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Abstract

Arti1cial neural networks (ANN) seem very promising for regression and classi1cation, especially
for large covariate spaces. Yet, their usefulness for medical and social research is limited because
they present only prediction results and do not present features of the underlying process relating the
inputs to the output. ANNs approximate a non-linear function by a composition of low-dimensional
ridge functions, and therefore appear to be less sensitive to the dimensionality of the covariate space.
However, due to non-uniqueness of a global minimum and the existence of (possibly) many local
minima, the model revealed by the network is non-stable. We introduce a method that demonstrates
the e7ects of inputs on output of ANNs by using novel robusti1cation techniques. Simulated data from
known models are used to demonstrate the interpretability results of the ANNs. Graphical tools are used
for studying the interpretation results, and for detecting interactions between covariates. The e7ects of
di7erent regularization methods on the robustness of the interpretation are discussed; in particular we
note that ANNs must include skip layer connections. An application to an ANN model predicting 5-yr
mortality following breast cancer diagnosis is presented. We conclude that neural networks estimated
with su<cient regularization can be reliably interpreted using the method presented in this paper.
c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Interpretability of statistical models, or the understanding of the way inputs re-
late to an output in a model, is a desirable property in applied research. For health
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outcome data, interpretation of model results becomes acutely important, as the intent
of such studies is to gain knowledge about the underlying mechanisms. Interpretation
is also used to validate 1ndings as results that are inconsistent or contradictory to
common understanding of issues involved may indicate problems with data or mod-
els. Commonly used models, such as the logistic regression model, are interpretable,
but often do not provide adequate prediction, thus making their interpretation ques-
tionable. Statistical aspects of ANNs, such as approximation and convergence prop-
erties, have been discussed, and compared with the properties of more “classical”
methods (Barron and Barron, 1988; Geman et al., 1992; Ripley, 1993). ANNs have
proven to produce good prediction results in classi1cation and regression problems
(e.g. Ripley, 1996). This has motivated the use of arti1cial neural network (ANN)
on data that relates to health outcomes such as death or diagnosis. One such exam-
ple is the use of ANN for the diagnosis of acute coronary occlusion (Baxt, 1990).
In such studies, the dependent variable of interest is a class label, and the set of
possible explanatory predictor variables—the inputs to the ANN—may be binary or
continuous.

Neural networks become useful in high dimensional regression by looking for
low dimensional decompositions or projections (Barron, 1991). Feed-forward neural
networks with simple architecture (one or two hidden layers) can approximate any
L2 function and its derivatives with any desired accuracy (Cybenko, 1989; Hornik
et al., 1990, 1993). These two properties of ANN make them natural candidates for
modeling multivariate data.

The large Kexibility provided by neural network models results in prediction with
a relatively small bias, but a large variance. Careful methods for variance control
(Barron, 1991; Breiman, 1996, 1998; Raviv and Intrator, 1996; Intrator, 2000) can
lead to a smaller prediction error and are required to robustify the prediction. While
arti1cial neural networks have been extensively studied and used in classi1cation and
regression problems, their interpretability still remains vague. The aim of this paper
is to present a method for interpreting ANN models.

Interpretability of common statistical models is usually done through an under-
standing of the e7ect of the independent variables on the prediction of the model.
One approach to interpretation of ANN models is through the study of the e7ect
of each input individually on each neuron in the network. We argue that a method
for interpretation must combine the e7ect of the input on all units in the network.
It should also allow for combining e7ects of di7erent network architectures. Since
substantial interest usually focuses on the e7ect of covariates on prediction, it is
natural to study the derivative of the prediction p with respect to each predictor.
For binary response outcomes it is natural to study the derivative of the log-odds
(logp=(1 − p)) with respect to each input.

We calculate the derivative of the log odds of the ANN prediction with respect to
each of the explanatory variables (inputs) while taking various measures for achiev-
ing robust results. The method allows to determine which variables have a linear
e7ect, no e7ect, or non-linear e7ect on the predictors. Graphical tools useful for
identifying interactions, and for examination of the prediction results are presented.
Using simulated data we demonstrate the importance of using di7erent regularization
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methods on robusti1cation and interpretation. Finally, we present an application of
the method to study 5-yr mortality from breast cancer.

A preliminary version of this paper appeared in (Intrator and Intrator, 1997).

2. Methods

2.1. Regularization of neural networks

The use of derivatives of the prediction with respect to the input data, sometimes
called sensitivity analysis, is not new (Deif, 1986; Davis, 1989). Since a neural
network model is parametric (with possibly a large parameter space), a discussion
of the derivatives of the function is meaningful (Hornik et al., 1990, 1993). However,
there are several factors which degrade the reliability of the interpretation that need to
be addressed. First, the solution to a 1xed ANN architecture and learning rule is not
unique. In other words, for any given training set and any given model (architecture,
i.e. the number of hidden units), the weight matrix is not uniquely determined. This
means that ANN models are not identi1able. Second, gradient descent, which is
often used for 1nding the estimates, may get stuck at local minima. This means that
based on the random sequence in which the inputs are presented to the network and
based on the initial values of the input parameters di7erent solutions may be found.
Third, there is the problem of optimal network architecture selection (number of
hidden layers, number of hidden units, weight constraints, etc.) This problem can be
addressed to some degree by cross validatory choice of architecture (Breiman, 1996,
1998), or by averaging the predictors of several network with di7erent architecture
(Wolpert, 1992).

The non-identi1ability of neural network solutions caused by the (possible) non-
uniqueness of a global minima, and the existence of (possibly) many local minima,
leads to a large prediction variance. The large variance of each single network in the
ensemble can be tempered with a regularization such as weight decay (Krogh and
Hertz, 1992; Ripley, 1996, provide a review). Weight decay regularization imposes
a constraint on the minimization of the squared prediction error of the form:

E =
∑
p

|tp − yp|2 + �
∑
i; j

w2
i; j ; (1)

where tp is the target (observation) and yp the output (prediction) for the pth
example pattern. wi;j are the weights and � is a parameter that controls the amount
of weight decay regularization. There is some compelling empirical evidence for the
importance of weight decay as a single network stabilizer (Breiman, 1996, 1998;
Ripley, 1996).

The success of ensemble averaging of neural networks is due to the fact that
neural networks, in general, 1nd many local minima; even with the same training
set, di7erent local minima are found when starting from di7erent random initial con-
ditions. These di7erent local minima lead to somewhat independent predictors, and
thus, the averaging can reduce the variance. (Hansen and Salamon, 1990; Wolpert,
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1992; Perrone and Cooper, 1993; Breiman, 1996, 1998; Raviv and Intrator, 1996;
Intrator, 2000)

When a large set of independent networks is needed, but only little data is avail-
able, data reuse methods can be helpful. Re-sampling (with return) from the training
data leads to partially independent training sets, and hence to improved ensemble
results (Breiman, 1996, 1998). Smoothed bootstrap, which simulates the true noise
in the data (Efron and Tibshirani, 1993), is potentially more useful since larger sets
of independent training samples can be generated.

Noise added to the input during training can also be viewed as a regularizing
parameter that controls, in conjunction with ensemble averaging, the capacity and
the smoothness of the estimator (Raviv and Intrator, 1996; Bishop, 1995). Adding
noise results in di7erent estimators pushed to di7erent local minima, thus producing a
more independent set of estimators. Best performance is then achieved by averaging
over the estimators. For this regularization, the level of the noise may be larger than
the ‘true’ level which can be indirectly estimated.

2.2. Interpretability of single hidden-layer neural networks

The most common feed-forward neural network for classi1cation has the following
form:

p = �

(
l∑

i=1

�i�(xwi)

)
;

where l is the number of hidden units, � is the sigmoidal function given by �(x) =
1=(1 + exp(−x)); x are the inputs (covariates) and w are the weights (parameter)
attached to each neuron. The design of the input includes an intercept term (often

called “bias” in neural network lingo) so that xwi
def=
∑

k xkwik + wi0.
In terms of log odds, the common feed-forward network can be written as

log(p=(1 − p)) =
l∑

i=1

�i�(xwi):

This is a non-linear model for the e7ect of the inputs on the log odds, as each
projection xwi has a non-linear e7ect on the output mediated through the sigmoidal
function.

In a manner similar to the interpretation of logistic regression, we study the e7ect
of an in1nitesimal change in variable xj on the logit transform of the probability.
Since p(x) is a smooth function of x, it is meaningful to examine the derivative

@
@xj

log(p(x))=(1 − p(x)) =
l∑

i=1

�i�′(xwi)wij:

In logistic regression, the e7ect of each covariate xj on the log odds is given by
the individual weights wj since the odds are expressed as a linear combination of
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the inputs. The e7ect of each covariate xj for the neural network model is given by
what we term a generalized weight:

w̃j(x) =
l∑

i=1

�i�′(xwi)wij: (2)

Thus, in neural network modeling, the generalized weights have the same interpre-
tation as weights have in logistic regression, i.e., the contribution to the log odds.
However, unlike logistic regression, this contribution is local at each speci1c point
x. The dependence of the generalized weights on the speci1c covariate levels attests
to the non-linearity of the ANN model, even with respect to the log-odds. For ex-
ample, it is possible that the same variable may have a positive e7ect for some of
the observations and a negative e7ect for others and its average e7ect may be close
to zero. The distribution of the generalized weights, over all the data shows whether
a certain variable has an overall strong e7ect, and determines if the e7ect is linear
or not. A small variance of the distribution suggests that the e7ect is linear. A large
variance suggests that the e7ect is non-linear as it varies over the observation space.
In contrast, in logistic regression the respective distribution is concentrated at one
value.

A generalization of the common feed-forward neural network is the one with skip
layer connections. In this case the inputs are also directly connected with the outputs,
so that the model is

p = �

(
l∑

i=1

�i�(xwi) + x�

)
;

where the additional term permits the estimation of a simple logistic regression
model. The de1nition of the generalized weights can easily be extended to include
this model.

A robust generalized weight (RGW) for each input is an average of the generalized
weights obtained from predictions of an ensemble of estimates. Each prediction is
based on model parameter estimates. Model parameter estimates are obtained using
some regularization methods as discussed in Section 2.1 with an alternating sequence
of inputs.

Two types of plots are used to summarize the results. Scatter plots of the RGW
of each variable with respect to its values provide a mean for examining the pos-
sibility of non-linearity, although not necessarily detecting its form. A smoothed
plot of the average e7ects at the neighborhood of each input level can indicate the
non-linear form. Split-level plots (available in Splus) are used to detect interactions.
They present the RGWs of one variable on the y-axis with respect to either its levels
or levels of another variable on the x-axis. The RGWs are averaged within quintiles
of a variable other than the one presented on the x-axis in order to indicate interac-
tions. In the 1gures presented in this paper, 1ve lines are plotted, each corresponding
to a quintile of information of the extra variable. For example, to test the possible
interaction e7ects between variables X1 and X2 we may examine any or all of four
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plots: (1) the smoothed plots of X1 and the RGW of X1 at quintiles of X2; (2) as
in (1) but the RGW of X2; (3) the smoothed plots of X2 and the RGW of X1 at
quintiles of X1; (4) as in (3) but the RGW of X2.

2.3. Simulation studies

We simulated binomial data using the logit link function to assess the quality of
interpretation. Of particular interest to us was the sensitivity of the interpretation to
the regularization methods.

For two independent continuous covariates x1 and x2 that are uniformly distributed
between 0 and 1 we simulated the following models:
1. A deterministic model: I{x2 ¿ 0}, where I is the indicator function;
2. logit(p) = ax1 + bx2 with a = 1; b = 2;
3. logit(p) = ax1x2 with a = 1;
4. logit(p) = x2

1 + x2.
Each simulation contained 800 data points and used ensembles of six hidden units

single layer nets. Ripley’s S-Plus ‘nnet’ implementation of a feed-forward network
was used (Ripley, 1996) together with our implementation of the RGWs. The min-
imization criterion was mean squared error with weight decay. We tested weight
decay parameter values � between 5e − 5 and 0.5. Noise values added to the in-
puts were normally distributed with zero mean and standard deviation up to 20%
of the standard deviation of the input. We used the skip layer connections option of
Ripley’s code (namely a model that includes logistic regression). Robusti1cation of
the generalized weights was based on network ensembles of 5–11 networks.

3. Results

In all 1gures, the left-hand panel is a scatter plot of each individual observation’s
generalized weight at its observed data point. This is presented twice: the top 1gure
is for x1 and the bottom 1gure is for x2. These plots present a rough picture of the
RGWs and suggest non-linearity as discussed above. A more detailed examination
of the results are the quintile split-level plots of the RGWs (right panels), which are
averages of the RGWs of one variable within quintiles of values of another variable,
plotted at di7erent levels of each of the variables.

Model 1: I(x2 ¿ 0).
This trivial model demonstrates a fundamental problem with model interpretation

when the true link function is not 1nitely approximated well by a mixture of sig-
moidal functions (Fig. 1). We used a step link function which corresponds to an
in1nite slope of the sigmoidal. The anticipated RGW is null everywhere except at
zero where it is in1nite. The stronger the weight decay, the smoother the RGW, with
a tamer e7ect at zero, and a slower decay to zero elsewhere. Weight decay reduced
the level of the RGW at zero from those in the order of hundreds at �¡ 1e − 5 to
less than 10 at � = 0:1.
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Fig. 1. Interpretation of model (1); strong weight decay tames the e7ect at zero, and does not decay rapidly to zero elsewhere. Notice that there is no
e7ect of x1.
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Model 2: logit(p) = ax1 + bx2, where a = 1; b = 2.
In this model we expect the interpretation to be a constant function 1xed at 1 for

the derivative of the logit with respect to x1, and a constant function 1xed at 2 for the
derivative with respect to x2. In the scatter plots in Fig. 2 we see that the estimates
are scattered around their true values. The split-level plots of RGWs of each variable
versus the other should be parallel at values speci1ed by the levels, while those of
each variable with respect to its values should be constant at all values of the levels.
The results are from 15 averages of networks with 7 units, noise injection at 0.03,
weight decay at 0.02, with skip layer connection and 9 cross-validation sets. Both the
network and linear logistic regression models had cross validated average prediction
error of 7.62%. The ROC of the network is 0.72 and that of a logistic regression
model is 0.78. The fact that the network, as an approximator, did as well as the true
linear logistic regression model is encouraging.

Fig. 3 presents the results of a neural network model with no skip layer connection
(the most common feed-forward architecture). The scale of the generalized weights
is around 0.1 (10% of the true model). The variability of the generalized weights (in
the range of 0.3) may incorrectly indicate a non-linear model. We see that without
the skip layer connections, the neural network architecture is unable to correctly
approximate a simple logistic regression model.

Model 3: logit(p) = ax1x2, where a = 1
In this model we expect to see parallel split-level plots of the RGWs of x1 by x1

(since the derivative is ax2), and parallel split-level plots for the RGWs of x2 by
x2 (since the derivative is ax1). The split-level plots of the RGW of x2 versus x1

are expected to be a single increasing line, with no di7erence between the quintile
split-level plots. Likewise, the split-level plots of the RGW of x1 versus x2.

Fig. 4 depicts interpretation result using moderate regularization: weight decay
(� = 0:05), no noise injection and no averaging. We 1rst note that the scale of
the result is between −10 and 10, and the slope in the lower panels is around
5, way beyond the model parameter a = 1. We see that the split-level plots of
generalized weight of x1 by x1 (and those of x2) are not always parallel, and are not
evenly spaced. They exhibit heavy shrinkage at the data points with large absolute
values.

The regularization needed to produce robust plots involves a large weight decay
(� = 0:5), a high level of noise (at least 0.3 SD), and averaging. Fig. 5 presents
the dependence on the level of noise. The e7ect of noise injection (with ensemble
averaging) on robustifying the results is clearly demonstrated.

Fig. 6 presents the robusti1ed generalized weights with satisfactory levels of reg-
ularization. As expected, both variables exhibit a non-linear e7ect in the left panels.
The split-level plots aid in detecting that the non-linearity is due to an interaction
between the two variables. The interaction is apparent from the middle panel which
displays the (almost) single straight line corresponding to x1 and its RGW, at the
5 quintile split-levels of x2, and from the parallel horizontal lines of the RGWs of
x1 versus x2, at the various quintiles of x1. The boundaries display some deviations
from the expected values.

Model 4: logit(p) = x2
1 + x2 (Fig. 7)
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Fig. 2. Interpretation of model (2); simple linear model gives a correct e7ects of the covariates when using skip layer connection architecture.
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Fig. 3. Interpretation of model (2); network with no skip layer connections. The e7ects are scaled wrong (around 0.1 and not around 1.0). The variability
of the e7ect is increased to levels which might incorrectly indicate a non-linear model.
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Fig. 4. Model (3); interpretation of interaction. Little robusti1cation: small weight decay, no averaging of networks and no noise.
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Fig. 5. Model (3); interpretation of interaction. Left: zero input noise; middle: input noise at 10% of the input SD; right: input noise at 20% of the input
SD.
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Fig. 6. Model (3); su<cient regularization for optimal prediction via weight decay, noise injection and ensemble averaging leads to more reliable
interpretation (cf. with Fig. 4).
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Fig. 7. Model (4); interpretation of x2
1 + x2. The non-linear part of the model, x2

1 appears to be more reliably interpreted than the linear part x2.
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For this model we restricted the inputs to the range [−1:5; 1:5] due to the quadratic
e7ect of x1. We expect to detect the quadratic e7ect of x1 when examining the RGW
of x1 versus its levels, which should be linearly increasing from −3 at x1 = −1:5
to 3 at x1 = 1:5. We also expect to see a single straight line of the RGW of x1

versus its levels, at all quintiles of x2. We expected to see the RGW of x1 versus x2

as parallel lines of twice the average levels of the quintiles of x1. The RGW of x2

should always be 1.
We used a seven hidden unit neural network architecture with noise injection

(Raviv and Intrator, 1996), and averaged over an ensemble of 15 networks. We
observed little sensitivity to network size from 5 to 15 hidden units. The results for
x2

1 are quite good in the range [− 1; 1], but for x1 ¡− 1, the results are misleading.
Possibly, the weight decay parameter should have been smaller. On the other hand,
weight decay for x2 should be increased. The interpretation of x2 is somewhat weaker,
with estimates in the range of 0:8 to 1.2. For comparison, the simple linear logistic
regression model was logit(p) = 0:70− 0:02x1 + 0:83x2, with insigni1cant parameter
estimate for x1, and a strongly signi1cant e7ect for x2. The linear logistic model
nulli1ed the e7ect of x1. The estimate of x2 is also slightly biased downwards.

The prediction of the ensemble of networks has a 26.4% 9-fold cross validated
error rate with ROC value of 0.73. The linear logistic regression gave a 9-fold cross
validation error of 32.1% with ROC value of 0.69. The cross validated results indicate
that the neural network model had better prediction. A similar test performed on a
new test data set gave a 26.7% error rate for neural network with ROC=0:75, and a
30.3% error rate for the linear logistic regression model with ROC = 0:69, showing
that the cross validated estimates were not biased.

4. Five-year breast cancer mortality

The data for this example come from six breast cancer studies conducted by the
Eastern Cooperative Oncology Group and was kindly provided by Robert Grey. This
data has been analyzed using survival analysis methods in Gray (1992), Kooperberg
and Stone (1992), and Intrator and Kooperberg (1995). All patients had disease
involvement in their axillary lymph nodes at diagnosis indicating some likelihood
that the cancer had spread through the lymphatic system to other parts of the body;
however, none of the patients had evidence of disease at the time of entry into
the study, which was following surgical removal of the primary tumor and axillary
metastases. In this paper we examine 5 yr mortality from breast cancer.

Two thousand, four hundred and four breast cancer patients were available from
the six studies, and were followed for upto 12 yr; of them 467 patients were censored
before 5 yr, and were omitted from analyses because their survival status at the end
of the 1rst 5 yr could not be determined. This left 970 patients who survived and
967 patients who died within 5 yr following diagnosis (mortality rate of 49.9%).

There were six covariates: (1) estrogen receptor status (ER 0 is ‘negative’, 1 is
‘positive’) with 63.0% of the patients with positive ER; (2) the number of positive
axillary lymph nodes at diagnosis, which varied between 1 and 35 with an average of
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Table 1
Parameter estimates from linear logistic regression model and from average RGWs of neural network
model

Beta SEa Signif Mean Std SEb

Estrogen −0:780 0.390 ∗∗ −0:106 0.041 0.013
Nodes 0.115 0.001 ∗∗ 0.127 0.050 0.013
Size 0.015 0.003 ∗∗ 0.011 0.006 0.002
Age −0:019 0.007 ∗ −0:004 0.004 0.002
BMI 0.023 0.010 0.017 0.007 0.003
Menopause 0.705 0.165 ∗∗ 0.076 0.031 0.016

aStandard error of parameter estimate from logistic regression.
bAverage over all observations of standard deviation of RGW computed over eight networks.

5.6 (std=5:6), and a median of 4 nodes; (3) size of the primary tumor, which varied
between 3 and 100 mm with an average of 31:9 mm (std = 16:7) and a median of
30 mm; (4) age at study admission, between 22 and 81 with an average of 52 (std =
12); (5) menopausal status, with 51.5% of patients post-menopausal; (6) body mass
index (BMI: de1ned as weight=height2), with a mean of 26:2 kg=m2 (std = 5:1) and
a median of 25 kg=m2. Although the empirical distribution of the number of nodes is
highly skewed to the right, we did not transform it, and allowed the neural network
model to adjust itself.

We modeled the data using 6-inputs single-output neural networks with 6–7 hidden
units (i.e. 36–42 weights and 6 linear weights), weight decay parameter of either
1e−5 or 1e−4. For robusti1cation we injected noise which was normally distributed
with 0 mean and 0.5 variance, and used ensemble averaging over eight networks.
These parameters led to the best cross validated ROC values. We computed an
estimate of the error of each individual’s RGW, of each covariate, by computing
the standard deviation of the eight results from each of the networks (for each
patient’s RGWs). Cross validated prediction results showed that the ROC for the
neural network models ranged between 0.649 and 0.673, and for the linear logistic
regression model between 0.624 and 0.632. This results suggests that the neural
networks (a) outperformed the linear logistic regression model by between 2.5% and
7.5%; and (b) that the parameters used for the ANN models were adequate, so the
interpretation results would be valid.

Table 1 presents estimators from a linear logistic regression model and averages
of RGW over all patients with their sample standard deviation, and the estimation
error for each covariate. The neural network results for all the continuous variables
are very similar to the coe<cients of the logistic regression models for these vari-
ables. This suggests that the linear logistic regression model is appropriate as a 1rst
approximation. However, the standard deviations of the RGWs, especially for nodes,
were quite large, suggesting non-linear and=or interaction e7ects. The RGWs for the
binary variables were much smaller on average, suggesting that the ANN model was
di7erent from the linear logistic model, certainly with respect to the e7ects of these
covariates.
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Fig. 8. E7ect of number of nodes on log-odds 5-yr mortality. Generalized additive model with 95%
con1dence bands (top panel), where logit(p) = s(snodes) + f(other covariates). ANN model RGW,

where @logit(p)=@nodes = RGW of Nodes, overlaid with smoothed curve (bottom panel).

We concentrate on the e7ect of the number of nodes and its interactions. One way
to examine non-linearity of predictors is to plot the smoothed generalized additive
model (GAM) functions of a covariate (Hastie and Tibshirani, 1990). GAM provides
a semi-parametric smoothed estimate of an additive generalized linear model that
allows no interaction e7ects. For binary response the smoothed estimates are of the
log-odds model. Fig. 8 presents the GAM of the e7ect of the number of nodes with
95% standard error bands, and the RGW of nodes by the number of nodes, overlaid
with a smoothed graph. The RGWs are the derivative (with respect to nodes) of the
e7ect function, therefore, in shape, they are not completely comparable to the GAM
model, which is the speci1c functional form. Likewise, the scale of the estimates is
not comparable. According to the GAM model, the e7ect of nodes increases linearily
from −0:8 for one node to approximately 1.2 for 17 nodes, and then levels o7. The
derivative of this function would therefore decrease and have an inKection point at 17
nodes. The RGWs appears to increase from 0.14 at a single node to approximately
0.17 at 1ve nodes, and then decrease monotonically to a nill e7ect with no clear
inKection point at 17 nodes. The average RGW is 0.127, quite similar to the estimated
linear logistic model e7ect (0.115), suggesting that the linear approximation may be
appropriate.

Studying interaction e7ects in logistic regression is only done by testing the in-
clusion of speci1c interactions. While we are assured that the ANN model incor-
porates interactions, as necessary, we would like to be able to detect and interpret
them. To do so, we examined the split-level plots of nodes and size (an interac-
tion that was reported by Intrator and Kooperberg, 1995), and also whether there is
a possible interaction between age and nodes, since those two variables displayed
the most non-linearity. Fig. 9 displays the split-level plots of nodes and size, and
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Fig. 9. Split-level plots exploring interaction e7ect of nodes with size and age.

nodes and age. We present only those plots with nodes on the x-axis since the ef-
fect of number of nodes is, by far, the largest. It appears that for less nodes (up
to about 15) the RGWs of nodes are smaller for larger tumor sizes, and possibly
likewise for the RGWs of size. This suggests that the log odds might be modeled
as c nodes3 + d size (nodes − 15)−, where

(x) − =
{

0; x¿ 0
x otherwise:

The split-level plots by age suggest that for upto 15 nodes, the RGWs of nodes
change from convex for younger ages to concave for older ages.

5. Discussion

Neural networks have been considered “black boxes” and “data mining tools”.
Their acceptability as valid methods for medical and social research requires that
beyond providing better predictions they provide meaningful results that can be un-
derstood by clinicians, policy makers, intervention planners, academicians and lay
persons. This paper achieves this end by presenting a method for interpreting results
of neural network models. The results are meaningful, and as seen on a real-world
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application, for the most part, agree with other results, and provide additional insights
into the underlying processes that generate the data.

Using simulated data we demonstrated that the method provides an appropriate
model description. The simulation studies demonstrated that the popular feed for-
ward architecture which does not include skip layer connections is limited and can-
not adequately represent or extend a linear model. An important contribution of this
method is its ability to directly identify multiplicative interactions. Since neural net-
works provide estimation for general approximations, there is no need to speci1cally
model interactions. What one needs instead is a graphical method to examine and
detect them. Such a method is provided in this paper: a graphical examination of
the split-level plots of the generalized weights averaged over quintiles of the data
by the values of the inputs.

We stress that the interpretation results rely heavily on appropriate use of neural
network regularization and that the usage of skip layer architecture is essential. Fur-
thermore, weight decay and noise injection along with ensemble averaging, should
be applied. These “tweaking” parameters are also important in order to obtain better
(cross validated) prediction results. Thus, cross validated prediction should direct a
better choice of these regularization parameters, which would lead to valid interpre-
tation. When these methods are not appropriately used, one may easily arrive at false
model interpretation.

An example of the e7ect on interpretation of the non-linearity of the RGWs con-
cerns their shrinkage at larger values of the inputs. Weight decay (Eq. (1)) results
in shrunken parameter estimates, i.e., weights wij smaller than the true model pa-
rameters. These smaller weights propagate to the RGWs (Eq. (2)) in a non-linear
way, emphasized at higher levels of the RGWs. This is seen in the simulations as a
stronger reduction of e7ect size in the tails, where the absolute value of the RGWs
are highest.

The analysis of the breast cancer data presents the complexity of the interpretation
of the neural network model. Using the interpretability methods developed in this
paper we were able to see that the ANN model identi1ed a model that was di7erent in
some respects from both the linear logistic regression model and the semiparametric
generalized additive model. Both the ANN and GAM models indicated that the
e7ects of menopausal status and estrogen receptor status were not as strong as those
detected by the linear logistic regression model. The ANN indicated a non-linear
e7ect of the number of nodes that was somewhat di7erent from that identi1ed by
GAM. Since the prediction of the ANN model was signi1cantly better than that
of the linear logistic regression model, these 1ndings ring out a word of caution
to the ready acceptability of the linear logistic regression results. Formerly, Intrator
and Kooperberg (1995) had shown in their survival trees analysis of the data that
the e7ects of estrogen receptor status and menopause were not strong. Moreover,
survival trees identi1ed that the root split was at 4–6 nodes, and that the interaction
with size was discernible for small number of nodes. Both results correspond well
with the results of the ANN model. However, the large e7ects of menopause and ER
status indicated in the linear logistic regression model are also observed in the hazard
regression analysis (Intrator and Kooperberg, 1995). This suggests that there may be
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more than a unique model for these data. It is possible that there is an unobserved
or unrecorded parameter in the women that predisposes some women towards one
model, and others towards the second model.

The interpretation method presented here produces unbiased estimates of the under-
lying model parameters. An initial exploration of the validity of the RGW estimates
was presented in the application to the breast cancer data by means of the estimates
of the dispersion of the RGW’s between ANN models. It is imperative that we begin
to examine inferential methods for testing hypotheses regarding the e7ect of inputs.
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