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Abstract

Strategies that have been developed to extend NN prediction methods to accommodate right-censored
data include methods due to Faraggi–Simon, Liestol–Andersen–Andersen, and a modi�cation of the
Buckley–James method. In a Monte Carlo simulation study, we evaluated the performance of all three
NN methods with that of Cox regression models which included main e�ects and interactions, when
interactions exist. Using the EPILOG PLUSJ PROC NEURAL utility, feed-forward back-propagation
networks were examined under nine designs representing a variety of experimental conditions which
varied (a) the number of inputs and interactions, (b) the degree of censoring, (c) proportional vs.
non-proportional hazards, and (d) sample size.
Minimization methods were implemented that e�ciently determined optimal parameters. The C-index

was used as a measure of performance. For the testing phase of the study, none of the NN methods
outperformed Cox regression. Compared to Cox regression, the Faraggi–Simon, Buckley–James, and
Liestol–Andersen–Andersen methods performed as well as Cox regression for 7; 5 and 1 of the nine
designs, respectively. The e�ect on performance of modeling interactions in Cox regression, varying
the number of intervals in the Liestol–Andersen–Andersen method, and varying the NN architecture are
also presented. The results of our study suggest that NNs can serve as e�ective methods for modeling
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right-censored data. However, the performance of the NN is somewhat variable, depending on the
underlying data structure. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Neural networks (NNs) are sophisticated computer programs that model the
capabilities of the human brain by mimicking the structure and function of neurons
in the brain (Bishop, 1995; Hornik, 1989). Utilizing principles of arti�cial intelli-
gence, NNs permit the modeling of complex functional relationships (Warner and
Misra, 1996). A NN consists of layers of nodes (analogous to neurons) linked by
inter-connections (axons=dendrites), together with rules that specify how the output
of each node is determined by input values from all nodes at the level below. A
layered architecture of neurons in the brain can be used to provide progressively
more abstract representation of input stimuli as the information is �ltered through
successive layers. Neural networks attempt to reproduce this e�ect, although most
networks are limited in practice to three or four layers in total. Theoretical work
suggests that NNs can consistently match or exceed the performance of statistical
methods (Bishop, 1995; Hornik, 1989).
NNs are being used in the areas of prediction and classi�cation of outcomes in

medicine — areas where regression models have traditionally been used. In most
applications, outcomes (termed outputs by users of NNs) are characterized by the
presence or absence of an event. In this situation, a NN is regarded as an alternative
to traditional logistic regression methods. However, in the situation where outcomes
are characterized by the time to an event, the application of NNs to predict clinical
events requires development of a strategy to address the time course of a disease
process. In cases where the event of interest does not occur, outcomes are regarded
as (right)-censored. Simple exclusion of censored observations from the available
training set would limit the amount of data available for network development and
could lead to signi�cant biases in event predictions.
Several strategies have been developed to extend NN prediction methods to accom-

modate right-censored data. These are methods due to Faraggi and Simon (1995),
Liestol et al. (1994), and a modi�cation of the Buckley–James method (1979).
Because Cox regression analysis is an accepted solution to the problem of ana-
lyzing censored data, the performance of Cox regression models, when compared to
those of NNs, can provide a useful perspective on the utility of a NN approach.
In this paper, we report the results of a Monte Carlo simulation study that com-

pares and evaluates the performance of all three NN methods with that for Cox
regression. Using the EPILOG PLUSJ PROC NEURAL utility developed by our
group, feed-forward back-propagation networks are examined under a variety of
experimental conditions. Minimization methods are implemented that e�ciently
determine optimal parameters. To evaluate the performance of the NN methods
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relative to Cox regression analysis, a generalized version of the receiver operating
characteristic (ROC) curve, the C index, is used as a measure of performance.

2. Methods

2.1. Neural network methods for censored data

Three strategies for applying neural networks to censored data were compared.
These methods are summarized as follows:

2.1.1. Faraggi–Simon method
The method due to Faraggi and Simon (1995) generalizes Cox regression to allow

non-linear functions in place of the usual linear combination of covariates (i.e., in-
puts). Because a NN can be mathematically represented as a non-linear function of
covariates, they proposed a Cox-like model in which the NN output is used in place
of the linear function. This method retains the proportional hazard nature of the Cox
model, but provides the ability to model complexities and interactions in the input
data that simple Cox models would miss. The Faraggi–Simon method permits stan-
dard statistical methods for evaluating covariates; consequently, selecting the “best”
model is straightforward.

2.1.2. Liestol–Andersen–Andersen method
For the method due to Liestol et al. (1994), survival times are grouped into time

intervals during which the hazard is assumed to be constant and output nodes are
established for each interval. Under the conditions of no hidden layers, and identical
weights from the same input node to all output nodes, the NN is trained to predict
the conditional event probabilities for each person, with results being identical to
a “grouped” version of the Cox regression analysis of the same data. Non-constant
hazards over time can be modeled when the weights to each output node are allowed
to di�er. Adding a hidden layer of nodes produces a form of Cox-NN hybrid with
non-linear covariate e�ects; the degree of non-linearity depends on the number of
hidden nodes and the choice of activation function.

2.1.3. Modi�ed Buckley–James method
For the original Buckley–James method, as applied to linear regression, censored

survival times are replaced by their expected values, based on the covariates and
the residual Kaplan–Meier distribution about the �tted regression line (Buckley and
James, 1979). Because the residual distribution is a function of the parameters, the
estimation method is iterative and the expected values at each iteration are based on
the current parameter estimates.
For the modi�ed Buckley–James method, the NN outputs are used instead of the

�tted regression line, and the residuals for estimating the Kaplan–Meier distribution
are simply the di�erence between the observed outcomes and the neural network
outputs. Thus, the original Buckley–James approach is generalized to the NN setting
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to determine the expected survival for all censored individuals (based on the current
weight matrix) and to substitute the expected value for the censored value when
determining and back-propagating the error. Speci�cally, at each iteration NN pre-
dictions are compared to the actual values and the di�erences (residuals) are used
to calculate a Kaplan–Meier-type curve. Based on the residual distribution (as re-
ected in the Kaplan–Meier curve), the expected survival time for any person who
was censored is estimated using the same approach as in the original Buckley–James
method (Buckley and James, 1979).

2.2. Minimization Algorithms

For a description of the following minimization algorithms, see the text by Bishop
(1995). In their paper, Faraggi and Simon recommended and utilized the Newton–
Raphson algorithm to maximize the partial likelihood function and approximate both
the �rst and second derivatives numerically (Faraggi and Simon, 1995). In contrast,
Liestol and coworkers recommended and utilized the gradient algorithm to minimize
the error function via back propagation (Liestol et al., 1994). For the Newton–
Raphson algorithm, the numerical approximation of the derivatives can lead to large
round-up errors and can become computationally prohibitive for large networks.
Although the gradient algorithm takes less time for a single iteration step, it re-
quires many iterations and consequently more computing time.
For these reasons, we evaluated a limited memory quasi-Newton minimization

algorithm for all three methods under study (see Bishop, 1995, pp. 289–290). This
quasi-Newton minimization algorithm builds up an approximation to the inverse Hes-
sian matrix over a number of steps, and uses a “line-search” to detect the learning
rate. As a result, the quasi-Newton algorithm requires less computer memory and
converges much faster than the other algorithms.
In preliminary evaluations, we found that the quasi-Newton algorithm performed

very well for the Liestol–Andersen–Andersen and Buckley–James methods. However,
we found that it was not a good approximation for non-quadratic error functions
associated with the Faraggi–Simon method. As a consequence, the simple gradient
algorithm was used in this study for the Faraggi–Simon method.

2.3. NN architecture and parameters

For all three NN methods evaluated in this study, the “architecture” consisted of
an input layer, one hidden layer and an output layer. The input layer consisted of
two or four inputs (covariates) plus a special bias node with value equal to 1. The
hidden layer consisted of two hidden nodes and a special hidden node that played a
role similar to the constant term in linear regression. For the Faraggi–Simon method,
this hidden node was not needed because its e�ect is incorporated into the baseline
hazard. The output layer consisted of one output node for the Faraggi–Simon and
the Buckley–James methods. The output layer consisted of multiple nodes for the
Liestol–Andersen–Andersen method with the number of nodes equal to the number
of intervals speci�ed. For the simulation study, the general form of the Liestol–
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Andersen–Andersen method was used, so that the criterion of proportional hazards
was not assumed. In addition, we considered three intervals with the cut points deter-
mined by the times when the survival probabilities are approximately 35% and 65%.
For all NN methods, the logistic activation function was applied to the output

of the hidden layer. For all but the Faraggi–Simon method, the logistic function
was applied to the output of the output layer. For the Faraggi–Simon method, no
activation function was used for the output layer. The error functions to be minimized
were: the negative partial likelihood for the Faraggi–Simon method; the negative
log-likelihood for binary data for the Liestol–Andersen–Andersen method; and the
quadratic error function with one output node for the Buckley–James method. The
initial learning rate was set to 0.05 and updated using the “line search” algorithm.
The criterion for convergence was that the absolute change in the error function was
less than 10−6.

2.4. Cox regression

Standard Cox regression methods were used with inputs equal to covariates and
two-way interactions of covariates when the true model included any interaction
between inputs.

2.5. Simulation study

We conducted a Monte Carlo simulation study to evaluate the predictive accuracy
of the three NN methods and Cox regression for handling censored data. We consid-
ered simulated data with two or four inputs (covariates), various censoring patterns,
interaction between covariates, as well as proportional vs. non-proportional hazards.
An exponential survival distribution was assumed for the proportional hazard models.

Let �(t; X ) = exp




p∑
i=1

�i(t)xi +
∑
i 6=j
ij(t)xixj

+
∑
i 6=j 6=k

ijk(t)xixjxk +
∑

i 6=j 6=k 6=l
ijkl(t)xixjxkxl




be the hazard at any time t given p covariates X , the survival times were then
generated using inverse probability transformations (Newman and Odell, 1971). The
following nine designs were considered:
Design 1: p=2 inputs with �1 = 1; �2 = 0:25 and no interaction (i.e., all ′s=0).

The distributions of the inputs are: x1 has a Bernoulli distribution with probability
0.5, x2 has a normal distribution with mean 0 and standard deviation 1, and x1 and
x2 are independent. All subjects were followed to extinction (i.e., no censoring).
Design 2: Same as Design 1, except that a 20% censoring rate was applied, under

the assumption that the censoring time was exponentially distributed and independent
of the survival time.
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Design 3: Same as Design 2, except that an interaction between x1 and x2 was
assumed, i.e., 12 = 0:2.
Design 4: p = 4 inputs with moderate two-way interactions and small three and

four-way interactions (relative to the main e�ects): �1 = �2 = 2; �3 = 0:5 and �4 =
1:0; 12 = 13 = 1:0, all other ’s = 0:5. The distributions of the inputs are: x1 and x2
each have a Bernoulli distribution with probabilities 0.25 and 0.5, respectively, and
x3 and x4 each have a normal distributions with mean 0 and standard deviation 1,
and all variables are independent. A 30% censoring rate was applied.
Design 5: Same as Design 4, except the censoring rate was increased to 70%.
Design 6: p = 4 inputs with large three-way interactions (relative to the main

e�ects): �1 = �2 = 0:5; �3 = �4 = 0:25; 123 = 124 = 234 = 3:0, all other ′s = 0:0.
The distributions of the inputs are: x1 and x2 each have a Bernoulli distribution
with probabilities 0.25 and 0.5, respectively, and x3 and x4 each have a normal
distributions with mean 0 and standard deviation 1, and all variables are independent.
A 50% censoring rate was applied.
Design 7: Modi�cation of Design 2, so that the hazard is not proportional: �1=1:0

and �2 = 0:25 for x1 and x2 before the time point with 70% survival probability.
Thereafter, �1 =�2 =0 for x1 and x2 (i.e., the survival probability was not associated
with x1 and x2).
Design 8: Equivalent to Design 3 with n= 200.
Design 9: Equivalent to Design 5 with n= 200.
For Designs 1–7, a database of 200 realizations (cases) was generated. The database

was randomly split into 100 training cases and 100 testing cases. For Designs 8 and
9, a database of 400 cases was generated and randomly split into 200 training cases
and 200 testing cases. The performance of each of the four NN methods and Cox
regression was determined by the C index for both the training and the testing sets
(see below). The simulation process was then repeated 50 times.

2.6. The C index of discrimination

Motivated by rank tests based on Kendall’s tau developed by Brown et al., Harrell
et al. derived an index of discrimination, the C index, which can be considered as
a generalization of the area under the ROC Curve for censored data (Harrell et al.,
1982; 1984). Although other measures of discrimination exist, the C-index is the
most often used with survival data, and is comparable to other methods (Harrell
et al., 1984). The C index is calculated by taking all possible pairings of patients.
For a given pair, the predictions are said to be concordant with the outcome if the
patient having a higher predicted probability of survival lived longer. If the survival
times for both patients are censored, or if only one died and the follow-up duration
of the other was less than the survival time of the �rst, the pair is not counted.
The C index is the proportion of predictions that are concordant out of all pairs of
patients for which ordering or the survival times can be determined. Values of the
C index near 0.5 indicate that the model is not predictive. Values of the C index
near 1 indicate the input data virtually always determine which patient has better
prognosis.
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For the Liestol–Andersen–Andersen method with three intervals, the predicted sur-
vival probabilities were calculated as follows. If both patients in the pair fell in the
same interval, then the predicted survival probabilities were calculated up to that
interval and the concordancy status was determined as described above. In contrast,
if the two patients in the pair fell in di�erent intervals, then the predicted sur-
vival probabilities were calculated up to the �rst interval, and the predictions were
regarded as concordant if the patient who had the event in the �rst interval also had
the lower predicted survival probability.
For comparison purposes, the mean C index (± SD) was then tabulated. Repeated

measures ANOVA were used to compare the average C-indices among all methods.
Tukey’s studentized range test was used for pairwise comparisons between methods.
Signi�cance was set at 0.05.

2.7. Software

Cox regression analyses utilized SAS (Cary, NC) and NN analyses utilized EPI-
LOG PLUSJ (Pasadena CA), an integrated PC-based statistical package for epi-
demiological and clinical trial applications.

3. Results

The results of the simulation study are presented in Tables 1–3 for Designs 1–
9. For the training phase, the Farragi–Simon method performed the same as Cox
regression for 7 of the 9 designs (Designs 1–3; 5; 7–9), and performed worse for two
designs (Designs 4 and 6). The Liestol–Andersen–Andersen method outperformed
Cox regression for three designs (Designs 2; 3 and 7), was equivalent to Cox regres-
sion for three designs (Designs 5; 8 and 9), and performed worse for three designs
(Designs 1; 4 and 6). The Buckley–James method performed as well as Cox regres-
sion for �ve designs (Designs 1–3; 7; 8), but worse than Cox regression for the four
other designs.
For the testing phase, a di�erent pattern of performance for the NN methods was

observed. In the situation where there was no censoring and no interaction (De-
sign 1), the Faraggi–Simon and Buckley–James methods performed as well as Cox
regression. In contrast, the Liestol–Andersen–Andersen method performed signi�-
cantly worse than Cox regression (p¡ 0:05). A similar pattern among the NN
methods was observed in the situation where there was moderate censoring (ap-
proximately 20%) with or without interaction between the two inputs (Designs 2
and 3).
For the situation (Design 4) with four inputs, small or moderate interactions, and

moderate censoring (approximately 30%), Cox regression outperformed the Faraggi–
Simon method, which in turn signi�cantly outperformed the Liestol–Andersen–Ander-
sen and Buckley–James methods (p¡ 0:05). For Design 5, which is similar to
Design 4, except that the rate of censoring was increased from 30% to 70%, the
Faraggi–Simon performed as well as Cox regression, and signi�cantly outperformed
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Table 1
Results of simulation study for Designs 1–3: C-index (mean±SD) (n= 100 cases, 50 replications)

Design 1 Design 2 Design 3

Method1 Training Testing Training Testing Training Testing

COX 0:650± 0:028a 0:647± 0:029a 0:645± 0:030b 0:652± 0:035a 0:672± 0:029b 0:650± 0:037a
FS 0:655± 0:027a 0:642± 0:035a 0:650± 0:033a; b 0:648± 0:034a 0:671± 0:032b 0:648± 0:041a
Liestol 0:634± 0:031b 0:600± 0:041b 0:655± 0:038a 0:620± 0:051b 0:679± 0:030a 0:635± 0:037b
Buckley 0:650± 0:029a 0:648± 0:039a 0:644± 0:032b 0:646± 0:043a 0:667± 0:037b 0:647± 0:042a
1FS=Faraggi–Simon method; Liestol=Liestol–Andersen–Andersen method with 3 time intervals; Buckley=Buckley–James method. COX=Cox regres-
sion with main e�ects and two-way interactions for designs with any interactions (Design 3).
Design 1: = exp(x1 + 0:25x2), x1 ∼ Bernoulli(0.5), x2 ∼ N(0; 1), no censoring.
Design 2: = exp(x1 + 0:25x2), x1 ∼ Bernoulli(0.5), x2 ∼ N(0; 1), average censoring for training and testing sets=19% each.
Design 3: = exp(x1 + 0:25x2 + 0:2x1x2), x1 ∼ Bernoulli(0.5), x2 ∼ N(0; 1), average censoring for training and testing sets = 20% each.
Values in a column that share the same letter (a; b) are not statistically di�erent. Di�erent letters indicate signi�cant di�erences by Tukey’s studentized
range test.
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Table 2
Results of simulation study for Designs 4–6: C-index (mean±SD) (n= 100 cases, 50 replications)

Design 4 Design 5 Design 6

Method1 Training Testing Training Testing Training Testing

COX 0:842± 0:030a 0:824± 0:028a 0:916± 0:030a 0:870± 0:041a 0:749± 0:041a 0:697± 0:050a
FS 0:825± 0:032b 0:801± 0:032b 0:904± 0:032a 0:863± 0:043a 0:683± 0:050b 0:613± 0:075b
Liestol 0:823± 0:031b 0:775± 0:044c 0:906± 0:034a 0:827± 0:051b 0:701± 0:055b 0:601± 0:050b
Buckley 0:803± 0:033c 0:786± 0:034c 0:861± 0:066b 0:842± 0:071b 0:551± 0:100c 0:519± 0:086c
1FS=Faraggi–Simon method; Liestol=Liestol–Andersen–Andersen method with 3 time intervals; Buckley=Buckley–James method. COX=Cox regres-
sion with main e�ects and two-way interactions for designs with any interactions (Designs 4–6).
Design 4: = exp[2(x1 + x2) + 0:5x3 + 1:0x4 + 1:0(x1x2 + x1x3) + 0:5(x1x4 + x2x3 + x2x4 + x3x4) + 0:5(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + x1x2x3x4)]; x1 ∼
Bernoulli(0.25), x2 ∼ Bernoulli(0.5), x3 ∼ N(0; 1), x4 ∼ N(0; 1), average censoring for training and testing sets=32%.
Design 5: same as Design 4, average censoring for training and testing sets=70%.
Design 6:  = exp[0:5(x1 + x2) + 0:25(x3 + x4) + 3:0(x1x2x3 + x1x2x4 + x2x3x4)]; x1 ∼ Bernoulli(0.25), x2 ∼ Bernoulli(0.5), x3 ∼ N(0; 1), x4 ∼ N(0; 1),
average censoring for training and testing sets = 47%.
Values in a column that share the same letter (a; b; c) are not statistically di�erent. Di�erent letters indicate signi�cant di�erences by Tukey’s studentized
range test.
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Table 3
Results of simulation study for Designs 7–9: C-index (mean±SD) (n= 100 cases for design 7; n= 200 cases for Designs 8 and 9; 50 replications)

Design 7 Design 8 Design 9

Method1 Training Testing Training Testing Training Testing

COX 0:604± 0:028b 0:592± 0:038a 0:662± 0:023a; b 0:661± 0:025a 0:902± 0:022a 0:886± 0:026a
FS 0:609± 0:029b 0:587± 0:041a 0:662± 0:026a; b 0:662± 0:025a 0:889± 0:025a 0:875± 0:027a; b
Liestol 0:623± 0:031a 0:583± 0:038a 0:664± 0:022a 0:651± 0:029b 0:890± 0:030a 0:857± 0:042b; c
Buckley 0:597± 0:043b 0:580± 0:059a 0:661± 0:024b 0:661± 0:026a 0:858± 0:084b 0:847± 0:076c
1FS=Faraggi–Simon method; Liestol=Liestol–Andersen–Andersen method with 3 time intervals;
Buckley=Buckley–James method. COX=Cox regression with main e�ects and two-way interactions for designs with any interactions (Designs 8 and 9).
Design 7: Non-proportional hazard modi�cation of Design 2. �1 = 1:0 and �2 = 0:25 x1 and x2 before the time point with 70% survival probability.
Thereafter, �1 = �2 = 0.
Design 8: Same as Design 3 except n= 200 cases.
Design 9: Same as Design 5 except n= 200 cases.
Values in a column that share the same letter (a; b; c) are not statistically di�erent. Di�erent letters indicate signi�cant di�erences by Tukey’s studentized
range test.
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the other two NN methods (p¡ 0:05). For the situation with large three-way in-
teractions (Design 6), Cox regression outperformed both the Faraggi–Simon and
Liestol–Anderson–Anderson methods, which in turn signi�cantly outperformed the
Buckley–James method. In the situation of a non-proportional hazard model (Design
7), all three NN methods performed as well as Cox regression.
We then evaluated the e�ect of increasing the number of cases from n=100 to 200

(Designs 8 and 9). Increasing the sample size generally increased the performance of
Cox regression and all the NN methods. Cox regression and two of the NN methods
(Faraggi–Simon and Buckley–James) performed similarly for Design 8 (Table 3);
Cox regression and one of the NN methods (Faraggi–Simon) performed similarly
for Design 9 (Table 3).

4. Discussion

4.1. Performance of the methods

Several methods have arisen in recent years to permit survival analysis using
neural networks. These methods were implemented by our group in the EPILOG
PLUSJ NERUAL utility, and they were evaluated in a Monte Carlo simulation.
The simulations presented in this paper illustrate a representative sample of possible
models and methods. Based on the mean C index, the overall �ndings for the testing
phase of Designs 1–9 is as follows.
None of the NN methods outperformed Cox regression when Cox regression is

used optimally (i.e., interactions were included in the model when they existed).
Compared to Cox regression, the Faraggi–Simon method performed as well for 7
of the 9 designs. Performance was similar between Cox regression and the Faraggi–
Simon method because the latter retained the proportional hazard nature of the Cox
model while providing the ability to model complexities and interactions in the input
data.
The Liestol–Andersen–Andersen method performed as well as Cox regression in

the situation of non-proportional hazards (Design 7). These results were probably due
to use of the general form of the Liestol–Andersen–Andersen method, which per-
mitted modeling non-proportional hazards. Overall, the Liestol–Andersen–Andersen
method showed poorer performance, which may have been due to loss of informa-
tion when survival times are grouped into a small number of intervals. Furthermore,
the general form of the Liestol–Andersen–Andersen method has more parameters to
estimate than the other two NN methods. Overlearning was more prominent for the
Liestol–Andersen–Andersen method than for the other two NN methods.
Finally, the Buckley–James method performed as well as Cox regression for 5

of the 9 designs, including the design with non-proportional hazards (Design 7).
However, the Buckley–James method performed worse than Cox regression in the
case of higher level models with interactions (Designs 4–6 and 9). These results
were probably due to the method itself and=or the choice of error function.
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4.2. The e�ect of modeling interactions in Cox regression analyses

In our study, all two-way interactions are included in the Cox regression when
the design had any interactions (Design 3–6, 8 and 9). If interactions had not been
included in the Cox regression analyses, then the relative performance of the NN
methods would appear to be better. For example, the Faraggi–Simon method would
perform signi�cantly better than Cox regression for Design 6 (large three-way interac-
tion), and would have been equivalent to Cox regression for all other designs which
incorporated interactions (Designs 3–5, 8 and 9). The Liestol–Andersen–Andersen
would have been equivalent to Cox regression for two designs which incorporated
interactions (Design 6 and 9). (No improvement in the Buckley–James method was
noted.) These results indicate that NNs designed for survival analysis can auto-
matically accommodate interactions, whereas interactions in Cox regression analyses
require the insight and experience of the data analyst.

4.3. The e�ect of varying the number of intervals for the
Liestol–Andersen–Andersen method

One factor that could have direct impact on the performance of the Liestol–
Andersen–Andersen method was that the survival times were grouped into only three
intervals. For example, consider the situation that a given interval is rather large (e.g.,
2–5 years), and that two subjects fail in the same interval, one at 2.5 years and
another at 4.5 years. In the Liestol–Andersen–Andersen method, the observed out-
come for both subjects at the target node is equal to 1, so that the information that
the second subject has better survival is not used. In contrast, the Faraggi–Simon
and the Buckley–James method do use this information in the error functions.
We explored the e�ect of increasing the number of intervals (and hence reducing

the length of each interval) for the Liestol–Andersen–Andersen method. When we
increased the number of intervals from 3 to 5 for Design 4, we realized an average
increase in the C-index from 0.775 to 0.781 (a di�erence of 0.006) for the testing
set. Increasing the number of intervals from 5 to 9 increased the C-index to 0.782
(a di�erence of 0.007).

4.4. Varying the NN architecture

We also explored the e�ect of altering the NN architecture by increasing the
number of hidden nodes from 2 to 5 for Designs 4 and 6 (Table 4). For Design
4, increasing the number of hidden nodes improved the NN performance for the
Farragi–Simon and Liestol–Andersen–Andersen methods for the training, but not the
testing set. When the interaction e�ect was relatively large (Design 6), increasing
the number of hidden nodes improved the performance for the Farragi–Simon and
Liestol–Andersen–Andersen methods for both the training and testing datasets. Over-
�tting for the training sets was evident for both designs. A negligible increase in
performance was found for the Buckley–James method suggesting that this method
does not perform well when complex interactions exist.
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Table 4
Results of simulation study with NN modi�cations for Designs 4 and 6: C-index (mean±SD) (n=100
cases; 50 replications)

No. hidden Design 4 Design 6

Method1 Nodes Training Testing Training Testing

FS 2 0:825± 0:032 0:801± 0:032 0:683± 0:050 0:613± 0:075
FS 5 0:839± 0:032 0:794± 0:032 0:761± 0:046 0:651± 0:049
Liestol 2 0:823± 0:031 0:775± 0:044 0:701± 0:055 0:601± 0:050
Liestol 5 0:872± 0:022 0:744± 0:042 0:849± 0:030 0:643± 0:055
Buckley 2 0:803± 0:033 0:786± 0:034 0:551± 0:100 0:519± 0:086
Buckley 5 0:805± 0:034 0:787± 0:035 0:558± 0:106 0:521± 0:078
1FS=Faraggi–Simon method; Liestol=Liestol–Andersen–Andersen method with 3 time intervals;
Buckley=Buckley–James method.
Design 4:  = exp[2(x1 + x2) + 0:5x3 + 1:0x4 + 1:0(x1x2 + x1x3) + 0:5(x1x4 + x2x3 + x2x4 + x3x4) +
0:5(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + x1x2x3x4)], x1 ∼ Bernoulli(0.25), x2 ∼ Bernoulli(0.5), x3 ∼
N(0; 1), x4 ∼ N(0; 1), average censoring for training and testing sets=32%.
Design 6: =exp[0:5(x1 + x2)+ 0:25(x3 + x4)+ 3:0(x1x2x3 + x1x2x4 + x2x3x4)], x1 ∼ Bernoulli(0.25), x2
∼ Bernoulli(0.5), x3 ∼ N(0; 1), x4 ∼ N(0; 1), average censoring for training and testing sets=47%.

4.5. Calibration accuracy

In this study, we quanti�ed the predictive discrimination of the NN methods. An
alternative criterion of performance would have been to study the absolute prediction
error. However, in order to develop calibration curves, predicted values from the
output nodes were needed – data which are not provided by the EPILOG package.
Therefore, additional research is needed to evaluate calibration measures of how
well model prediction correspond to the actual data, within risk groups (Harrell et
al., 1996).

4.6. Limitation of the study

A limitation of the present study was the use of simulated data. Although this
approach allowed a systematic evaluation of model performance, the data followed
patterns that may have been most conducive to Cox regression modeling. Variable
interactions were only products, and variables followed either a normal distribution
or a Bernoulli distribution. Therefore, a Cox regression with interactions would be
expected to provide high performance. Some clinical datasets may have interactions
and other properties that are not easily modeled by a Cox regression approach.

4.7. Advantages and disadvantages of NNs

NN software has generated a great deal of interest partly because it e�ectively
places advanced modeling tools in the hands of users of personal computers. One of
the advantages of NNs is that they can detect complex patterns among the inputs.
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In contrast, one disadvantage of NN models is that they can model idiosyncratic
features of the training dataset. When this happens the NN has overlearned, and will
appear to perform extremely well on the training dataset but further testing on new
data will generally be far less successful. In fact, overlearning was apparent in our
testing datasets. For example, comparing training to testing results for Design 5, the
Faraggi–Simon, Liestol–Andersen–Anderson and Buckley–James methods declined
by 0.041, 0.079 and 0.019, respectively (Table 2). Over�tting can be reduced by
using the m-item out validation approach, which is time intensive (Lachenbruch and
Mickey, 1968).
Another disadvantage is that NNs are “computationally intensive” and may take a

long time to train and converge to a solution. Using the quasi-Newton minimization
algorithm, the Liestol–Andersen–Andersen and Buckley–James methods converged to
a solution very fast. In contrast, the Faraggi–Simon method, which used the simple
gradient minimization algorithm, took a long time to train. Additionally, the NN
may converge not to the optimal solution, but rather to a local minimum, so that the
resulting NN will perform sub-optimally. Some methods such as genetic algorithms
can be used to avoid local minima. However, the genetic algorithm requires a lot of
computer memory and is slow in convergence.
One advantage of Cox regression, is that the regression coe�cients can be inter-

preted as the likelihood of an outcome given some value(s) of the risk factor (e.g.,
odds ratios or relative risks). NN weights usually do not lend themselves to such
interpretation. The NN methods presented here represent only a few of the many
options in survival modeling. It may be more valuable to explore issues of methods,
applications, and potential for improvement than to draw conclusions about whether
one method is inherently “superior” to another.

4.8. Summary

In summary, the results of our study shed light on the relative merits of the NN
methods. In general, the results of our study also suggest that NNs can serve as
e�ective methods for modeling right-censored data. However, the performance of
the NN is somewhat variable, depending on the method that is used.
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