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Abstract
The authors are presenting a thorough introduction in Artificial Neural Networks (ANNs) and their contribution to

modern Urologic Oncology.
The article covers a description of Artificial Neural Network methodology and points out the differences of

Artificial Intelligence to traditional statistic models in terms of serving patients and clinicians, in a different way
than current statistical analysis.

Since Artificial Intelligence is not yet fully understood by many practicing clinicians, the authors have reviewed a
careful selection of articles in order to explore the clinical benefit of Artificial Intelligence applications in modern
Urology questions and decision-making.

The data are from real patients and reflect attempts to achieve more accurate diagnosis and prognosis, especially in
prostate cancer that stands as a good example of difficult decision-making in everyday practice.

Experience from current use of Artificial Intelligence is also being discussed, and the authors address future
developments as well as potential problems such as medical record quality, precautions in using ANNs or resistance
to system use, in an attempt to point out future demands and the need for common standards.

The authors conclude that both methods should continue to be used in a complementary manner. ANNs still do not
prove always better as to replace standard statistical analysis as the method of choice in interpreting medical data.
# 2003 Elsevier Science B.V. All rights reserved.
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1. What is an Artificial Neural Network and
howdoes it work?

Artificial Intelligence is not a new issue. Artificial
Neural Networks (ANNs) have been a field of research
for over the past 40 years [1]. The first computational,
trainable neural networks were developed in 1959, by
Rosenblatt [2] as well as by Widrow and Hoff [3] and
Widrow and Stearns [4]. The first ANNs were percep-
trons limited in a solution of simple linear problems.
The first non-linear capabilities of ANNs were reported
in 1974 by Werbos [5].

Artificial Neural Networks are computational meth-
odologies that perform multifactorial analyses, inspired
by networks of biological neurons. In biology, nervous
networks are composed by a large number of neuron
cells that are extensively interconnected to each other.
Each neuron cell can produce an electrochemical sig-
nal. Through a complicated web of branches, known as
dendrites, it can also interact with other neurons that
may be closer or distant to it. Also there exists a network
of output branching structure, known as axons, that is
used for carrying out a certain message (signal). The
interactions between axons and dendrites of neighbor-
ing or distant neurons, through synapses, help as to the
interpretation of a signal. Moreover, the coming of a
signal results to a response and careful regulation of its
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transfer by the synapses, something that is thought to be
the primary event for learning.

As a neural network, Artificial Neural Networks also
contain layers of simple points (nodes) of data, that
interact through carefully weighted connection lines,
so that they may process an outcome (Fig. 1). The
weight-balance of these lines is accomplished by a
training session of input data, to be used by the network
as the means for the adjustment of its interconnections
(learning or training session). Of course, current ANNs
have a much simpler architecture, with a lot fewer
nodes or interconnections than the actual nervous
system (Fig. 2).

In order to understand the function of an Artificial
Neural Network, one should rethink decision-making
in oncology. Oncologic decision-making is based on a
learning part and then it produces an outcome. The
learning part of our decision-making consists from the
collection of data that is interpreted and by so weighted

from our medical knowledge and experience. By this
means, our practice is carefully ‘trained’ for a decision
analysis, in order to produce an outcome.

Upon dealing with a new patient, we tend to collect
pure data (i.e. performance status evaluation, useful
blood serum values, physical examination remarks,
and imaging or histology details), in order to assess
his situation and predict a prognosis and then proceed
on making a decision based on our medical knowledge
and experience. A clinician shall decide upon his
perceptive of the disease progress but also carefully
weight his decision by the individual’s pattern recogni-
tion.

Likewise, in ANNs, there is a ‘‘learning’’ session. It
is important to note that when training a neural net-
work, three non-overlapping sets of data must be used.
Typically data from a single population is divided at
random, into three subsets: the training set, the valida-
tion (or testing) set and the verification set [1]. The
training set is used as input signals of data to be fed to
one or more layers of neurons through the weighted
interactions between them and adjust their weights.
The training process is accomplished by a teaching
program that picks cases from a database in order to
adjust the interactions between the layers as to produce
an outcome that is close to the real world results from
the same database. The training process keeps on as to
minimize the error possibility, as for the ANN to ‘learn’
and produce an outcome similar or closer to the
database’s known or desired output values, and it stops
up to where there is no indication of further diminish-
ing of this error possibility (validation). The testing or
validation set of data is therefore used to decide when

Fig. 1. Examples of two simple relationships between hypothetical

parameters.

Fig. 2. Example of a neural network’s interconnections (prostate cancer biopsy).
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to stop training. By this accomplishment of minimum
error, an ANN avoids over training. An example of this
type of error is the failure to generalize, e.g. failure to
recognize similar patterns that do not present in the
exact same way, and can be considered memorization
of the data (memory effect). A third step is the ver-
ification process for which a third part of data is
reserved (verification set). The verification set is inde-
pendent and is not used at all during training or testing,
thus it can be considered a true prediction of the neural
network performance.

A successful training can result in interpretation of
data by the ANN, in a mature and often original way.
With the computing power of today’s hardware, ANNs
can easily handle non-linear phenomena of any type
without requiring linear relationships that reflect sim-
ple correlations (e.g. a Prostate-Specific Antigen [PSA]
rise should lead to a prostate biopsy).

So an ANN can correlate different predicting factors,
find hidden interactions among variables, predict an
outcome for a patient or groups, classify patients in risk
groups, or approximate a function and complete a
known pattern.

2. Applications inMedicine and Urology

Studies of prognostic factors in cancer have demon-
strated that there is great need for accurate treatment
and outcome prediction. The objectives of applying pre-
dictive factors to a model of statistical analysis are to
give some indication on prognosis and aid the clinician
in the planning of treatment. Especially in oncology,
statistical models can serve as to stratify patients in risk
groups, predict the stage of the disease, and foresee
treatment outcome or recurrence probability.

The TNM system was the first attempt in this pre-
diction. TNM is a classification system that describes
the anatomic extent of cancer. It describes three dif-
ferent variables (Tumor Stage, Lymph Node Status,
Distant Metastases) and by so it stratifies patients,
predicts prognosis, foresees treatment outcome, etc.
It has been serving clinicians for decades, and helps in
the exchange of information and treatment planning.
But it also has limitations as to its inability in incor-
porating many serum or pathologic factors that are of
some importance for specific types of cancer.

Evidently, a growing need for a new predicting tool
has emerged. This new tool must not have TNM’s
limitations, and also it must be swiftly adjustable in
new modalities of data for a certain disease. Neural
networks automatically allow (1) arbitrary non-linear
relations between the independent and dependent vari-

ables and (2) all possible interactions between the
dependent variables. Standard statistical approaches
(e.g. logistic or Cox regression) require additional
modeling to allow this flexibility [6].

Recent published data reports that neural networks
can provide at least as accurate predictions as regres-
sion analyses, and usually they are performing signifi-
cantly better, when compared by receiver operating
characteristics (ROC), and areas under curve (AUC).

Although the use of ANNs in medicine is a rather
recent phenomenon, there are many applications
deployed as in the field of diagnosis, imaging, pharma-
cology, pathology and of course prognosis. ANNs have
been used in the diagnosis of appendicitis, back pain,
dementia, myocardial infraction, psychiatric disorders,
acute pulmonary embolism, and temporal arteries [7].

In Urology, prostate cancer serves as a good example
for the need for an ANN. Changes in terms of screen-
ing, the need for an early diagnosis, the need on tissue
sampling and re-sampling from the organ are just a few
key issues up to diagnosis. Moreover, if diagnosis of
prostate cancer is finally established, then there is a
need for staging, predicting outcome (prognosis), elim-
inating risk factors, making decisions concerning treat-
ment and follow-up, and possibly dealing with the
issue of a recurrence.

2.1. Prostate cancer early diagnosis and screening
Prostate-Specific Antigen is currently recognized

worldwide for its clinical usefulness in early diagnosis
of prostate cancer. There exists a substantial overlap-
ping between PSA values from patients with prostate
cancer and benign prostate hyperplasia or inflamma-
tion that is more critical in the so-called ‘grey’ area for
PSA values of 4–10 ng/ml. The rate of incidence of
prostatic cancer in men with a PSA value within this
zone of PSA from 4 ng/ml to 10 ng/ml is approxi-
mately 22% on initial biopsy, while another 10% of
cancers are to be discovered on repeat biopsy [8].
Various PSA-related parameters have been developed
for optimizing the sensitivity and specificity of prostate
cancer prediction in patients with PSA levels between
4 ng/ml and 10 ng/ml. These parameters include PSA
density (PSAD), PSA-transition zone (PSA-TZ), PSA
velocity (PSAV), age-adjusted PSA, and the percentage
of free PSA to total PSA (PSA ratio). Although PSA
ratio is recognized as the most useful method of
improving Prostate Cancer Detection, this issue is a
matter of serious debate [9–12].

We also used to consider a maximum normal PSA
value of 4 ng/ml in order to make a first statement of
a possible suspicion for the disease. Evidence has
shown that approximately 30% of men undergo radical
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prostatectomy and approximately 25% of men who are
diagnosed with prostate cancer have a PSA value less
than 4 ng/ml [13,14].

Similar rates of incidence of cancer are reported
[14,16] in men whose PSA value is in the range from
2.5 ng/ml to 4 ng/ml, something that would increase
the potential need for a biopsy in a lot of men that
currently are being excluded.

A first remark would lead to the conclusion that the
majority of men to undergo prostate biopsy will have a
negative result for cancer, while the costs of these
biopsies are huge.

Urologists should be able to identify those men with
a higher probability of having prostate cancer and so
exclude patients that are not likely to have cancer.

In this great dilemma in our practice, many clinical
factors or serum PSA-related enhancements have been
examined for their predictive accuracy. The use of
Artificial Intelligence, in this particular field, has
proved a better predictive performance for biopsy
outcome, by combination of more than one of these
predictive factors.

Babaian et al. [14] developed a neural network-
derived algorithm based on retrospective data that
studied 151 men with PSA values between 2.5 ng/ml
and 4 ng/ml, who underwent an 11-core multisite
directed biopsy. The ANN used variables such as
age, total PSA, PAP, creatinine kinase and free PSA,
while it consisted of three individually trained net-
works that were developed with data from retrospective
studies coming from three institutions. Cancer was
detected in 24.5% (37 of 151) of the patients. A
comparison of the sensitivity, specificity and negative
and positive predictive values between the neural net-
work algorithm and the other PSA parameters showed
that their Prostate Cancer Detection index (ANN-
index) was significantly better in terms of specificity
when sensitivity was constantly held at 92%. In terms
of ROC-curve analysis, and area under curve though,
the ANN-index did not outperform any other variable.

The authors concluded that there would be an impor-
tant reduction of the costs from unnecessary biopsies to
the health care system by an additional 39%, if their
ANN-index is used instead of free/total PSA.

Published data by Djavan et al. [15] demonstrate the
predictive accuracy of two different ANNs that were
developed on the Vienna-based multicenter European
referral database for the early detection of prostate
cancer in men with total Prostate-Specific Antigen
levels from 2.5–4 ng/ml to 4–10 ng/ml. In this article,
ANNs are prospectively developed to predict the pre-
sence of prostate cancer and their predictive accuracy is
compared with that obtained by conventional univari-

ate statistical analysis of total PSA, ratio PSA, PSAD,
PSA-TZ, total prostate volume, TZ volume and PSAV.
The variables used by the ANN as more predictive
(input variables) for total PSA levels (2.5–4 ng/ml)
were in order of importance, PSA-TZ, PSA ratio,
PSAD. The variables used by the ANN as more pre-
dictive (input variables) for total PSA levels (4–10 ng/
ml) were in order of importance, PSA ratio, PSA-TZ,
PSAV, free PSA, TZ volume, total PSA and PSAD.

The authors concluded that the predictive accuracy
of both ANN models was superior to that of conven-
tional PSA parameters, and resulted in fewer unneces-
sary biopsies although the difference between ANNs
and Logistic Regression (LR) Analysis, was not always
statistically significant.

Finne et al. [16] have reported a comparison of
diagnostic performance in predicting biopsy outcome
between a Multilayer Perceptron (MLP) and Logistic
Regression (LR) Analysis, and univariate analysis
regarding PSA ratio. Variables used in MLP model
included total PSA, PSA ratio, prostate volume, DRE;
while in LR, age and history of prostate cancer were
also included. The author’s statement was that in
sensitivity given in the area 89–99%, the MLP had
the better accuracy than the other two models of
analysis, and the MLP model was more accurate than
the LR model in higher sensitivity levels.

Systematic transrectal ultrasound guided biopsy is an
accurate and safe procedure. But a serious decision-
making issue is emerging, when a first set of biopsies is
negative, and still the suspicion for prostate cancer
remains. This fact can continue even after another set
of biopsies or more. When do we stop this never-ending
cascade? In recent studies, if prostate cancer is present,
it was reported that the detection rate is 10–25% for a
repeat biopsy [8,17].

Djavan and coworkers [18] have reported that ANNs
can be of valuable outcome if they were used in this
particular dilemma of modern Urology. They con-
cluded that their ANN found a strong predictive pattern
for the repeat biopsy outcome, by combining indivi-
dual clinical and biochemical markers, and a specificity
of 68% was achieved at high sensitivity levels.

Moreover, there are some reports about the use of
ANNs in imaging protocols [35–37] that addressed the
poor specificity of TRUS images in detecting prostate
cancer, and also the fact of iso-echoic areas that may
conceal cancer as well. The introduction of ANN in
TRUS analysis of radical prostatectomy specimens
demonstrated a significant enhancement in detecting
prostate cancer. Although not all of the malignant
samples were classified correctly (79% accuracy), all
iso-echoic areas that hidden cancer were surprisingly
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identified by the ANN [36]. Ronco and Fernadez [37]
reported that an ANN that combined several clinical,
biochemical and ultrasonographic variables achieved
up to 81.82% of positive predictive value and up to
96.95% of negative predictive value versus 67.18% and
90.97%, respectively, when compared with those
obtained with Logistic Regression, in predicting an
outcome of cancer or not cancer, but ANN had 82%
accuracy while LR performed 84%. Several similar
reports [26–32,46] also present some promising data
from the field of diagnosis in prostate cancer as well as
it is resumed in Table 1.

2.2. Prostate cancer staging
Nomograms that were developed by Partin et al. [40]

are currently the most widely used and accepted mod-

els for predicting pathological stage of the disease in
cases of localized prostate cancer. These nomograms
use the clinical stage, biopsy Gleason Sum and pre-
treatment PSA values in order to predict the likelihood
of several pathological variables from the radical pros-
tatectomy specimen (pathologic stage) in cases of
localized cancer.

Murphy et al. [19] used staging predictive factors
such as clinical state (remission or progression), recent
TNM stage, bone scan and Prostascint scan together
with serum PSA-related factors (PSMA, PSA, free
PSA, complexed PSA, percent free PSA, percent com-
plexed PSA) to study the staging abilities of an ANN.
An ANN revealed that between the examined factors,
PSA levels, bone scan and Prostascint scan were sig-
nificant variables in predicting the nodal positive status
with a higher specificity (near 50%) compared to
traditional regression analysis (slightly above 20%).
In a similar study by Batuello et al. [20], they used
clinical stage, biopsy Gleason Sum and Prostate-Spe-
cific Antigen levels as input variables to feed an ANN,
in order to predict lymph node (LN) spread. This is
somewhat of the objective of Partin nomograms as
well, yet in a selective area of LN metastasis. The aim
of their ANN’s approach was to identify the LN-
positive individuals characteristics. Due to the fact that
in their cohort of patients only 4.6% was actually LN
positive, the ANN tried to recognize the characteristics
of these individuals by classifying the patients as LN-
negative, and so by trying to achieve a minimal error
the training algorithm was prone to treat the scarce
positive cases as ‘noise’. By increasing the LN-positive
cases empirically to 25%, the writers achieved a sta-
tistically important impact of LN-positive status in the
weight-adjusted interconnections of their ANN. With
the acceptance of their doing, they tried to simply point
out the relationship between the output of the ANN and
the prevalence of LN-positive cases.

By so, they also were able to interpret the risk of
similar ANN score patients, in LN-positive status. And
thus they made an individual risk of LN-positive status
in patients with similar risks as the ANN calculated
them.

Han et al. [21] used input variables that included
preoperative clinical and pathologic parameters from
patients after radical prostatectomy, in order to retro-
spectively feed an ANN, so that it would test their
predictive value in staging the disease. The neural net-
work that was used in this application was a Multilayer
Perceptron (MLP) that typically has standard feed-for-
ward topology and successive layers of adaptive
weights. Overall, the ANN outperformed nomograms
in predicting pathologic stage at the time of surgery and

Table1
Published articles in the field of the use of ANNs in prostate cancer

(reviews not included)

Reference Application Sensitivity

(%)

Specificity

(%)

Accuracy

(%)

[14] Diagnosis 92 62

[15] Diagnosis 95 59–67 0.87–0.91a

[16] Diagnosis 90 46 56

[18] Diagnosis 95 68 0.91a

[27] Diagnosis 87

[28] Diagnosis 90 97

[29] Diagnosis 0.95a

[30] Diagnosis 81 92 90

[31] Diagnosis 80

[32] Diagnosis 72 78 77

[33] Diagnosis 90 þ32–44b

[46] Diagnosis 95 38

[19] Staging 95 48c

[20] Staging 0.81a

[21] Staging 0.88a

[24] Staging 79 81

[34] Staging 94 69

[39] Staging 81–100 72–75

[35] Imaging 87–99

[36] Imaging 79

[37] Imaging 82

[22] Prognosis 85

[23] Prognosis 31 95d

[24] –//– 80

[25] Prognosis 80

[26] Prognosis 74 78 0.80a

[27] Prognosis 90

[38] Prognosis 80

a Area under ROC curve.
b This percentage shows the enhancement of ANN in terms of specificity,

compared to PSA, percent free PSA specificity values.
c Refers as to nodal positivity, while traditional regression analysis is

slightly above 20%.
d Refers as to prediction of five-year recurrence, while Logistics

Regression using all input variables shows 16%.
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was more accurate in terms of sensitivity and specificity
and had a larger area under ROC curve than the Logistic
Regression-based nomograms. It is far more important
to outline that this study, that is including Alan Partin
among its authors, admits that ANN served better than
the Partin nomograms that are currently the golden
standard for predicting the staging of the disease,
although the authors admit that ‘‘. . . (they) did not
applied the nomograms on an independent validation
set because a significant portion of database was used to
develop the regression analysis . . .’’.

2.3. Prostate cancer progression
Prediction of biochemical failure after radical pros-

tatectomy and the estimate for the need for adjuvant
therapy by local irradiation, hormonal ablation or
chemotherapy is still a matter of controversy. The
overall rate of a positive surgical margin with radical
prostatectomy is 28% [43,44]. In any case, the finding
of a cancer-positive margin would suggest the failure in
excision of all traces of local disease, and also the risk
of biochemical and finally clinical progression. Serious
decisions are to be made in a case that one should
balance who would benefit the most of adjuvant ther-
apy without taking unnecessary risks in terms of
morbidity and mortality that come along the adminis-
tration of such agents. An urologist must also take
under consideration the differences in statistical impor-
tance of several pathology variables when predicting
biochemical failure. Although most patients with
pathologically confirmed status pT2a would remain
progression-free after radical prostatectomy, there is a
subset of 10–26% of those patients, which eventually
develops progression [41,42]. ANNs could play a key
role in these questions as well. In an article by Matt-
feldt et al. [22], there were given some promising
results by a comparison of two groups of 20 patients
(with or without progression of disease) that were
matched for age, preoperative PSA and duration of
follow-up. The methodology of an ANN predicting
cancer progression by only three variables given (Glea-
son score, WHO grade, tumor diameter) was used too.

Han et al. [23] reported the ability of an ANN in
stratifying patients with intermediate risk as for Glea-
son score 7, into risk groups that differed to primary
Gleason score of 4 or 3, and by so explore a hidden
difference in the patient progression outcome. Ziada
et al. [24] also report a better predictive outcome for
their ANN, in terms of pathological stage and bio-
chemical failure.

Similar results were reported by Potter et al. [25] in a
group of patients with intermediate risk of progression
(T1b–T2cN0M0, Gleason scores 5–7) by using a

‘genetically’ engineered ANN (GENN). Genetically
stands for the fact that the ANN develops its archi-
tecture and selects the fittest solutions so that ulti-
mately an optimal network may evolve. These authors
used variables such as prostatectomy pathologic find-
ings, age, but also DNA ploidy and quantitative nuclear
grade (QNG—the variance of 41 different nuclear
descriptors). There were three models of ANN accord-
ing to the variables used:

(1) pathology and age;
(2) Nuclear Morphometric Descriptors and DNA

ploidy;
(3) all variables included.

The accuracy of the three GENN models was 74.4%,
63.1% and 73.5% in training and 74.3%, 80% and
78.1% for testing, respectively. Data were then ana-
lyzed by Logistic Regression and Cox proportional
hazards modeling finding that Logistic Regression
Analysis maximized performance in the training sets
only to be outperformed by the ANNs in testing sets.

Porter et al. [26] found a highest (80%) area under
curve in ROC analysis, in comparison to other methods
of statistical analysis, in an ANN model that was used
to predict biochemical failure.

Finally, Naguib et al. [38] have demonstrated the
ability of a Neural Network in correctly classifying
patients’ prognostic outcome according to six conven-
tional factors (age, stage, bone-scan findings, grade,
serum PSA, treatment) and two experimental markers
(immunostaining for bcl-2 and p53, which are both
apoptosis-regulating genes). A total of 80% of the
patients were correctly classified regarding outcome
using the combination of factors. When both bcl-2 and
p53 immunoreactivity were excluded from the analy-
sis, correct prediction of the outcome was achieved in
only 60% of the patients (p ¼ 0:0032).

3. Discussion

Oncologic decision-making has always been based
on facts and predictions for individual patients. The
interpretation of facts was to be made by the clinician,
who therefore used his experience in order to stratify
patients into risk groups and decide the best therapeutic
option for them. Traditionally, statistical models of
analysis have been used for this purpose. As data grew
bigger, newer reports could examine a standard out-
come for a larger group of people with similar char-
acteristics. Since traditional statistics uses fixed rather
simplistic correlations that require or assume linear
relationships for interpreting facts, the computed out-
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come can only reveal limited patterns and relationships
of data, and thus it is somehow limited.

We have reviewed the basic functional characteris-
tics of ANN methodology (training, validation and
testing) and the advantages in their use. The application
of ANNs in medical decision-making is a newly emer-
ging phenomenon. For efforts in this area to be truly
successful, there are a few risks to be aware of and
problems to overcome when dealing with this new form
of statistical analysis.

One of the key elements to using ANN technology, in
medicine, is the construction of a quality medical
record, that can easily be accessed and provide specific
medical data in a coded way rather than a text-form.
Because of the sensitive nature of the input training of
ANNs, they tend to be somewhat of a trap for the
unsuspected clinician. As the application of this highly
sophisticated method of thinking arises, there are some
serious considerations for scientists to deal with.

First of all, a clinician and possible user must have a
thorough knowledge, of ANNs methodology, the qual-
ity of input data, and also the model’s limitations, since
reasonable fear exists to the fact that data unfit for a
population might be used for decisions in another.

Also, technical differences, differences due to race,
time of data collection, health care systems and their
screening policies can also influence the outcome of an
ANN. ANN applications should be repeatable (not
single institution experiences) and therefore need to
have clearly definable known in and output variables,
in order to avoid single institution bias. But, even in a
single institution database (if one accepts the probable
bias) the experience given could reveal useful informa-
tion for the local community.

Also, conventional statistics (i.e. ROC methodol-
ogy), which have a long association with single factor
association problems; still can be successfully applied
to multifactorial classification problems. ROC metho-
dology can be employed as to measure, report and
benchmark neural network performance [1], as a
means of ‘‘reparability’’ for ANN training.

A database system, which must also ensure confiden-
tiality and encoding of medical data by common shared
standards, is still under way. To be more optimistic, there
lies a good opportunity as well: now that the new
technology is emerging, proper databases should be

constructed and be used as for input data, something
that is somewhat of a disadvantage at present.

It is also an acceptable obstacle that there is going to
be some slow approval especially from older clinicians
that have been used to a certain way of decision-
making for so many years now. Though, we might
make a step forward in persuading the people of our
specialty to change their ways, by the clear demonstra-
tion of the clinical beneficial effect achieved by the
incorporation of such procedures.

4. Conclusion

We believe that there is some serious possibility that
Artificial Intelligence, carrying the power of an easy
tool that uses up-to-date data and has a flexible way of
‘‘learning’’, may provide a better oncological decision
support. The availability of such data for every patient
is a key issue that must be an issue of interest for health
care systems to deal with, since the construction and
use of electronic medical records comes with all the
advantages, such as easy accessibility, and back-up
technology.

Development of proper quality databases must be
under construction now that hardware capabilities are
more powerful and medical data is readily available. It
is evident that the current state of ANNs reflects an in-
part experience for disease patterns, since their appli-
cation reflects specific data input, so currently, we
should consider ANNs as an important tool for con-
sultation that should never replace our personal knowl-
edge and judgment, and by so it comes only
complementary to our decision-making. It must be
used as a unique for each patient risk assessment test,
in order to give him the best accuracy in prediction.

Although reasonable skepticism has been expressed
for the clear evidence of ANN out performance in
comparison to standard statistical analysis and the
methodological deficiencies of several previous studies
[6,45], this diagnostic or prognostic tool can be an
attractive alternative to conventional statistics since it
tries to simulate a thorough way of understanding
medical facts, while LR odds ratios can be calculated
for each variable separately and remain easily under-
standable and useful.
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