Graphical Representation of Authorization Policies for Weighted Credentials

Isaac Agudo, Javier Lopez and Jose A. Montenegro http://www.lcc.uma.es/~isaac

University of Malaga Spain

Introduction

- Make use of weighted credentials to define authorization and delegation relationships.
- Define three main indexes which help on deciding authorization requests.
- Define authorization flexible policies
- Define graphical representation for:
 - Credentials
 - Authorization "power" between pairs of entities
 - Authorization policies

Credentials

- Issuer
- Subject
- Type
 - Weight: real number in [0,1]
 - Delegable: 1 for Delegation, 0 for Authorization
 - Sign: 1 for positive, 0 for negative
- Right
 - Resource
 - Access Mode or Operation

Kind of Credentials

Paths or Chains of Credentials

- Source of Authorization (SOA)
- Credentials or edges
- Final entity
- Weights

Paths or Chains of Credentials

- Delegation Path
 - All credentials in the path are delegation credentials
- Authorization Path
 - Delegation path + Authorization credential

Metrics over Paths

- Multiplicative: X-Y-Z
- Additive: X+Y+Z
- Minimun: Min(X,Y,Z)
- Maximun: Max(X,Y,Z)

Measuring Authorization

 L_{AR}

Is defined as the lowest weight over the weight of all authorization paths from A to B.

 H_{AB} Is defined as the greatest weight over the weight of all authorization paths from A to B.

Mean Index (M_{AB})

Initialization m(a,x)=0 for all x<>a, m(a,a)=1 and p=a

- Loop over all neighbors, p', of p
 - If the credential from p' to p is a delegation credential:

 $m(a,p')=m(a,p)^*|pp'|^*sign(pp')+m(a,p')$

If the credential from p' to p is a negative authorization credential:

 $m(a,p')=m(a,p') - m(a,p)^{*}|pp'|$

 Expand a neighbor p' with m(a,p')>0, in decreasing order of m(a,p').

Mean Index

x-Percentage Interval

Then the x-percentage interval is defined as

 $[L_{AB}^{x}, H_{AB}^{x}] = [\max(L_{AB}, M_{AB} - r_{x}), \min(H_{AB}, M_{AB} + r_{x})]$ where $r_{x} = \min\{y \in \mathbb{R} : [M_{AB} - y, M_{AB} + y] \text{ includes the x% of weights }\}$

All defined indexes are related in this way

$$-1 \le L_{AB} \le L_{AB}^{x} \le M_{AB} \le H_{AB}^{x} \le H_{AB} \le H_{AB} \le H_{AB} \le 1$$
$$\lim_{x \to 100\%} L_{AB}^{x} \downarrow L_{AB} \qquad \lim_{x \to 100\%} H_{AB}^{x} \uparrow H_{AB}$$

x-Percentage Interval

•The 25% interval is [0.1,0.1]

- •The 50% interval is [-0.1,0.3]
- •The 75% interval is [-0.4,0.6]
- •The 100% interval is [-0.6,0.6]³

Authorization Policies Principles

- Worst path. Grant If
- Best path. Grant if
- Mean index. Grant if

 $L_{AB} \ge K$ $H_{AB} \ge K$ K < M < K

$$K_1 \le M_{AB} \le K_2$$

$$L_{AB} + H_{AB} \ge 2K$$

Authorization Policies

 $L_{AB} \geq K$

Authorization Policies

 $L_{AB} \geq K$

$H_{AB} \ge K$

Authorization Policies

Authorization Policies

 $L_{AB} \geq K$ $H_{AB} \geq K$ $L_{AB} + H_{AB} \ge 2K$ General Set 📁

Authorization Set

- Included in the triangle (1,1),(1,-1),(-1,-1)
- if (h,l) in S, then (h',l') in S for $h' \ge h$ and $l' \ge l$

Authorization Policies

Authorization Denied because $(H_{AB}, L_{AB}) \notin P$

21

Authorization Policies

Authorization Granted at 50 % because $(H_{AB}^{50\%}, L_{AB}^{50\%}) \in P$

Security Level Policy

Security Level Policy

|m| > *Strong*

