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Abstract

A Bayesian framework is introduced to carry out Automatic Relevance Determination (ARD) in

feedforward neural networks to model censored data. A procedure to identify and interpret the

prognostic group allocation is also described.

These methodologies are applied to 1616 records routinely collected at Christie Hospital, in a

monthly cohort study with 5-year follow-up. Two cohort studies are presented, for low- and high-risk

patients allocated by standard clinical staging.

The results of contrasting the Partial Logistic Artificial Neural Network (PLANN)–ARD model

with the proportional hazards model are that the two are consistent, but the neural network may be

more specific in the allocation of patients into prognostic groups. With automatic model selection, the

regularised neural network is more conservative than the default stepwise forward selection

procedure implemented by SPSS with the Akaike Information Criterion.
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1. Introduction

Assigning patients into prognostic risk groups is of considerable importance in the

management of breast cancer patients. This process requires a quantitative model of

survival, usually focused on the first 5 years following surgery, but it is also crucially
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important to provide some form of interpretation of the prognostic groups in terms of

clinically relevant variables. In practice, oncologists frequently use an algorithm com-

monly referred to as the Nottingham Prognostic Index [1] which was derived using the

classical statistical method of proportional hazards [2], which is a linear in the parameters

approach to the modelling of censored data.

In the context of developmental models for decision support systems [3], the purpose of

this paper is to conduct a pre-clinical cohort study to establish a rationale for the design

of artificial neural network systems for prognostic modelling using principles of good

practice in the control of model complexity.

Neural networks are attractive for this application because they overcome two potential

limitations of proportional hazards modelling, namely, the assumption that the time

development of the hazards is proportional to that of a fixed baseline population and

the assumption that the covariates influence the model through explicit linear terms.

However, the main limitation of generic non-linear models such as neural networks is their

propensity to overfit the data. This demands a robust methodology to limit the model

complexity in two different ways. First, by ensuring that the iterative estimation of the

model parameters is stopped at a point where the generality of the model is high and,

second, by carrying model selection so only the relevant variables are included in the

model.

This paper describes an extension of a neural network model for censored data, the

Partial Logistic Artificial Neural Network (PLANN) [4], to include regularisation within a

Bayesian framework that enables model selection by a method called Automatic Relevance

Determination [5]. The second part of the paper presents a method to identify and

characterize prognostic risk groups in a study of two cohorts of breast cancer patients,

using records acquired during routine clinical practice.

2. Data description

The data used in this study consist of the records of 1616 female patients referred to

the Manchester Christie Hospital between 1983 and 1989. The event of interest was defined

to be death attributed to breast cancer, as determined from the coronary report or by a

specialist consultant. Other causes of death and other losses to follow-up were regarded as

censorship, and all surviving patients are censored after 5 years.

A total of 18 categorical variables were collected, which are summarised in (Table 1).

The data set contains missing values, particularly in the following variables: numberof nodes

involved (968 missing), oestrogen level (537 missing) and pathological size (414 missing).

This leaves 447 complete records, a proportion that is not atypical of historical hospital

records, bearing in mind that they are usually not collected for the purpose of designing

decision support systems, but rather to provide an audit trail for evidence-based clinical

practice. However, this poses a significant difficulty for the statistical modelling of the data.

There are two main ways of dealing with substantial amounts of missing data. They can

be filled-in by modelling using the available data, or they may be coded as a separate

attribute. The former method is commonly used where the data are believed to be missing

at random, so that missing attributes are not expected to carry information that substantially
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affects the model outcome. However, in these data the missing values are not at all random,

and often the attribute missing correlates with a poor outcome. This is to be expected since

record entry is more likely to be cut-short when there is sufficient evidence to justify a

particular prognostic outcome, which would normally arise where a few key attributes are

sufficient to indicate that the disease is advanced. Survival plots of each variable confirmed

that the missing values do not always approximate the mean survival. For this reasons, it

was decided to code missing values for the purpose of this study as a separate attribute.

It was mentioned in the introduction that the Nottingham Prognostic Index for breast

cancer is widely used in clinical practice. However, these data do not record triple lymph

node biopsy, which is the sampling procedure required by that Index. In this case, clinicians

frequently employ the internationally recognized TNM clinical stating method, which

stands for tumour, lymph nodes and metastatic spread. Patients were partitioned using

TNM staging into low risk and high cohorts, in a procedure that is customary both in the

clinical management of these patients and in parametric statistical analysis. The low risk

group was defined by tumour stage either 1 or 2 and pathological size either <2 or 2–5 cm,

node stage either 0 or 1, and metastasis stage 0. This is a typical assignment of operable

primary breast tumour patients, to whom the Index applies. The remaining patients form a

high-risk cohort.

There were 917 patients in the low risk cohort, 633 patients in the high-risk cohort and 66

records with tumour stage 0 were discarded. Although low risk is assigned to patients with

tumour less than 5 cm in the maximum dimension, with at most a few mobile affected lymph

nodes and with no detectable metastatic spread, this group will be shown to contain risk

groups that overlap entirely with groups identified in the high-risk cohort. This may be due,

in part, to the assignment of records with missing values of pathological size to high-risk.

Table 1

Variables recorded in the standard breast cancer database

Variable Number of attributes

Menopausal status 3

Age group 3

Predominant site 5

Side 2

Maximum tumour diameter 3 þ unknown

Clinical stage tumour T0 (no tumour) þ T1–4

Clinical stage nodes N0–3

Clinical stage metastasis M0–1

Clinical stage (TNM) 5

Radiotherapy 2

Histology 3 þ unknown

Surgery 9

Number of nodes involved 4 þ unknown

Adjuvant treatment 16

Number of nodes removed 4 þ unknown

Nodes ratio 4 þ unknown

Pathological size 3 þ unknown

Oestrogen level 3 þ unknown
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Censorship is an inherent feature of survival data that arises when follow-up stops before

the end of the study period, censoring all further information regarding the occurrence of

the event of interest. An example of censorship is an intercurrent death, that is to say a

patient who dies within the follow-up period but from a cause not attributed to breast

cancer. It is the occurrence of censorship that differentiates survival modelling from other

forms of statistical analysis, such as binary classification.

The next section describes existing statistical and neural network models for censored

data. Section 4 introduces the theoretical contribution of the paper in the application of a

Bayesian regularisation framework to the PLANN model, followed in Section 5 by a

practical contribution, which introduces a framework for using neural networks to make

prognostic assignments of individual patients to risk groups and for the interpretation of

these groups in terms of clinical variables.

3. Modelling survival

Survival models apply to censored data, therefore, they require an objective function that

includes patients in the risk group only for as long as they are observed to be alive, but

removes them from the study once they are censored. Our study is carried out monthly over

5-years, therefore, all patients are censored after 60 months. In both models used in this

study the appropriate objective function data is the likelihood of hazard. In a discrete time

model the hazard is the probability of the event of interest occurring in a specific time

interval, in other words the posterior for a death attributed to breast cancer being observed

in a particular time interval, conditional on survival to the start of the interval, namely,

hðtkÞ ¼ Pðt � tkjt > tk�1Þ: (1)

The precise form of the expression for the likelihood takes different forms for the proportional

hazards model and the neural network. In each case, since it does not take direct account of the

actual event or censorship times, it is called a partial likelihood function [6].

The next two sections introduce the benchmarking statistical model and the neural

network survival model followed in this paper.

3.1. The benchmark model: proportional hazards

The proportional hazards model, sometimes called Cox regression [1], is a multiple

linear regression of the hazard function, under the assumption that all time dependence is

specified by a reference group of patients called the baseline population. It is possible to

introduce time dependence via interaction terms, but this adds considerable complexity to

the model design and is generally a heuristic procedure reliant on the statistical expertise of

the user.

For discrete time intervals, the proportional hazards model parameterises the odds of

survival in proportion to a baseline, as follows [6],

hpðtkÞ
1 � hpðtkÞ

¼ h0ðtkÞ
1 � h0ðtkÞ

expðbTxpÞ; (2)
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where p denotes the individual patient record and xp is a static covariate vector containing

a set of explanatory variables extracted from the patient record. We are interested only in

the variables available immediately after surgery, therefore, we exclude the treatment

attributes from the study. A baseline population must be selected to establish the time

dependence of the hazards. Its covariate vector will contain all zeros. There is no

deterministic procedure to do select which attributes should form the baseline, but we

have followed standard practice in consistently selecting the attributes that are expected

to result in the higher survival. Note that the dependence on the covariates is aggregated

into the scalar bTxp which represents a risk score or prognostic index (PI). Given our choice

of baseline, this index is expected to be negative. Prognostic indexes have been used to

allocate patients into prognostic groups ranked by mortality risk [7,8].

In the limit of infinitely short time intervals, the discrete time model in Eq. (2) converges

to the familiar parameterisation of proportional hazards in continuous time given by

hpðxp; tÞ ¼ expðbTxpÞh0ðtÞ: (3)

The survival function for the pth individual is calculated using [6]

ŜpðtÞ ¼ ½Ŝ0ðtÞ	expðb̂T
xpÞ: (4)

3.2. A neural network model for censored data: overview of the PLANN model

Artificial neural networks (ANN) are non-linear, semi-parametric models that have

recently been considered as alternative methods for survival analysis in the presence of

censorship [3]. Such models form a natural non-linear extension of the discrete time

proportional hazards, since using the standard MLP network structure with time as an input

the analytical expression for the network becomes

hpðxp; tkÞ
1 � hpðxp; tkÞ

¼ exp
XNh

h¼1

whg
XNi

i¼1

wihxpi þ wtk þ bh

 !
þ b

 !
; (5)

where the indices i and h denote the input and hidden node layers, respectively, and the

non-linear function g(
) has the usual sigmoidal form

gðaÞ ¼ 1

1 þ e�a
: (6)

In this model the dependence on the covariates and on time is combined into the non-linear

term on the right-hand side of Eq. (5). If the sigmoid were replaced by a linear function,

then the argument of the exponential would become bTxp þ y1tk þ y2, returning to a

factorisation of the dependence of the discrete time hazard on the explanatory variables and

time, but with a sigmoidal parametric form assumed for the latter. Once the network

weights w are estimated, the survivorship is calculated from the estimated discrete time

hazard by multiplying the conditionals for survival over successive time intervals, treated

as independent events, to give

SðtkÞ ¼
Yk

l¼1

Pðt > tljt > tl�1Þ ¼
Yk

l¼1

ð1 � hðtlÞÞ: (7)
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The estimation of the weights requires a likelihood term that reflects the status of the

patient p at time tk. This is achieved with an indicator label, or target tpk which assumes the

value of 0 if the patient is observed to be alive and 1 to indicate a death attributed to breast

cancer in the time interval tk�1 < t � tk. It is convenient to express the resulting expression

as a negative log-likelihood,

G ¼ �
Xno: of patients

p¼1

Xtl

k¼1

½tpk logðhpðxp; tkÞÞ þ ð1 � tpkÞlogð1 � hpðxp; tkÞÞ	: (8)

where tl is the month when the patient was last observed. The generic non-linear model in

Eqs. (5)–(7) with parameters estimated by minimizing the cost function in (8) is called the

Partial Likelihood Artificial Neural Network (PLANN) [4].

In a discrete time study of survival with PLANN, the network output represents the

predicted hazard for a fixed time interval, whose midpoint is entered as a separate input

variable. This model does not require proportionality of the hazards over time and it

implicitly models interactions between the explanatory variables and with time. Moreover,

it predicts a smooth hazard function that is independent of the baseline population.

However, generic non-linear models such as neural networks are prone to over-fitting the

data unless careful regularisation is applied in order to control the complexity of the model.

A Bayesian framework has proved to be robust in estimating the weight parameters [10]

and it also lends itself to model selection [5]. This framework is described in detail in the

next section.

4. Automatic Relevance Determination

Bayes’ theorem has been proposed as a principled regularisation framework to ensure

generality of the model predictions for new data. The implementation of this method

involves three steps in sequence. First, a penalisation term is added to the objective

function. Second, the regularisation parameters that control the penalty term are estimated.

Third, the whole framework is interpreted as the evidence in favour of candidate network

structures, enabling model selection to be carried out. In addition, when modelling heavily

skewed data such as is typical in survival modelling, where the observed deaths are very

much fewer then the number of months when patients are observed alive, the prevalence of

the different binary values of the indicator label must be taken explicitly into account. Each

of these aspects is now discussed in turn.

4.1. Bayesian regularisation framework for ARD

Let us denote the PLANN parameter set w, the data D, the penalty parameters a and the

model hypothesis H.

In a Bayesian framework, the purpose of parameter estimation is to maximize the

evidence for the weight set {w}, which is given by

PðwjD; a;HÞ ¼ PðDjw; a;HÞPðwja;HÞ
PðDja;HÞ : (9)
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The numerator consists of the likelihood that the model fits the data,

PðDjw; a;HÞ ¼ e�G; (10)

multiplied by the prior distribution of the weights, which is normally assumed to be centred

at zero with variance 1/a,

Pðwja;HÞ ¼ e�Eðw;aÞ

ZWðaÞ ; (11)

where Eðw; aÞ ¼ ð1=2Þ
PNa

m¼1am

PNm

n¼1w2
mn. The index n indicates a group of weights wmn

sharing a common regularisation parameter am of which there are Nm. These weights

correspond to attributes from a single field, or variable. As the training progresses, the am

for variables with little predictive power increase in size, forcing the corresponding

weights towards zero, hence, the term ‘weight decay’ commonly used for this regularisa-

tion method. This is the main mechanism for complexity control in the neural network,

and it has a key rôle later during model selection. The normalisation constant is

readily calculated from a product of univariate normal distributions, giving ZWðaÞ ¼QNa
m¼1ð2p=amÞNm=2

.

Finally, the weights are estimated by an iterative ‘training’ process that optimises

PðwjD; a;HÞ / e�G e�Eðw;aÞ ¼ e�Sðw;aÞ; (12)

by minimizing the penalized objective function Sðw; aÞ ¼ G þ Eðw; aÞ. In our study this

was carried out by scaled-conjugate gradients optimisation, implemented in the Matlab

code Netlab [11].

4.2. Setting the regularisation parameters

In general it is possible to adjust the regularisation parameters, sometimes called ‘hyper-

parameters’, with empirical measures of generality such as cross-validation. However, this

approach is computationally very expensive and, when extended to model selection, may

not be robust. An alternative is to use the Bayesian framework introduced earlier.

In order to adjust the hyper-parameters to suitable values we need to maximize the

corresponding Bayesian expression

PðajD;HÞ ¼ PðDja;HÞPðajHÞ
PðDjHÞ : (13)

The first-term in the numerator is the normalizing constant in Eq. (9) and therefore it can be

written as

PðDja;HÞ ¼
Z

PðDjw; a;HÞPðwja;HÞ dw ¼
Z

e�Sðw;aÞ

ZWðaÞ dw: (14)

This integral is not analytical but its value may be approximated using a Taylor expansion

about the ‘most probable’ weights wMP [10] estimated as described in the previous section,

to yield

S�ðw; aÞ  SðwMP; aÞ þ 1
2
ðw � wMPÞT

Aðw � wMPÞ; (15)
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where the matrix A is the Hessian of S with respect to the weights. In effect we are

specializing to a unimodal distribution around the estimated weights, assuming a multi-

variate normal form.

With this approximation, the evidence for the hyper-parameters becomes [10]

PðajD;HÞ / expð�SðwMP; aÞÞ
ZWðaÞ ð2pÞNW=2

detðAÞ�1=2: (16)

Maximising Eq. (15) results in a closed form solution for the hyper-parameters, giving

gm ¼ Nm � amTrmðA�1Þ ¼ Nm

PNm

n¼1ðWMP
mn Þ

2PNm

n¼1ðWMP
mn Þ

2 þ TrmðA�1Þ
; (17)

1

am

¼
PNm

n¼1ðWMP
mn Þ

2

gm

¼
PNm

n¼1ðWMP
mn Þ

2 þ TrmðA�1Þ
Nm

; (18)

where Trm(A�1) is the trace of the inverse Hessian taken over the weights sharing am. This

trace term is a measure of the uncertainty in the estimation of the weights [5], therefore,

it follows from Eq. (17) that the intermediate parameter gm is positive and reaches its

upper limit only when all of the Nm weights associated with am have zero error bars. The

interpretation of gm is that it represents the number of well determined parameters in the

group m of weights. There are separate (am, gm) hyper-parameters for each input covariate,

each shared among multiple attributes; for the time covariate; for the bias terms bh in the

hidden units; for the weights wh to the single output unit; and for the output node bias b.

Taken together, the values of g add-up to the number of effective parameters in the model,

which is usually a fraction of the number of estimated weights.

Eq. (18) reflects the ‘empirical Bayes’ approach used by this framework, whereby the

variance of the prior distribution of the weight, 1/am is adjusted to match the sample

variance of the estimated weights about the assumed mean of zero, averaged over the

number of well determined parameters or, equivalently, calculated from the sample

variance by adding the predicted variance for the weights.

The application of this methodology resulted in a large value for am in each variable,

indicating that one of the attributes was redundant. This lends itself naturally to the use of a

baseline population with all-zero covariates and the same attributes were chosen as for the

baseline in the proportional hazards model.

4.3. Model selection with the neural network

Having completed the estimation of the PLANN parameters with ARD regularisation to

soft-prune irrelevant variables in the model, the Bayesian framework can be utilized in full

to carry out model selection. In our experience, careful identification of the explanatory

variables is the single major determinant of the accuracy and generality of predictive

models. Model selection requires a third level in the ARD methodology, beyond estimation

of the evidence for the weight parameters and regularisation hyper-parameters, to estimate

the evidence in support of a particular model hypothesis H, using

PðHjDÞ ¼ PðDjHÞPðHÞ
PðDÞ : (19)
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Assuming a flat prior for the space of possible models, considered here as the available

set of explanatory variables, the evidence for a particular model selection is given

by

PðHjDÞ / PðDjHÞ ¼
Z

PðDja;HÞPðajHÞ da; (20)

which is the analytical expression for the normalizing constant in the evidence for the

hyper-parameters, Eq. (13), just as its numerator required an estimation of the denominator

in the evidence calculation for the weights, Eq. (9).

Assuming a log-normal distribution for the hyper-parameter priors PðajHÞ, the variance

the variance of the distribution of logðamÞ � 2/gm [10]. Approximating the integral in

Eq. (20) by its mode multiplied by the width of the prior [5,10] we obtain an analytical

approximation to the evidence in support of candidate PLANN model, given by

logðPðDjHÞÞ  �SðwMP; aÞ � 1

2
logðdetðAÞÞ þ 1

2

XNa

m¼1

ðNm logðamÞÞ

þ 1

2

XNa

m¼1

log
2

gm

� 	
þ Na

2
logð2pÞ þ logðNh!N

2
hÞ: (21)

Notice that the evidence is calculated using the most probable values of the network

outputs, and it includes a combinatorial term to allow for the inherent symmetries in the

neural network, whose hidden nodes may be permuted at will, and the sign of the weights

connected to each hidden node can be reversed but with a change in the output node bias

will lead to a functionally identical model. This term is expected to legitimise the unimodal

approximation to the evidence made by this framework, even though the error surface of

the neural network is necessarily multimodal.

In practice, the universal approximation properties of neural networks are only valid for

sufficiently large numbers of hidden nodes. While, in principle, this could exacerbate the

difficulties with overfitting, within a regularisation framework it is quite feasible to use a

large network and thus keep the number of hidden nodes constant during model selection.

This also has the advantage of preventing the model from falling into local minima in the

function space, which can result in accurate fitting of the data but with unnecessarily

complex surfaces [12].

4.4. Marginalisation of the network predictions

In survival modelling, the distribution of the binary indicator label, or target, is

extremely skewed due to the scarcity of events and the large number of time steps used

in the analysis. Skewed target distributions are improperly regularised using the standard

Netlab software because equal numbers of ‘zeros’ and ‘ones’ are assumed.

In particular, the posterior distribution for the network parameters in the Bayesian

framework requires a modulation of the network outputs towards what is called the

guessing line in the Receiver Operating Characteristic framework, which corresponds to

assigning the output to the prevalence [3] when the weights have large error bars.
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The predicted hazard is the mean calculated from the distribution of the activation a(
)
which is the argument of the exponential in right-hand side of Eq. (5), hðx; tÞBgðaÞ, giving

hgðx; tÞ ¼
Z

gðaÞPðajxp; t;DÞ da: (22)

In this expression, D represents the target distribution contained in the training data.

This integral is not analytical, but it can be evaluated when the activation is expanded as

a linear function of the weights

a�ðxp; t;wÞ  aMPðxp; t;wÞ þ gTðxp; t;wMPÞ ðw � wMPÞ: (23)

The distribution of the activation is found by integrating over the posterior distribution for

the weights, Eq. (12), using the Taylor expansion of the objective function, Eq. (14)

variance s2 [10], resulting in

Pðajxp; t;DÞ / exp �ða � aMPÞ2

2gTA�1g

 !
: (24)

Having obtained the variance of the activation values, the predicted hazards is now well

approximated [5,10] by

hgðx; tÞ  g
aMPðx; tÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ ðp=8ÞgTA�1g
p

 !
: (25)

Therefore, the inherent uncertainty in the network prediction may be described either by

specifying a range of values for the integrand in Eq. (21) or by marginalising over the

activation and thus moderating the network output towards the guessing line. However,

hgð
Þ!s!1 1=2, therefore, the prevalence of the binary targets assumed in Eq. (25) is 50%.

It is now straightforward to update the standard regularisation framework to take account

of the prevalence Pt ¼ Pðtpk ¼ 1Þ by re-scaling the log-likelihood, together with the

calculation of the gradient and the Hessian, as follows [13]

~G ¼�
Xno:of patients

p¼1

Xtl

k¼1

1

2Pt
tpk logðhpðxp; tkÞÞþ

1

2ð1�PtÞ
ð1� tpkÞlogð1� hpðxp; tkÞÞ

� 
;

(26)

and compensating the resulting marginalised network prediction ~hgðx; tÞ

hgðxp; tÞ ¼
~hgðxp; tÞPt

~hgðxp; tÞPt þ ð1 � ~hgðxp; tÞÞð1 � PtÞ
: (27)

5. Application to breast cancer prognosis

An important clinical application of survival models is the allocation of patients into

prognostic risk groups, as this directly influences the choice of treatment. In this study the

overall data are treated as two cohorts separated using standard TNM criteria, as described

in Section 2.
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The proposed method to identify and interpret prognostic risk groups consists of the

following stages:

(a) Model selection to identify a predictive model for the hazard.

(b) Assignment of a prognostic group index, or risk score, to each individual record. The

aggregation of the risk scores into distinct prognostic risk groups is then carried out

in a pairwise manner using the log-rank test [14].

(c) The evaluation of the model starts by plotting the observed survival using Kaplan–

Meier (KM) curves [15] for the grouped data, whose error bars [6] should show little

overlap. The predictive accuracy of the survival models is then gauged by comparing

the KM curves with the mean grouped survival curves calculated from the predicted

hazards, for each month over the 5-year-period of follow-up.

(d) Having established the predictive accuracy of the survival models, it is necessary to

interpret the composition of the prognostic groups, by profiling the histograms of

selected variables.

In this study, model selection was carried out with a time step of 1 year, to reduce

the computational overhead. Once a preferred model was established, the predictive

modelling then used a time step of one month. All of the results presented in this section

were obtained by cross-validation so that, for each individual, they represent an out-of-

sample prediction. The low-risk cohort was predicted using five-folds and the high-risk

cohort with three-folds.

5.1. Results with the proportional hazards model

The proportional hazards model was implemented in SPSS [9] with stepwise model

selection using the Akaike Information Criterion (AIC) [6]. This procedure begins by

searching for the most significant univariate model. At any stage in the selection process,

each remaining variable is added to the model and the most significant multivariate model

is selected. Each variable is then dropped from the model, in turn, to test whether there is

evidence that any of the existing variables has become redundant. The procedure then

continues by iteration, using a significance measure based on

AIC ¼ �2 logðL̂Þ þ aNb; (28)

where L̂ is the optimised log-likelihood function for the proportional hazards model, Nb the

number of degrees of freedom which is the same as the number of attributes excluding

the those for the baseline population and a is a predetermined constant that took the

recommended value of 3 which is roughly equivalent to a 5% significance level to

distinguish between nested models with few variables [6]. This parameter may be adjusted

upwards if the resulting models are judged to generalise poorly.

The final model for the low-risk cohort comprised four variables with a total of eight

degrees of freedom, namely, histology, pathological size, clinical stage nodes and nodes

ratio.

Four risk groups were identified in from the prognostic index bTxp, shown in

Fig. 1a.
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There is a good match between predicted and observed survivorship shown in Fig. 1b

and c. The resulting cluster profiles, in Fig. 2, show a clear clinical pattern. As the risk

increases, histology moves away from attribute 3 (mixed medullary, etc.) to attributes 1

(infiltrating ductal carcinoma) and 2 (infiltrating lobular carcinoma) and pathological size

gradually shifts from 1 (<2 cm) to 2 (2–5 cm). The group at highest risk is characterised by

clinical stage N of 1 (ipsilateral and mobile axillary nodes) from 0 (no affected nodes

found). The frequency histogram of nodes ratio is less differentiated across the groups.

By reference, a prospective study of the Nottingham Predictive Index [1], which has a

prognostic index scale based on tumour size, lymph node stage assigned from a triple node

biopsy, and three levels of histological grade based on tissue differentiation, identified three

Fig. 1. (a) Partitioning of the low-risk group (LRG) into four prognostic groups with 127, 189, 487 and 114

patients, respectively; (b) mean survival predicted for each prognostic risk group in the low-risk cohort, by the

proportional hazards model; (c) the corresponding grouped Kaplan–Meier curves.
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Fig. 2. Attributes profiles for the four risk groups identified in the low-risk cohort by the proportional hazards model.
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prognostic groups, two of which overlap with the survival range in Fig. 1. An exact

comparison between the two models is not possible because they use different clinical

indicators but, nevertheless, these results suggest that nodes ratio may be redundant and

there too many prognostic groups were identified by the default model selection

procedure, even using AIC. A more detailed analysis of the proportional hazards model

including time effects and covariate interactions is possible, but it is outside the scope of

this paper since the neural network modelling will also be carried out using a default

procedure.

The selected variables for the high-risk group are menopausal status, node stage,

pathological size, clinical stage and nodes ratio. Three prognostic groups were identified,

with substantial overlap with the survival range in the low-risk group, in Fig. 3a and b.

Fig. 3. (a) Mean survival predicted by the proportional hazards model for the high-risk group; (b) the

corresponding grouped Kaplan–Meier curves.

14 P.J.G. Lisboa et al. / Artificial Intelligence in Medicine 28 (2003) 1–25



This is due, at least in part, to the automatic assignment of low-risk patients with

missing values of pathological size to the high-risk group, indexed by clinical stage 1

(Fig. 4).

In the attribute profiles shown in Fig. 4, variables node stage and clinical stage show the

clearer patterns with increasing risk.

Fig. 4. Attribute histograms for the prognostic risk groups identified in the high-risk cohort by the proportional

hazards model.
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5.2. Contrast with the neural network

A comparison of the defining equations for the discrete time proportional hazards mode,

Eq. (2) and the PLANN model, Eq. (5), indicates that the equivalent of the linear prognostic

index bTxp is the non-linear index comprising the argument of the logistic function,

namely, the activation a(xp, t) in Eq. (6). This is readily calculated from the hazard by

inverting the logistic sigmoid,

aðxp; tkÞ ¼ log
hpðxp; tkÞ

1 � hpðxp; tkÞ

� 	
; (29)

Fig. 5. (a) Partition of the prognostic index predicted by the PLANN–ARD model for the low-risk cohort, into

risk groups with 56, 359, 460 and 42 patients, respectively; (b) mean survivorship predicted by the PLANN–ARD

model with the same variables as used by Cox regression; (c) the corresponding grouped Kaplan–Meier curves.
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Fig. 6. Variable attributes of four prognostic groups identified by PLANN–ARD.
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which is just the log-odds-ratio of the predicted hazard. However, the hazard varies

both over time and with the covariates. Therefore, the simplest prognostic index for

PLANN is obtained by averaging the predicted activation of the 60 months’ duration of the

study:

PIðxpÞ ¼
P60

k¼1aðxp; tkÞ
60

: (30)

The PLANN–ARD model was first applied using the variables selected by Cox regression,

to verify that it was capable of matching the predictions of a model that is linear-in-the-

parameters, albeit actually a non-linear model of the attributes. In effect, we are testing

implicitly for interactions between the covariates, or with time. Fig. 5a shows that four risk

groups were again identified, with good agreement between the predicted and observed

survival, in Fig. 5b and c. All PLANN networks had eight hidden nodes, as this had been

deemed sufficient in cross-validation tests, and the regularisation framework does not

require further pruning.

Note from Fig. 5c that in the highest surviving group there was only one event observed

over the period of follow-up. Fig. 6 shows that pathological size <2 cm is a defining

characteristic in this prognostic group. Prognostic group 4 appears to have been uniquely

identified by a nodes ratio >60%.

These results indicate that PLANN–ARD matches the predictions made by Cox

regression for the same explanatory variables, resulting in greater specificity in the

assignment of patients into risk group. This effect indicates that some amount of interaction

is present among the covariates, which the neural network is capable of utilising in its

prognostic assignments.

In PLANN the hazard may be plotted directly as a function time, as shown in Fig. 7.

Fig. 7. Predicted hazard for the prognostic groups identified in the preceding figures. The proportionality of the

hazards is largely satisfied, with only a slight delay in the peak hazard as the mortality risk increases.
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Fig. 8. (a) Allocation of prognostic groups using the log-rank test applied to the prognostic index of PLANN–ARD for the low-risk cohort; (b) mean survival curves for

the risk groups identified in (a) with 423, 370 and 124 cases, respectively; (c) corresponding grouped Kaplan–Meier curves.
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Fig. 9. Attribute histograms for the prognostic groups identified with PLANN–ARD in the low-risk group.
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5.3. Results with PLANN–ARD

Model selection for the neural network was carried out using the Bayesian regularisation

framework outlined in Section 4. The model for the low-risk cohort selected four variables,

as indicated in Tables 2 and 3. Notice that the evidence has reaches a minimum but this

Fig. 10. Mean monthly hazard predicted by PLANN–ARD for the data in the preceding figures.

Table 2

Evidence calculation with PLANN–ARD for the low-risk cohort

Variables added to the model Evidence estimated

by ARD

Log-likelihood estimated

by cross-validation

Clinical stage nodes 2529.1 1418.6

Histology 2501.2 1421.8

Pathological size 2484.6 1425.4

Number of nodes involved 2470.3 1498.9

Tumour diameter 2520.5 –

Table 3

Evidence calculation with PLANN–ARD for the high-risk cohort

Variables added to the model Evidence estimated

by ARD

Log-likelihood estimated

by cross-validation

Clinical stage (TNM) 1347.6 1749.2

Clinical stage tumour 1379.4 1791.8

Clinical stage metastasis 1428.4 1793.7
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Fig. 11. (a) Allocation of prognostic groups using the log-rank test applied to the prognostic index of PLANN–ARD for the high-risk cohort. Only two groups are

identified; (b) mean survival curves for the risk groups identified in (a) with 355 and 278 cases, respectively; (c) corresponding grouped Kaplan–Meier curves.
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is not replicated in another measure of generality, which is the log-likelihood estimated

out-of-sample.

The variables selected by the model are vary similar to those in the proportional hazards

model, with the exception of number of nodes involved replacing nodes ratio. However, the

prognostic group allocation is more conservative than found previously, with patients

assigned to only three risk groups, shown in Fig. 8.

The attributes profiles in Fig. 9 clearly show that pathological size and histology are the

key factors to differentiate the highest surviving-group from the rest, and clinical stage

nodes specifies the lowest-surviving group. Note that nearly all cases with lobular

carcinoma, labelled by histological attribute 2, have been assigned into a single group,

making the risk assignment specific to this variable. The predicted hazard, in Fig. 10, is also

different from the previous results, suggesting a later peak in the hazard for the lowest risk

group.

Fig. 12. Attribute histograms for the prognostic groups identified with PLANN–ARD as a univariate model for

the high-risk group, defined by TNM clinical staging.
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Model selection for the high-risk cohort resulted in a univariate model, rediscovering

current clinical practice for these patients, that is to rely entirely on TNM staging. This is

clear from Table 3 where two indicators of model performance are listed for increasing

numbers of variables. The next best variables are also clinically relevant, but would seem

not to add significantly to the prognostic allocation, which then diverges into four

prognostic groups as was the case with the proportional hazards model applied to the

same data.

Figs. 11 and 12 show the prognostic index, risk group assignment and attribute profiles,

respectively, while the continuous prediction of the hazard is plotted in Fig. 13.

The grouping of TNM staging is exactly as expected and the predicted monthly

hazard is higher than for the low-risk cohort, but nearly flat which is also as expected

from the nearly exponential structure of the observed survivorship of groups of high-

risk patients. This effect is sufficiently strong to identify the time covariate as not

always relevant in PLANN–ARD modelling of this group of patients. Nevertheless, the

time covariate was forced into the model to explicitly show the dependence on time

(Fig. 13).

6. Conclusion

A Bayesian framework with covariate-specific regularisation has been introduced as an

extension of the PLANN neural network model for censored data, to carry model selection

using Automatic Relevance Determination.

The results of contrasting the PLANN–ARD model with the clinically well accepted

proportional hazards model were that the two are consistent, but the neural network may be

more specific in the allocation of patients into prognostic groups using a default procedure

that is also described in this paper.

Fig. 13. Mean monthly hazard predicted by PLANN–ARD for the high-risk group.
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With automatic model selection, however, we obtain the perhaps surprising result that

the regularised neural network is more conservative than the default stepwise forward

selection procedure implemented by SPSS with the Akaike Information Criterion. While

this is not entirely unexpected due to the limited amount of experimentation with this

model, in particular with regard to the choice of penalty parameter, it is nevertheless

encouraging that the PLANN–ARD model immediately produced results that make

clinical sense and appear to be more robust than those with the classical statistical model.

Future work will involve the application of these models to a second cohort of patients

recruited after those modelled here.
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