a resource declaration is as follows:

resource_declaration ::=

resource identifier;
export_list
resource_declaration_part

[resource_body]
end;

resource_declaration_part ::=

{
constant_declaration

| type_declaration
| variable_declaration
| procedure_declaration
| function_declaration
| guarded_procedure_declaration

}

guarded_procedure_declaration ::=

full_guarded_procedure_declaration
| deferred_guarded_procedure_declaration

full_guarded_procedure_declaration ::=

guarded procedure identifier[formal_part]
when boolean_expression;
[declaration_part]

begin
statement_sequence

end;

FC-LRM-6/1.2 - 36 -

Pascal-FC LRM

deferred_guarded_procedure_declaration ::=

forward_guarded_procedure_header
guarded_procedure_body

forward_guarded_procedure_header ::=

guarded procedure identifier[formal_part]
when boolean_expression;forward;

guarded_procedure_body ::=

guarded procedure identifier;
[declaration_part]

begin
statement_sequence

end;

resource_body ::=

begin
statement_sequence

NOTES

1. Resources may only be declared in a global declaration part.

2. Only identifiers that appear in the export list are in scope from outside the resource.

3. The identifiers in the export list must be the names of procedures or guarded
procedures declared inside the resource.

4. Exported procedures must not be nested within other subprograms declared in the
resource.

5. Guarded procedures, whether exported or not, must not be nested inside other
subprograms.

6. The formal parameters of a guarded procedure are not in scope until after the guard
expression.

7. Type and variable declarations involving semaphores, channels and processes are
not permitted anywhere in a resource.

8. Where a deferred guarded procedure declaration is used, the header and the body
may be separated by other declarations.

FC-LRM-6/1.2 - 37 -

Pascal-FC LRM

6.2. Calls to resources
A call to a resource is a call to an exported procedure (guarded or otherwise) of that
resource. It has the form:

resource_call ::=

resource_identifier.
exported_procedure_identifier[(actual_parameters)]

As with monitors, if the procedure concerned is declared within the current resource, a
shortened notation (consisting simply of the procedure identifier and the actual
parameters) is permitted. This is semantically equivalent to the longer version given
above.

If a guarded procedure is called whose guard evaluates to false, the calling process
becomes "suspended" and leaves the resource. Any process leaving a resource must
attempt to find a candidate which will inherit mutual exclusion on the resource. The
candidate will be selected from among those suspended on guards which now evaluate to
true. No particular queuing discipline is specified for guards, and the choice among the
procedures with open guards is arbitrary. Processes leave resources when they complete
an execution path through an exported procedure, when they become blocked on a guard
in that resource, or when they requeue to a different resource (whether or not they block
on a guard).

Nested calls from one resource to an exported procedure of another are permitted.
In such a case, mutual exclusion on the current resource is retained.

NOTE
A call to a guarded procedure is not permitted anywhere inside a resource.

6.3. The requeue statement
The requeue is used to abandon the current guarded procedure and transfer the call to
another, either within the current resource, or within another. Its syntax is:

requeue_statement ::=

requeue [resource_identifier.]
guarded_procedure_identifier[(actual_parameters)]

The optional identifier, if present, must be the name of a resource. If it is the name of the
resource enclosing the requeue statement, it has no effect. The second identifier in the
above syntax must be the name of a guarded procedure. If the associated guard is
open, the procedure is executed as normal. If the guard is closed, the calling process
must become "suspended" (and leave the resource), but it must attempt to find a
candidate for awakening.

Control does not eventually return to the statement following a requeue
statement: its execution causes the abandonment of the current guarded procedure.

FC-LRM-6/1.2 - 38 -

Pascal-FC LRM

NOTES

1. A requeue statement may only be used in a the statement part of a guarded
procedure (ie, not within a subprogram nested within such a procedure).

2. The destination of a requeue must be a guarded procedure.

3. In the event that a requeue is made to a guarded procedure of another resource,
mutual exclusion on the current resource is released, as a return will not be made to
it.

6.4. An Example: the Alarm Clock
The following is a resource-based version of Hoare’s8 alarm clock example. A number
of sleeper processes wish to slumber for various periods. Each time that the clock ticks,
sleepers awake and check to see whether it is time to get up. If not, they go back to sleep.
The example illustrates the use of the requeue statement.

program ALARMCLOCK;
const

PMAX = 3;

resource ALARM;
export

SLUMBER, TICK;

var
NOW: integer;
queue : integer; (* takes values 1 or 2 *)
freed1, freed2 : boolean;

guarded procedure SLUMBER2(AL: integer) when freed2; forward;

guarded procedure SLUMBER1(AL: integer) when freed1;
begin

if NOW < AL then
requeue SLUMBER2(AL)

end; (* SLUMBER *)

guarded procedure SLUMBER2;
begin

if NOW < AL then
requeue SLUMBER1(AL)

end; (* SLUMBER *)

FC-LRM-6/1.2 - 39 -

Pascal-FC LRM

guarded procedure SLUMBER(N: integer) when true;
var

ALARMCALL: integer;
begin

ALARMCALL := NOW + N;
if NOW < ALARMCALL then
if queue = 1 then
requeue SLUMBER1(ALARMCALL)

else
requeue SLUMBER2(ALARMCALL)

end; (* SLUMBER *)

procedure TICK;
begin

NOW := NOW + 1;
if queue = 1 then
begin

queue := 2;
freed1 := true;
freed2 := false

end else
begin

queue := 1;
freed1 := false;
freed2 := true

end
end; (* TICK *)

begin (* body *)
NOW := 0;
queue := 1;
freed1 := false

end; (* ALARM *)

resource SCREEN;
export

PRINT;

procedure PRINT(N: integer);
begin

writeln(’Process ’,N:1,’ awakes’)
end; (* PRINT *)

end; (* SCREEN *)

FC-LRM-6/1.2 - 40 -

Pascal-FC LRM

process DRIVER;
(* provides the clock "ticks" *)

begin
repeat

sleep(1);
ALARM.TICK

forever
end; (* DRIVER *)

process type SLEEPERTYPE(N: integer);
begin

repeat
ALARM.SLUMBER(n);
SCREEN.PRINT(N)
(* get up and go to work *)

forever
end; (* SLEEPERTYPE *)

var
SLEEPERS: array[1..PMAX] of SLEEPERTYPE;
PLOOP: integer;

begin
cobegin

DRIVER;
for PLOOP := 1 to PMAX do
SLEEPERSPLOOP

coend
end.

6.5. Process States and Transitions
This section summarises the effects on process states of the features described in this
chapter.

1. A process that attempts to enter a resource that is already occupied becomes
"suspended" at the resource boundary.

2. A process that calls a guarded procedure whose guard expression evaluates to
false becomes "suspended" on the barrier of that procedure.

3. A process suspended on a procedure barrier may become executable when a process
leaves the resource and the guard expression evaluates to true.

4. A process suspended on a resource boundary may become executable when a
process leaves the resource and there is no process suspended on a guarded
procedure of the resource whose guard evaluates to true

FC-LRM-6/1.2 - 41 -

Pascal-FC LRM

7. RENDEZVOUS BY CHANNEL
Semaphores, monitors and resources provide forms of inter-process communication
based on shared memory. An alternative model for such communications is based on
message-passing. Pascal-FC includes two forms of message-passing protocol. In both
cases, communicating processes take part in a rendezvous. The essence of a rendezvous
is that the process which arrives first is suspended until the other party arrives. When the
rendezvous is complete, the processes resume their separate execution.

In this chapter, we introduce the first of these schemes, which is similar to the
model used in the language, occam 210. In this scheme, messages are sent between
processes by means of channels.

7.1. Channels
A channel is the intermediary for a rendezvous between one sender and one receiver.
Channels are strongly typed: the declaration of a channel variable or channel type
specifies a base type, and only data of this type may be sent or received via such a
channel. The base type of a channel may be any of the types allowed in Pascal-FC
(including structured types). The effects of sending and receiving channels, processes,
semaphores and conditions are not defined by the language.

7.1.1. Declaration and use of channels
Channel objects are introduced by var declarations. A special form of type declaration
has been introduced for this purpose, whose syntax is as follows:

channel_type ::=

channel of type

NOTES

1. Channel types and objects can only be declared in a global declaration part.

2. Channel objects may be passed as parameters to subprograms, but they must have
been formally declared as var parameters.

7.1.1.1. Examples
Typical declarations involving channel types and objects are:

FC-LRM-7/1.1 - 42 -

Pascal-FC LRM

type
chan = channel of integer;
buffer = array [1..buffersize] of char;
link = channel of buffer;

var
ch1, ch2: chan;
coms: array [1..10] of link;

7.1.2. Operations on channels
Two channel operations, send and receive, are defined. The syntax is as follows:

channel_operation ::=

send | receive

send ::=

channel_variable ! expression

receive ::=

channel_variable ? variable

NOTES

1. Channels are strongly typed. In both send and receive operations, the right-hand
operand must have an equivalent type to the base type for the left-hand operand.

2. The effects of sending and receiving processes, semaphores, conditions and
channels are not defined.

3. It is a run-time error to have multiple senders or multiple receivers concurrently
active on a given channel.

7.2. The type synchronous
For synchronisation-only communication, where it is not required to pass data from one
process to another, a data type, synchronous has been introduced. This identifier
may be used in type and object declarations. A pre-defined variable, any, is also
implicitly declared in every Pascal-FC program.

Objects of this type have no values associated with them. The only allowable
operations are the two channel operations. These are defined to have no effects on their
synchronous operands. Hence, although the programmer can declare variables of this
type, it is unnecessary to do so, as any can be used on the right-hand side of all channel
operations involving synchronous channels.

FC-LRM-7/1.1 - 43 -

Pascal-FC LRM

7.3. An Example: Unbuffered Producer-Consumer
Because the send and receive operations effect a rendezvous, simple process
synchronisation is straightforward. In the following program, a producer generates
characters which are then consumed by a second process.

program procon1;

var link: channel of char;

process producer;

var local: char;

begin
repeat

(* generate character *)
link ! local

forever
end; (* producer *)

process consumer;

var local: char;

begin
repeat

link ? local;
(* consume character *)

forever
end; (* consumer *)

begin (* main *)
cobegin

producer;
consumer

coend
end.

7.4. Process States and Transitions
This section summarises the effects on process states of the features described in this
chapter.

1. A process that attempts a send or receive operation on a channel on which there is
no pending call becomes "suspended" if the channel is not mapped to a source of

FC-LRM-7/1.1 - 44 -

Pascal-FC LRM

interrupts (see Chapter 11) and "awaiting interrupt" if it is so mapped.

2. A process blocked on a channel may become executable when another process has
carried out the complementary channel operation on the channel or (in the case of a
channel mapped to a source of interrupts) when an appropriate interrupt occurs.

FC-LRM-7/1.1 - 45 -

Pascal-FC LRM

8. ADA-STYLE RENDEZVOUS
A subset of the Ada inter-process communication facilities has been implemented in
Pascal-FC. These include the provision of entries (but not entry families), entry calls
(not conditional or timed) and accept statements. These features provide for a basic
Ada-style rendezvous. A selective waiting construct is also provided, but this is
described in Chapter 9.

8.1. Process Entries
The syntax of an entry declaration is as follows:

entry_declaration ::=

entry identifier [formal_part] [mapping_indicator];

The formal parameters have the same form as for a subprogram and may, therefore,
include value and var parameters. Whereas value parameters can only be used to pass
information into the called process, var parameters may be used to pass information
either way.

The significance of the mapping indicator will be considered in Chapter 11.

NOTE

An arbitrary number of processes may at any time be suspended on an entry. The
language does not define any particular queuing discipline on entries.

8.2. The accept statement
The form of the accept statement is:

accept_statement ::=

accept entry_identifier [formal_part] do
statement

NOTES

1. An accept statement may only be placed in the statement part of a process (ie,
not within a subprogram nested in a process).

2. The formal part must correspond exactly with the one given for that entry in the
entry declaration: the number, type and mode of the parameters, and their
identifiers, must match.

3. An accept statement opens a new scope in the same way as a subprogram, and
the formal parameters are only visible within the enclosed statement.

4. An accept statement for an entry E1 may be nested inside an accept for an
entry E2, but not within an accept for E1 itself (either directly or indirectly).

FC-LRM-8/1.1 - 46 -

Pascal-FC LRM

8.3. Entry calls
The form for a call on a process entry is:

entry_call ::=

process_variable.entry_identifier [(actual_parameters)]

NOTES

1. The actual parameters must be compatible in number, type and mode with the
formal parameters declared for that entry.

2. It is a run-time error to make an entry call on a process that was never made
executable, or has already terminated.

8.4. Use of process provides declaration
It is convenient to consider this feature here, because it was introduced to facilitate
certain forms of process interaction when using the Ada-style rendezvous.

There are applications when an instance of a process type wishes to rendezvous
with another instance of the same type. The processes may, for example, be elements in
a "pipeline". In outline, the process declaration might be as follows:

process type p(pn: integer);

entry e1(n: integer);

begin
..

(* call entry e1 of instance pn+1 *)

..
end;

The syntax for an entry call demands a process variable identifier, not a type
identifier. Hence, in order to code the entry call in the statement part of the process type,
variables of the type must already have been declared at this point. Until we have
declared the process type, however, we cannot declare any process variables of that type.
The circularity is resolved by use of the provides declaration, whose syntax was
given in Chapter 3. The purpose of this form of declaration is to pre-declare the interface
that the process has with other parts of the program: this consists of any parameters and
entries. Once such a declaration has been made, variables of the type can be declared.
Hence, in outline, the above requirements can be met by the following:

FC-LRM-8/1.1 - 47 -

Pascal-FC LRM

process type p(pn: integer) provides
entry e1(n: integer);

end;

var
elements: array[1..pipelength] of p;

process type p(pn: integer);

entry e1(n: integer);

begin
..

elements[pn+1].e1(k)

..

end;

8.5. Process States and Transitions
This section summarises the effects on process states of the features described in this
chapter.

1. A process that attempts an accept for an entry on which there are no pending
calls becomes "suspended" if the entry is not mapped to a source of interrupts (see
Chapter 11) or "awaiting interrupt" if it is so mapped.

2. A process blocked at an accept statement may become executable when another
process makes a call on that entry, or (in the case of an entry mapped to a source of
interrupts) when an appropriate interrupt occurs.

3. A process that attempts an entry call on an entry for which there is no pending
accept becomes "suspended" on that entry.

4. A process that makes a call on an entry for which there is a pending accept
becomes "suspended" on that entry following the transfer of parameters to the called
process and the unblocking of the process suspended at the accept.

5. A process suspended at an entry call may become executable following the
completion of an accept statement for that entry. (including the transfer of var
parameters back to the caller)

FC-LRM-8/1.1 - 48 -

Pascal-FC LRM

9. SELECTIVE WAITING
Selective waiting in Pascal-FC is accomplished by use of the select statement, which
is similar in many ways to the Ada select. This structutre is not restricted to the
Ada-style of inter-process communication, however: it can also be used with channel
alternatives.

9.1. The select statement
The syntax of the select statement is given below.

select_statement ::=

[pri] select
select_alternative
{;or select_alternative}

[else_part]
end

select_alternative ::=

channel_alternative
| replicate_alternative
| accept_alternative
| timeout_alternative
| terminate

channel_alternative ::=

[guard]
channel_operation
[;statement_sequence]

guard ::=

when boolean_expression =>

replicate_alternative ::=

for variable := expression to expression replicate
channel_alternative

FC-LRM-9/1.1 - 49 -

Pascal-FC LRM

accept_alternative ::=

[guard]
accept_statement
[;statement_sequence]

timeout_alternative ::=

[guard]
timeout integer_expression
[;statement_sequence]

else_part ::=

else statement_sequence

NOTES

1. A select statement containing accept alternatives can only be used in the
statement part of a process (not in a subprogram nested within a process).

2. The ttimeout, terminate and else parts are mutually exclusive. It is a
compile-time error to mix these alternatives within a single select statement.

3. The variable in the replicate alternative (known as the "replicator index") and
the two expressions must all be of equivalent ordinal types.

4. The value of the replicator index may be accessed anywhere in the replicate
alternative. This type of alternative is intended to be used in association with arrays
of channels. The index value is determined at run-time by the index of the channel
with which a rendezvous is selected for that execution of the select, but it has no
defined value on completion of the select statement.

9.2. Notes on the Semantics of the select Statement

9.2.1. Indivisibility
The execution of the select statement begins with the evaluation of guards. This
phase is not indivisible. There follows an indivisible phase during which all channels or
entries with open guards are checked for pending calls.

9.2.2. Order of checking for pending calls
The select statement exists in two basic forms: the pri and the "plain" forms. In
the pri form, the order in which open alternatives are checked follows their textual
order. In the "plain" form, the implementation may use any convenient order (including
textual order).

FC-LRM-9/1.1 - 50 -

Pascal-FC LRM

9.2.3. Execution of select with all guards closed
It is a run-time error to attempt to execute a select statement in which there is no
alternative with an open guard, unless there is an else part. Alternatives which have
no guard (including all terminate alternatives) are considered always open.

9.2.4. The else part
The statements of the else part are executed if either of two conditions is satisfied:

(1) there are no open guards;

(2) there is at least one open guard, but none of the associated channels or entries has a
pending call.

9.2.5. The terminate alternative
A process which becomes suspended on a select statement with a terminate
alternative enters a special state ("termstate"). The process may become executable again
if a call is made on one of the open alternatives. On the other hand, the process may
make a direct transition to "terminated" if all other processes in the program are either
terminated or themselves in termstate.

9.3. Examples

9.3.1. The select statement with channel alternatives
The following outline illustrates the use of the select statement with channels and the
replicate alternative. It demonstrates the use of a server process (SCREEN) to
enforce mutually exclusive access to the terminal screen.

program screenchan;

(*

Mutual exclusion using channels

*)

const
max = 5;

type
link = channel of synchronous;

var
coms: array[1..max] of link;

process type clienttype(n: integer);
begin

coms[n] ! any
end;

FC-LRM-9/1.1 - 51 -

Pascal-FC LRM

var
clients: array[1..max] of clienttype;

process screen;
var

i: integer;
begin

repeat
select
for i := 1 to max replicate
coms[i] ? any;
writeln(’Message from process ’,i);

or
terminate

end
forever

end;

var
i: integer;

begin
cobegin

screen;
for i := 1 to max do

clientsi
coend

end.

9.3.2. The select statement with accept alternatives
The following is a solution to the bounded buffer problem using the Ada style of inter-
process communication.

program pcon5;

(* buffered producer-consumer with ada rendezvous *)

process buffer;
entry take(var ch: char);
entry put(ch: char);

const
buffmax = 4;

FC-LRM-9/1.1 - 52 -

Pascal-FC LRM

var
store: array[0..buffmax] of char;
nextin, nextout, count: integer;

begin
nextin := 0;
nextout := 0;
count := 0;
repeat

select
when count <> 0 =>

accept take(var ch: char) do
ch := store[nextout];

count := count - 1;
nextout := (nextout + 1) mod (buffmax + 1);

or
when count <= buffmax =>

accept put(ch: char) do
store[nextin] := ch;

count := count + 1;
nextin := (nextin + 1) mod (buffmax + 1);

or
terminate

end (* select *)
forever

end; (* buffer *)

process producer;
var

local: char;
begin

for local := ’a’ to ’z’ do
buffer.put(local)

end; (* producer *)

FC-LRM-9/1.1 - 53 -

Pascal-FC LRM

process consumer;
var

local: char;
begin

repeat
buffer.take(local);
write(local)

until local = ’z’;
writeln

end; (* consumer *)

begin
cobegin

producer;
consumer;
buffer

coend
end.

9.4. Process States and Transitions
This section summarises the effects on process states of the features described in this
chapter.

1. A process that attempts to execute a select on which there are no open
alternatives with pending calls becomes blocked unless there is an else part. (In
the special case that there are no open guards and no else part, a run-time error
must be signalled).

2. A process that becomes blocked on a select with a terminate alternative
enters the "termstate" state. It may return to the "executable" state if a call occurs
on an open alternative or (in the case of a ,channel or entry mapped to a source of
interrupts) when an appropriate interrupt occurs. It will prroceed directly to the
"terminated" state if the run-time system detects that all processes are in "termstate"
or are already "terminated".

3. A process that becomes blocked on a select with a timeout alternative is
considered "delayed". It may become executable when the specified time has
elapsed, or when a call occurs on an open alternative, or (in the case of a channel or
entry mapped to a source of interrupts) when an appropriate interrupt occurs.,
whichever of these events occurs first.

4. A process that becomes blocked on a select with neither terminate nor
timeout alternatives becomes "suspended" if none of the open-guarded
alternatives is mapped to a source of interrupts, or "awaiting interrupt" if one or
more such alternatives is so mapped.

FC-LRM-9/1.1 - 54 -

Pascal-FC LRM

10. TIMING FACILITIES
The timing facilities defined as part of Pascal-FC are primarily intended for
implementations designed for real-time programming. However, some elementary
implementation of these facilities will be provided by all versions of Pascal-FC. As this
is one of the areas where there are important implementation dependencies, the relevant
User Guide should be consulted.

10.1. The system clock
The timing facilities depend on a system clock, which will be provided as part of the
Pascal-FC run-time environment. All timings in Pascal-FC programs are expressed in
system clock units. The duration of a system clock unit is implementation-dependent,
and need not necessarily be a constant real-time unit.

10.2. Outline of timing facilities
There are three timing facilities:

1. A standard function, clock, which can be used to examine the current system
time in clock units;

2. A standard procedure, sleep, which can be used to delay a process for a specified
number of clock units;

3. A timeout alternative to the select statement.

10.2.1. The clock function
This is a function of no arguments, returning an integer result. This represents the
number of system clock units elapsed since some arbitrary zero (not necessarily the start
of execution of the current program).

10.2.2. The sleep procedure
This procedure takes a single integer expression as an argument, which is the number of
clock units for which the calling process should be delayed (the sleep procedure may
also be called by the main program thread, which is not strictly a process in Pascal-FC).

NOTES

1. There is no guarantee that the process will indeed be suspended for exactly the time
specified: the process should become "executable" when the period elapses, but
there may not be a free processor.

2. If a negative or zero value is given as the argument to sleep, the calling process
can be considered to make an instantaneous transition from "executable" to
"delayed" and back to "executable". The scheduler must be invoked when such a
call is executed.

FC-LRM-10/1.1 - 55 -

Pascal-FC LRM

10.2.3. The timeout alternative to the select statement
One or more of the alternatives in a select statement may be timeout alternatives.
If no calls arrive on any of the open entries or channels of the select before the period
specified has expired, the timeout alternative becomes active (provided that it has an
open guard), and any statements following it are executed. (If there are no statements,
then the select statement is exited).

It is possible for a select statement to have several timeout alternatives with
open guards. In such a case, the one with the smallest specified period will be the
effective one. If several such alternatives become simultaneously due, the language does
not specify which becomes effective.

Negative and zero values may be specified. The same remarks apply as for negative
and zero arguments to the sleep procedure.

10.3. An example using sleep and timeout
The following program should be self-explanatory.

program sleeptest2;

(* illustrates timeout alternative to select *)

var
coms: channel of synchronous;

process q;
var

off: boolean;
begin

off := false;
repeat

select
coms ? any;
writeln(’received’);

or
timeout 20;
off := true;
writeln(’timed out’)

end
until off

end;

FC-LRM-10/1.1 - 56 -

Pascal-FC LRM

process p;
var

count: integer;
begin

count := 0;
repeat

sleep(10);
count := count + 1;
write(’sent ’);
coms ! any

until count = 10;
end;

begin
cobegin

q; p
coend

end.

The following exemplifies the output from this program.

sent received
sent received
sent received
sent received
sent received
sent received
sent received
sent received
sent received
sent received
timed out

10.4. Process states, deadlock and the timing facilities
A process that becomes "delayed" by executing sleep or by becoming blocked on a
select with a timeout alternative will eventually become "executable" again (when
the time has elapsed). The scheduler, therefore, must not indicate that a program has
become deadlocked as long as there is at least one "delayed" process.

FC-LRM-10/1.1 - 57 -

Pascal-FC LRM

11. LOW-LEVEL FACILITIES
The facilities described in this chapter are designed for implementations intended for
real-time programming. Their purpose is to enable hardware device-drivers to be written,
including the manipulation of I/O device registers and interrupt-handling. The relevant
features are:

• The type, bitset, which is a useful type for modelling I/O device Control and
Status Registers (CSRs).

• Record offset indicators, which are useful in modelling multi-register I/O devices.

• Mapping indicators, which are used to identify I/O devices and for interrupt-
handling.

11.1. The type bitset
The values of this type are sets of 0 .. (n - 1), where the value of n is
implementation-dependent. The operators for this type are the set operators familiar in
standard Pascal. These implement union, intersection, set difference, and a test for set
membership, as well as the assignment and relational operators.

11.1.1. Declaration
As bitset has been introduced as a standard type, objects of this type are introduced
by var declarations. The following declaration illustrates the use of the type bitset
to represent a device CSR.

var
incsr: bitset;

11.1.2. Assigning values
A bitset literal can be used in expressions involving this type. Suppose, for example, that
Bit 6 of the incsr declared above is the "interrupt enable" bit. The following
assignment would set this bit to 1, with all other bits cleared to zero:

incsr := [6]

The empty set notation can be used to clear all bits, as follows:

incsr := []

The set literal notation can be used to set several bits in a single statement. For
example, to set bits 6,4,3,1 and 0, leaving the remainder cleared to zero:

incsr := [6,4,3,1,0]

If a large number of bits is to be set, the set literal notation can be tedious. Hence,
Pascal-FC provides a shorthand in the form of a type transfer function, bits, which is
described below in the section on type transfer functions.

FC-LRM-11/1.1 - 58 -

Pascal-FC LRM

11.1.3. Set union operator
In the following example, we wish to set bits 6,4,3,1 and 0, leaving others unaffected
(which is not necessarily the same as leaving them cleared to zero). The following
statement would achieve this:

incsr := incsr + [6,4,3,1,0]

Here, the set union operator ("+") has been used. In effect, it performs a bitwise or
operation on its two operands.

11.1.4. Set intersection operator
A common requirement is to examine the state of several bits in a device register,
ignoring the states of the others. For example, the following statement copies the least
significant four bits of incsr into temp.

temp := incsr * [3,2,1,0]

The set intersection operator ("*") in effect performs a bitwise and operation on its two
operands.

11.1.5. Set difference operator
In the following example, we wish to turn Bits 3 and 6 off, leaving the remainder
unaffected. The set difference operator ("-") is used for this purpose, as follows:

incsr := incsr - [3,6]

11.1.6. Testing set membership
The state of an individual bit can be tested using the in operator. An expression
involving this operator has the following form:

integer_expression in bitset_expression

The value of such an expression is of boolean type.

For example, we can test the value of Bit 7 and take appropriate action in the
following way:

if 7 in incsr then
action when Bit 7 is 1

else
action when Bit 7 is 0

11.1.7. Relational operators and the type bitset
All the relational operators can be used with the bitset type. Operators such as ">"
are used to test for inclusion of one bitset in another.

11.1.8. Type transfer functions
Two functions are provided for type transfer between bitsets and integers. The function
bits maps integers to bitsets. As previously noted, this can be a useful shorthand

FC-LRM-11/1.1 - 59 -

Pascal-FC LRM

notation when assigning values to bitsets. To set Bits 0 to 7, for example, we may write:

bs := bits(16#ff)

where bs is a bitset variable. The inverse function, int, maps from bitsets to integers.
Hence:

i := int(bs)

where i is an integer variable.

NOTES

1. Because the number of bits in a bitset is implementation-dependent, the set of
integers involved in these mapping functions will also vary between
implementations.

2. The mapping between bitsets and decimal integers is implementation-dependent.

3. An expression of type bitset may not appear as a parameter to the read or
readln procedures, but it may appear as a parameter to write or writeln.
The format in which the set value is output is implementation-dependent.

11.2. Addressing Device Registers with Mapping Indicators
One of the applications of mapping indicators is to permit device registers to be modelled
as variables in the Pascal-FC program. Such registers may then be modified and read by
using assignment statements.

Suppose that a device-driver is required for a terminal. Consider the following
declaration:

var
inbuff: char;

The variable, inbuff will be placed by the compiler somewhere in the machine’s
memory map, but the programmer does not know where. If inbuff is a hardware
register, the compiler must be forced to map the variable to a specific place. This is one
of the applications of mapping indicators.

The syntax of a variable declaration in Pascal-FC Ci is:

variable_declaration ::=

var

variable_list : type;
{variable_list : type;}

FC-LRM-11/1.1 - 60 -

Pascal-FC LRM

variable_list ::=

identifier [mapping_indicator]
{,identifier [mapping_indicator]}

mapping_indicator ::=

at integer_constant

The mapping indicator provides the necessary information for the compiler to carry out
the mapping. The interpretation of this indicator is implementation-dependent: it may,
for example, be a port address, or it may be a memory address in a system using
memory-mapped I/O. An implementation is free to impose any restrictions on the use of
such indicators, and is permitted to ignore them. The relevant User Guide will provide
information on any such restrictions.

If the input character buffer for the terminal controller was located at hexadecimal
800001, then the following declaration could be written in Pascal-FC:

var
inbuff at 16#800001: char;

References to inbuff would then read the character currently held in the input buffer.

The terminal controller output character buffer may reside at hexadecimal 800003.
The following declaration expresses this:

var
outbuff at 16#800003: char;

Assignments, such as:

outbuff := ’a’

can then be made.

In the event that the variable which has a mapping indicator is an array or record,
the indicator specifies the base of the structure.

11.3. Use of Record Offset Indicators
Consider again the terminal controller used in previous examples. In addition to the two
character buffers, let us suppose that there are also two control and status registers (one
for input and one for output). Individual bits in the control and status registers have
particular significance defined by the hardware design. As there is a requirement to
manipulate individual bits, the control and status registers will be represented as bitsets.

There may be several different terminal controllers in a system, each with the same
form, ie:

FC-LRM-11/1.1 - 61 -

Pascal-FC LRM

input csr at base address + 0
input character buffer at base address + 1
output csr at base address + 2
output character buffer at base address + 3

A suitable Pascal data structure for such an object would be a record. A record type
could be declared as follows:

type slu =
record

incsr: bitset;
inbuff: char;
outcsr: bitset;
outbuff: char

end;

Individual instances could then be declared, and mapped onto the appropriate physical
addresses, as follows:

var
term1 at 16#800000, term2 at 16#800010: slu;

This example assumes that bitsets and characters occupy a single storage unit in the
implementation concerned.

The requirements are often somewhat more complex. In the Motorola 68000, for
example, the registers in a peripheral controller are likely to occupy odd addresses. The
above type declaration would not be suitable for such a case, because the fields would be
mapped onto consecutive addresses (ie, some odd and some even). Moreover, modern
peripheral controller devices are often complex and contain a large number of registers.
Only a small subset of these registers, located at widely differing offsets from the base
address of the device, may be of interest in a particular application. Some facility is
required to indicate that the record fields are not to be mapped to consecutive addresses,
but to any arbitrary offsets, In Pascal-FC, an offset indicator may be included in the
declaration of a record field to cater for this.

For example, the following would cater for the 68000-style device:

type slu =
record

incsr at offset 1: bitset;
inbuff at offset 3: char;
outcsr at offset 5: bitset;
outcsr at offset 7: char

end;

11.4. Interrupts
Three of the inter-process communication primitives (semaphores, channels and process
entries) provided in Pascal-FC may be mapped on to the target machine’s interrupts. In

FC-LRM-11/1.1 - 62 -

Pascal-FC LRM

each case, the target hardware is analogous to an implicit process which communicates
with the software process which the programmer has written. The interpretation of the
information is implementation-dependent. It may, for example, indicate an interrupt
vector, but this is not a required interpretation.

11.4.1. Mapping semaphores to interrupt sources
In this case, a mapping indicator is used in the semaphore declaration, as follows:

var
timsem at 64: semaphore;

where the supplied constant specifies the source of the interrupt. The software process
must execute the semaphore wait operation. The hardware will, in effect, perform the
corresponding signal operation when an interrupt is generated by the specified source.

11.4.1.1. Program example
The following is a simple example. Suppose that a hardware timer has been programmed
to generate interrupts through vector 64 at the rate of one per second. On receiving an
interrupt, the timer driver process outputs the current value of the counter.

program ticks1;

(* produce 1-second ticks using timer device *)

(* semaphore version *)

const
intvec=64;

var
rtclock at 16#800021: timregs; (* a suitable record type *)
timsem at intvec: semaphore;

procedure initialise;

(* set up timer to interrupt at 1Hz *)

begin
suitable initialisation code

end; (* initialise *)

FC-LRM-11/1.1 - 63 -

Pascal-FC LRM

process timer;

var
local: integer;

begin
local := 0;
repeat

wait(timsem);
clear interrupt condition;
local := local + 1;
writeln(local)

until local = 10;
stop clock

end; (* timer *)

begin (* main *)
initial(timsem,0);
initialise;
cobegin

timer
coend

end.

11.4.2. Mapping channels to interrupt sources
Mapping a channel onto an interrupt source is again accomplished by using a mapping
indicator in a variable declaration. The software process which is intended to respond to
the interrupt is then written to make a rendezvous on the channel concerned. The "other
party" in the rendezvous is the hardware.

NOTES

1. The implementation may treat all such rendezvous as though the channel involved
were of type synchronous, but this is not a requirement.

2. The language does not specify whether interrupt sources must be "senders" or
"receivers".

11.4.2.1. Program example
The following is a channel version of the program used to illustrate the mapping of
semaphores on to interrupts:

FC-LRM-11/1.1 - 64 -

Pascal-FC LRM

program ticks3;

(* produce 1-second ticks using timer device *)

(* channel version *)

const
intvec=64;

var
rtclock at 16#800021: timregs; (* a suitable record type *)
timchan at intvec: channel of synchronous;

procedure initialise;

(* set timer interrupt vector and preset *)

begin
suitable initialisation code

end; (* initialise *)

process timer;

var
local: integer;

begin
local := 0;
repeat

timchan ? any;
clear interrupt condition;
local := local + 1;
writeln(local)

until local = 10;
stop clock

end; (* timer *)

FC-LRM-11/1.1 - 65 -

Pascal-FC LRM

begin (* main *)
initialise;
cobegin

timer
coend

end.

11.4.3. Mapping process entries to interrupt sources
In this case, a mapping indicator is used in the entry declaration. In effect, a rendezvous
takes place between the software process which possesses the entry, and the hardware,
which makes a call to the entry.

NOTE

The use of any parameters to the entry is implementation-dependent.

11.4.3.1. Program example
The following is another version of the program used hitherto for illustration:

program ticks3;

(* produce 1-second ticks using timer device *)

(* ada version *)

const
intvec=64;

var
rtclock at 16#800021: timregs; (* a suitable record type *)

procedure initialise;

(* set timer interrupt vector and preset *)

begin
suitable initialisation code

end; (* initialise *)

FC-LRM-11/1.1 - 66 -

Pascal-FC LRM

process timer;

entry interrupt at intvec;

var
local: integer;

begin
local := 0;
repeat

accept interrupt do
clear interrupt condition;

local := local + 1;
writeln(local)

until local = 10;
stop clock

end; (* timer *)

begin (* main *)
initialise;
cobegin

timer
coend

end.

11.5. Interrupts and process states
Processes that are blocked on semaphores, channels or entries are considered "awaiting
interrupt" (unless they are considered "delayed"). Hence, the run-time system must not
indicate deadlock as long as there is at least one process so blocked.

FC-LRM-11/1.1 - 67 -

Pascal-FC LRM

APPENDIX A - CHARACTER SET
The language does not define the set of characters that can appear in character or string
literals, but (apart from those contexts), the character set consists of the following:

• The letters A to Z and a to z.

• The decimal digits 0 to 9.

• The space and horizontal tabulation character.

• An end-of-line marker, which is implementation-dependent.

• The following symbols:

() [] { } + - * / : ; , . < > = ! ? # % ’

FC-LRM-A/1.1 - 68 -

Pascal-FC LRM

APPENDIX B - RESERVED WORDS

accept and array
at begin case
channel cobegin coend
const div do
else end entry
export for forever
forward function guarded
if in mod
monitor not null
of offset or
pri procedure process
program provides record
repeat replicate requeue
resource select terminate
then timeout to
type until var
when while

FC-LRM-B/1.1 - 69 -

Pascal-FC LRM

APPENDIX C - PRE-DEFINED DATA TYPES
The following type identifiers are pre-defined:

char integer real boolean
semaphore condition synchronous bitset

Semaphore, condition, synchronous and bitset types were considered respectively in
Chapters 4, 5, 7 and 11. This Appendix provides a brief introduction to the first four
types for readers not familiar with Pascal.

1. The type char
Objects and constant of type char may contain a single character value.

1.1. Set of values
The set of values for objects of this type is not defined by the language.

1.2. Operators
The set of permissible operators is:

1. Assignment.

2. Certain pre-defined subprograms (see Appendix D).

3. The relational operators:

< <= > >+ <> =

Operators such as "<" refer to the collating sequence of characters for the
implementation, which is not defined by the language.

2. The type boolean

2.1. Set of values
The permissible values for objects of this type consists of the two pre-defined identifiers,
true and false.

2.2. Operators
The operators consist of:

1. Assignment.

2. The binary operators and and or, and the unary operator not.

3. Certain pre-defined subprograms (see Appendix D).

4. The relational operators. For purposes of the inequality operators, false is
defined to be "less than" true.

FC-LRM-C/1.1 - 70 -

Pascal-FC LRM

3. The type integer

3.1. Set of values
The set of permissible values is implementation-defined, but there must be an unbroken
set from the most negative to the most positive. A pre-defined constant, maxint (of
type integer) has the most positive value for the implementation.

3.2. Operators
The set of operators consists of:

1. Assignment.

2. The unary operators + and -, which have the usual interpretation.

3. The binary operators, + - * / for addition, subtraction, multiplication and
division with truncation respectively.

4. The integer division operators div and mod for quotient and modulus
respectively.

5. Certain pre-defined subprograms (see Appendix D).

6. The relational operators, which have the usual interpretation.

4. The type real
Objects of this type are floating-point real numbers. An implementation is not required
to support this type.

4.1. Set of values
The set of values is implementation-dependent.

4.2. Operators
The set of operators is similar to that for integer, except that the div and mod
operators are not permitted, and the set of pre-defined subprograms is different (see
Appendix D).

FC-LRM-C/1.1 - 71 -

Pascal-FC LRM

APPENDIX D - PRE-DEFINED SUBPROGRAMS

1. Mathematical Functions
Table D/1 lists the mathematical functions pre-defined in Pascal-FC. Note that those
involving real arguments or results will not be included in an implementation that does
not provide the type real________________________________

name argument result__
abs real/integer real/integer________________________________
arctan real real________________________________
cos real real________________________________
exp real real________________________________
ln real real________________________________
odd integer boolean________________________________
sin real real________________________________
sqr real/integer real/integer________________________________
sqrt real/integer real________________________________LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

Table D/1: Mathematical Functions

2. Ordering Functions
All ordinal types are ordered sets of values. Table D/2 lists the ordering functions, which
are applicable to ordinal types.__________________________

name argument result__
ord ordinal integer__________________________
pred ordinal ordinal__________________________
succ ordinal ordinal__________________________L
L
L
L
L
L

L
L
L
L
L
L

L
L
L
L
L
L

L
L
L
L
L
L

Table D/2: Ordering Functions

NOTES

1. pred is not defined for the first value of a type, and succ is not defined for the
last.

2. When applied to integers, the ord function returns the value of the argument.

3. For types other than integer, ord returns the value 0 for the first member of the set.

FC-LRM-D/1.1 - 72 -

Pascal-FC LRM

4. The type boolean is the ordered set {false, true}.

3. Type Transfer Functions
Table D/3 sets out the functions provided for transfer between types.__________________________

name argument result__
bits integer bitset__________________________
chr integer char__________________________
int bitset integer__________________________
round real integer__________________________
trunc real integer__________________________LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

Table D/3: Type Transfer Functions

4. Inter-process Communication
Table D/4 lists the subprograms concerned with inter-process communication, which
have been described in the chapters specified in the table.____________________________

name form chapter__
delay procedure 5____________________________
empty function 5____________________________
initial procedure 4____________________________
resume procedure 5____________________________
signal procedure 4____________________________
wait procedure 4____________________________L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

Table D/4: Inter-Process Communication Subprograms

5. Input and Output
Input and output facilities are provided by two boolean functions and 4 procedures.

5.1. The eoln and eof functions
In Pascal-FC, these are both boolean functions of no arguments. eoln returns
true when the next character in the input stream is the end-of-line marker and false
otherwise. eof returns true when the next character in the input stream is the end-
of-file marker and false otherwise. The treatment of end-of-file is implementation-
dependent.

FC-LRM-D/1.1 - 73 -

Pascal-FC LRM

5.2. The read and readln procedures
A call to the read procedure is of the form:

read(variable{,variable})

The only permissible types for the arguments are: char, integer and real.

A call to the readln procedure has the form:

readln[(variable{,variable})]

The same restrictions are applied to the types of the arguments. The readln procedure
consumes characters, up to and including the next end-of-line character, after satisfying
its arguments.

5.3. The write and writeln procedures
A call to these procedures has the form:

write[ln] [(output_value format{,output_value format})]

output_value ::=

expression | string

format ::=

:field_width_expression:decimal_places_expression
| %base_expression

string ::=

’{printing_character}’

NOTES

1. The arguments to these procedures may be of types char, integer, real,
semaphore or bitset, in addition to string literals.

2. The decimal places expression is only applicable to arguments of type real.

3. The implementation may apply restrictions to the use of based output, which is in
any case only defined for numeric types.

4. The output format for arguments of type bitset is not defined.

6. Timing
This category consists of the procedure, delay, and the function,clock. These were
described in Chapter 10.

FC-LRM-D/1.1 - 74 -

Pascal-FC LRM

7. Miscellaneous

7.1. The random function
This is a function of one integer parameter. If n is the parameter, the function returns a
value in the range 0 .. abs(n).

7.2. The priority procedure
This procedure is provided to control process priority, and it was introduced in Chapter 3.

FC-LRM-D/1.1 - 75 -

Pascal-FC LRM

8. APPENDIX E - COLLECTED SYNTAX

accept_alternative

accept_alternative ::=

[guard]
accept_statement
[;statement_sequence]

accept_statement

accept_statement ::=

accept entry_identifier [formal_part] do
statement

actual_parameters

actual_parameters ::=

expression {,expression}

add_op

add_op ::=

+ | - | or

anonymous_process_type_declaration

anonymous_process_type_declaration ::=

[provides_declaration]
process_body_declaration

FC-LRM-E/1.2 - 76 -

Pascal-FC LRM

array_subscript

array_subscript ::=

"["ordinal_expression{,ordinal_expression}"]"

array_type

array_type ::=

array index_type{index_type} of type

assignment_statement

assignment_statement ::=

variable := expression

base

base ::=

unsigned_integer

based_integer

based_integer ::=

base#digit_character{digit_character}

bitset_literal

bitset_literal ::=

"[""]"
| "["integer_expression{,integer_expression}"]"

FC-LRM-E/1.2 - 77 -

Pascal-FC LRM

case_alternative

case_alternative ::=

case_label{,case_label}:statement

case_label

case_label ::=

ordinal_constant

case_statement

case_statement ::=

case ordinal_expression of
case_alternative
{;case_alternative}

end

channel_alternative

channel_alternative ::=

[guard]
channel_operation
[;statement_sequence]

channel_operation

channel_operation ::=

send | receive

FC-LRM-E/1.2 - 78 -

Pascal-FC LRM

channel_type

channel_type ::=

channel of type

character_literal

character_literal ::=

’character’

compound_statement

compound_statement ::=

begin
statement_sequence
end

concurrent_statement

concurrent_statement ::=

cobegin
statement_sequence
coend

constant

constant ::=

constant_identifier
| integer_literal
| real_literal
| character_literal

FC-LRM-E/1.2 - 79 -

Pascal-FC LRM

constant_declaration

constant_declaration ::=

const
identifier = constant;
{identifier = constant;}

decimal_integer

decimal_integer ::=

[+|-] unsigned_integer

declaration_part

declaration_part ::=

{
constant_declaration

| type_declaration
| variable_declaration
| procedure_declaration
| function_declaration

}

deferred_guarded_procedure_declaration

deferred_guarded_procedure_declaration ::=

forward_guarded_procedure_header
guarded_procedure_body

deferred_sequential_subprogram_declaration

deferred_sequential_subprogram_declaration ::=

procedure_header forward; procedure_stub
| function_header forward; function_stub

FC-LRM-E/1.2 - 80 -

Pascal-FC LRM

else_part

else_part ::=

else statement_sequence

empty_statement

empty_statement ::=

{white_space_character}

entry_call

entry_call ::=

process_variable.entry_identifier [(actual_parameters)]

entry_declaration

entry_declaration ::=

entry identifier [formal_part] [mapping_indicator];

enumeration_type

enumeration_type ::=

(identifier_list)

exponent_part

exponent_part ::=

["e"|"E"] [+|-] unsigned_integer

FC-LRM-E/1.2 - 81 -

Pascal-FC LRM

export_list

export_list ::=

export procedure_identifier_list;
{export procedure_identifier_list;}

expression

expression ::=

simple_expression {rel_op simple_expression}

factor

factor ::=

unsigned_integer
| based_integer
| unsigned_real
| constant_identifier
! variable
! function_identifier [(actual_parameters)]
| not factor
! bitset_literal
| (expression)

field_declaration

field_declaration ::=

identifier[offset_indicator]
{,identifier [offset_indicator]}
: type

field_list

field_list ::=

field_declaration {;field_declaration}

FC-LRM-E/1.2 - 82 -

Pascal-FC LRM

field_selector

field_selector ::=

.record_field_identifier

formal_part

formal_part ::=

([var] identifier_list : type_identifier
{;[var] identifier_list : type_identifier})

for_statement

for_statement ::=

for variable := expression to expression do
statement

forward_guarded_procedure_header

forward_guarded_procedure_header ::=

guarded procedure identifier[formal_part]
when boolean_expression;forward;

fractional_part

fractional_part ::=

.unsigned_integer

FC-LRM-E/1.2 - 83 -

Pascal-FC LRM

full_guarded_procedure_declaration

full_guarded_procedure_declaration ::=

guarded procedure identifier[formal_part]
when boolean_expression;
[declaration_part]

begin
statement_sequence

end;

full_sequential_subprogram_declaration

full_sequential_subprogram_declaration ::=

sequential_subprogram_header
[declaration_part]

begin
statement_sequence

end;

function_header

function_header ::=

function identifier [formal_part]
: type_identifier;

function_stub

function_stub ::=

function identifier;
[declaration_part]

begin
statement_sequence

end;

FC-LRM-E/1.2 - 84 -

Pascal-FC LRM

global_declaration_part

global_declaration_part ::=

{
constant_declaration

| type_declaration
| variable_declaration
| monitor_declaration
| resource_declaration
| procedure_declaration
| function_declaration
| process_type_declaration
| process_object_declaration

}

guard

guard ::=

when boolean_expression =>

guarded_procedure_body

guarded_procedure_body ::=

guarded procedure identifier;
[declaration_part]

begin
statement_sequence

end;

guarded_procedure_declaration

guarded_procedure_declaration ::=

full_guarded_procedure_declaration
| deferred_guarded_procedure_declaration

FC-LRM-E/1.2 - 85 -

Pascal-FC LRM

identifier

identifier ::=

letter{letter | digit}

identifier_list

identifier_list ::=

identifier{,identifier}

if_statement

if_statement ::=

if boolean_expression then
statement

[else
statement]

index_type

index_type ::=

"["ordinal_range{,ordinal_range}"]"

integer_literal

integer_literal ::=

decimal_integer
| based_integer

FC-LRM-E/1.2 - 86 -

Pascal-FC LRM

main_statement_part

main_statement_part ::=

statement_sequence
[;concurrent_statement
[;statement_sequence]]
| concurrent _statement
[;statement_sequence]

mapping_indicator

mapping_indicator ::=

at integer_constant

monitor_body

monitor_body ::=

begin
statement_sequence

monitor_call

monitor_call ::=

monitor_identifier.exported_procedure_identifier
[(actual_parameters)]

monitor_declaration

monitor_declaration ::=

monitor identifier;
export_list
[declaration_part]

[monitor_body]
end;

FC-LRM-E/1.2 - 87 -

Pascal-FC LRM

mul_op

mul_op ::=

* | / | div | mod | and

null_statement

null_statement ::=

null

offset_indicator

offset_indicator ::=

at offset integer_constant

ordinal_range

ordinal_range ::=

ordinal_constant..ordinal_constant

procedure_call

procedure_call ::=

procedure_identifier [(actual_parameters)]

procedure_header

procedure_header ::=

procedure identifier [formal_part];

FC-LRM-E/1.2 - 88 -

Pascal-FC LRM

procedure_stub

procedure_stub ::=

procedure identifier;
[declaration_part]

begin
statement_sequence

end;

process_activation

process_activation ::=

process_object_identifier[array_index][(actual_parameters)]

process_object_declaration

process_object_declaration ::=

anonymous_process_type_declaration
| process_variable_declaration

process_type

process_type ::=

process_identifier
| process_array_type

process_type_declaration

process_type_declaration ::=

[process_type_provides_declaration]
process_type_body_declaration

FC-LRM-E/1.2 - 89 -

Pascal-FC LRM

process_type_body_declaration

process_type_body_declaration ::=

process type identifier[formal_part];
{entry_declaration}
[declaration_part]

begin
statement_sequence

end;

process_type_provides_declaration

process_type_provides_declaration ::=

process type identifier[formal_part] provides
entry_declaration
{entry_declaration}

end;

process_variable_declaration

process_variable_declaration ::=

identifier_list : process_type;

program

program ::=

program_header
global_declaration_part

begin
main_statement_part

end.

FC-LRM-E/1.2 - 90 -

Pascal-FC LRM

program_header

program_header ::=

program identifier;

real_literal

real_literal ::=

[+|-] unsigned_real

record_type

record_type ::=

record
field_list

end

rel_op

rel_op ::=

< | <= | > | >= | = | <> | in

receive

receive ::=

channel_variable ? variable

repeat_limit

repeat_limit ::=

until boolean_expression
| forever

FC-LRM-E/1.2 - 91 -

Pascal-FC LRM

repeat_statement

repeat_statement ::=

repeat
statement_sequence

repeat_limit

replicate_alternative

replicate_alternative ::=

for variable := expression to expression replicate
channel_alternative

requeue_statement

requeue_statement ::=

requeue [resource_identifier.]
guarded_procedure_identifier[(actual_parameters)]

resource_body

resource_body ::=

begin
statement_sequence

resource_call

resource_call ::=

resource_identifier.
exported_procedure_identifier[(actual_parameters)]

FC-LRM-E/1.2 - 92 -

Pascal-FC LRM

resource_declaration

resource_declaration ::=

resource identifier;
export_list
resource_declaration_part

[resource_body]
end;

resource_declaration_part

resource_declaration_part ::=

{
constant_declaration

| type_declaration
| variable_declaration
| procedure_declaration
| function_declaration
| guarded_procedure_declaration

}

select_alternative

select_alternative ::=

channel_alternative
| replicate_alternative
| accept_alternative
| timeout_alternative
| terminate

FC-LRM-E/1.2 - 93 -

Pascal-FC LRM

select_statement

select_statement ::=

[pri] select
select_alternative
{;or select_alternative}

[else_part]
end

send

send ::=

channel_variable ! expression

sequential_subprogram_declaration

sequential_subprogram_declaration ::=

full_sequential_subprogram_declaration
| deferred_sequential_subprogram_declaration

sequential_subprogram_header

sequential_subprogram_header ::=

procedure_header
| function_header

simple_expression

simple_expression ::=

[+|-] term {add_op term}

FC-LRM-E/1.2 - 94 -

Pascal-FC LRM

statement

statement ::=

assignment_statement
| procedure_call
| for_statement
| repeat_statement
| while_statement
| if_statement
| case_statement
| compound_statement
| empty_statement
| concurrent_statement
| process_activation
| monitor_call
| channel_operation
| select_statement
| entry_call
| accept_statement
| resource_call
| requeue_statement
| null_statement

statement_sequence

statement_sequence ::=

statement
{;statement}

string

string ::=

’{printing_character}’

FC-LRM-E/1.2 - 95 -

Pascal-FC LRM

term

term ::=

factor {mul_op factor}

timeout_alternative

timeout_alternative ::=

[guard]
timeout integer_expression
[;statement_sequence]

type

type ::=

type_identifier
| enumeration_type
| array_type
| record_type
| channel_type

type_declaration

type_declaration ::=

type
identifier = type;
{identifier = type;}

unsigned_integer

unsigned_integer ::=

decimal_digit{decimal_digit}

FC-LRM-E/1.2 - 96 -

Pascal-FC LRM

unsigned_real

unsigned_real ::=

unsigned_integer exponent_part
| unsigned_integer fractional_part [exponent_part]

variable

variable ::=

variable_identifier{selector}

variable_declaration

variable_declaration ::=

var
variable_list : type;
{variable_list : type;}

variable_list

variable_list ::=

identifier [mapping_indicator]
{,identifier [mapping_indicator]}

while_statement

while_statement ::=

while boolean_expression do
statement

FC-LRM-E/1.2 - 97 -

Pascal-FC LRM

REFERENCES
1. ANSI, Reference Manual for the Ada Programming Language. 1983.

2. M. Ben Ari, Principles of Concurrent Programming, Prentice-Hall (1982).

3. M. Ben Ari, Principles of Concurrent and Distributed Programming, Prentice-Hall
(1990).

4. R. E. Berry, Programming Language Translation, Ellis Horwood (1982).

5. G.L. Davies and A. Burns, ‘‘The Teaching Language Pascal-FC,’’ The Computer
Journal 33(2) pp. 147-154 (1990).

6. E.W. Dijkstra, ‘‘Co-operating sequential processes,’’ pp. 43-112 in Programming
Languages, ed. F. Genuys,Academic Press (1968).

7. P. Brinch Hansen, ‘‘Structured Multiprogramming,’’ CACM 15(7) pp. 574-578
(1972).

8. C.A.R. Hoare, ‘‘Monitors: an Operating System Structuring Concept,’’ CACM
17(10) pp. 549-557 (1974).

9. Intermetrics, ‘‘Draft Mapping Rationale Document,’’ Ada 9X Project Report
(August 1991).

10. INMOS Limited, Occam Programming Manual, Prentice Hall (1984).

FC-LRM - 98 -

Pascal-FC LRM

CONTENTS

1 INTRODUCTION ... 2
1.1 Purpose of Pascal-FC .. 2
1.2 Historical Background ... 2
1.3 Scope of the Manual ... 2
1.4 Syntax Notation ... 2

2 PROGRAM STRUCTURE, DECLARATIONS AND STATEMENTS 5
2.1 Program ... 5
2.2 Declarations ... 6

2.2.1 Constant declarations ... 7
2.2.1.1 Character literals .. 7
2.2.1.2 Integer literals ... 7
2.2.1.3 Real literals .. 8

2.2.2 Type declarations ... 8
2.2.2.1 Enumeration types .. 9
2.2.2.2 Array types .. 9
2.2.2.3 Record types .. 10

2.2.3 Variable declarations .. 10
2.2.4 Procedure and function declarations .. 11

2.3 Statements .. 13
2.3.1 The assignment statement .. 13
2.3.2 The case statement .. 15
2.3.3 The compound statement ... 16
2.3.4 The empty statement ... 16
2.3.5 The for statement .. 16
2.3.6 The if statement ... 16
2.3.7 Procedure call .. 17
2.3.8 The null statement .. 17
2.3.9 The repeat statement .. 17
2.3.10 The while statement .. 17

2.4 Comments .. 18
3 PROCESSES ... 19

3.1 Process States .. 19
3.2 Process Declarations ... 20

contents

Pascal-FC LRM

3.2.1 Process Type Declarations ... 20
3.2.2 Process Object Declarations ... 21

3.3 Process Activation ... 21
3.3.1 The concurrent statement .. 22
3.3.2 Activating elements of an array of processes 22

3.4 Phases of Execution of a Pascal-FC Program .. 23
3.5 Process Scheduling and Priority .. 23
3.6 An Example: Multiple Update of a Shared Variable 24
3.7 Deadlock ... 25

4 SEMAPHORES ... 26
4.1 Declaration ... 26
4.2 Operations on Semaphores .. 26

4.2.1 The initial procedure .. 26
4.2.2 The wait procedure ... 26
4.2.3 The signal procedure ... 27

4.3 An Example: Multiple Update .. 27
4.4 Process States and Transitions .. 28

5 MONITORS .. 30
5.1 Declaration ... 30
5.2 Calls to monitors ... 31
5.3 Condition Variables .. 31

5.3.1 Declaration ... 31
5.3.2 Operations on conditions ... 32

5.3.2.1 The delay procedure ... 32
5.3.2.2 The resume procedure ... 32
5.3.2.3 The empty function .. 32

5.4 An Example: the Bounded Buffer .. 32
5.5 Process States and Monitors .. 34

6 RESOURCES .. 36
6.1 Declaration ... 36
6.2 Calls to resources .. 38
6.3 The requeue statement ... 38
6.4 An Example: the Alarm Clock .. 39
6.5 Process States and Transitions .. 41

7 RENDEZVOUS BY CHANNEL ... 42
7.1 Channels .. 42

7.1.1 Declaration and use of channels .. 42
7.1.1.1 Examples .. 42

contents

Pascal-FC LRM

7.1.2 Operations on channels .. 43
7.2 The type synchronous ... 43
7.3 An Example: Unbuffered Producer-Consumer 44
7.4 Process States and Transitions .. 44

8 ADA-STYLE RENDEZVOUS ... 46
8.1 Process Entries .. 46
8.2 The accept statement .. 46
8.3 Entry calls .. 47
8.4 Use of process provides declaration .. 47
8.5 Process States and Transitions .. 48

9 SELECTIVE WAITING .. 49
9.1 The select statement .. 49
9.2 Notes on the Semantics of the select Statement .. 50

9.2.1 Indivisibility ... 50
9.2.2 Order of checking for pending calls .. 50
9.2.3 Execution of select with all guards closed ... 51
9.2.4 The else part .. 51
9.2.5 The terminate alternative ... 51

9.3 Examples .. 51
9.3.1 The select statement with channel alternatives 51
9.3.2 The select statement with accept alternatives 52

9.4 Process States and Transitions .. 54
10 TIMING FACILITIES ... 55

10.1 The system clock ... 55
10.2 Outline of timing facilities .. 55

10.2.1 The clock function .. 55
10.2.2 The sleep procedure ... 55
10.2.3 The timeout alternative to the select statement 56

10.3 An example using sleep and timeout .. 56
10.4 Process states, deadlock and the timing facilities 57

11 LOW-LEVEL FACILITIES .. 58
11.1 The type bitset ... 58

11.1.1 Declaration ... 58
11.1.2 Assigning values .. 58
11.1.3 Set union operator .. 59
11.1.4 Set intersection operator .. 59
11.1.5 Set difference operator ... 59
11.1.6 Testing set membership .. 59

contents

Pascal-FC LRM

11.1.7 Relational operators and the type bitset ... 59
11.1.8 Type transfer functions .. 59

11.2 Addressing Device Registers with Mapping Indicators 60
11.3 Use of Record Offset Indicators ... 61
11.4 Interrupts ... 62

11.4.1 Mapping semaphores to interrupt sources 63
11.4.1.1 Program example .. 63

11.4.2 Mapping channels to interrupt sources .. 64
11.4.2.1 Program example .. 64

11.4.3 Mapping process entries to interrupt sources 66
11.4.3.1 Program example .. 66

11.5 Interrupts and process states ... 67
APPENDIX A - CHARACTER SET .. 68
APPENDIX B - RESERVED WORDS .. 69
APPENDIX C - PRE-DEFINED DATA TYPES .. 70
1 The type char .. 70

1.1 Set of values ... 70
1.2 Operators ... 70

2 The type boolean .. 70
2.1 Set of values ... 70
2.2 Operators ... 70

3 The type integer .. 71
3.1 Set of values ... 71
3.2 Operators ... 71

4 The type real .. 71
4.1 Set of values ... 71
4.2 Operators ... 71

APPENDIX D - PRE-DEFINED SUBPROGRAMS .. 72
1 Mathematical Functions ... 72
2 Ordering Functions ... 72
3 Type Transfer Functions .. 73
4 Inter-process Communication ... 73
5 Input and Output .. 73

5.1 The eoln and eof functions .. 73
5.2 The read and readln procedures ... 74
5.3 The write and writeln procedures ... 74

6 Timing .. 74
7 Miscellaneous .. 75

contents

Pascal-FC LRM

7.1 The random function .. 75
7.2 The priority procedure .. 75

8 APPENDIX E - COLLECTED SYNTAX ... 76
REFERENCES ... 98

contents

