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Generating ROC Curves for
Artificial Neural Networks
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Abstract—Receiver operating characteristic (ROC) analysis is
an established method of measuring diagnostic performance in
medical imaging studies. Traditionally, artificial neural networks
(ANN’s) have been applied as a classifier to find one “best”
detection rate. Recently researchers have begun to report ROC
curve results for ANN classifiers. The current standard method
of generating ROC curves for an ANN is to vary the output
node threshold for classification. In this work, we propose a
different technique for generating ROC curves for a two-class
ANN classifier. We show that this new technique generates better
ROC curves in the sense of having greater area under the ROC
curve (AUC), and in the sense of being composed of a better
distribution of operating points.

Index Terms—Neural networks, receiver operating character-
istic (ROC) curves.

I. INTRODUCTION

ONE method of specifying the performance of a classifier
is to note its true positive (TP) rate and false positive

(FP) rate for a data set. The TP rate is the percentage of target
samples that are correctly classified as target samples. The FP
rate is the percentage of nontarget samples that are incorrectly
classified as target samples. For particular applications, we
may require the classifier to operate at some point other than
the one to which it naturally trained. Statistical classifiers have
parameters that can be varied to alter the TP and FP rates. Each
set of parameter values may result in a different (TP, FP) pair,
or operating point.

An ROC curve is a plot of operating points showing the
possible tradeoff between a classifier’s TP rate versus its FP
rate. The TP rate is commonly referred to as “sensitivity,” and
(1—FP rate) is called “specificity.” Two typical ROC curves
are shown in Fig. 1.

In practice, the errors that can be made by the classifier [FP
and false negative (FN)] often have different “costs.” In such
cases, “profits” can be maximized by selecting the appropriate
operating point on the ROC curve. In practical application,
this requires that the underlying parameters of the classifier be
easily manipulable to facilitate selection of the operating point
[1]. The generation of ROC curves for traditional statistical
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Fig. 1. Two typical ROC curves and the performance level that could be
expected from random guessing. The greater the area of the unit square that
lies below the ROC curve, the greater the power of the classifier.

classifiers is well understood. Analogous techniques are not so
well understood for nonparametric classifiers, such as artificial
neural networks (ANN’s).

The use of ANN’s has recently become popular in medical
imaging [2]–[6]. Since receiver operating characteristic (ROC)
analysis is an established method of measuring diagnostic
performance in medical imaging studies, this work examines
methods for generating ROC curves for ANN’s in a two-
class problem. In this work, ROC points are generated from a
single trained ANN by systematically varying some underlying
parameter(s) in the network. The most common current method
[3]–[6] is to vary a threshold value for the output node. Our
work shows that a different method generates a better ROC
curve in terms of both the area under the curve (AUC) and
the distribution of operating points across the TP or FP range.
Rather than varying the threshold value at the output node,
we scale the bias weight for nodes on the first hidden layer
of the ANN.

Section II gives some background on ANN decision bound-
aries, and how they can be manipulated to generate an ROC
curve. Section III introduces the current standard method and
our proposed method for generating ROC points for ANN
classifiers. Section IV discusses the experimental methods, the
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Fig. 2. A single node with a sigmoid activation function is capable of
generating a hyperplane (a line in this 2-D case) in feature space. The weights
W1 andW2, and the offsetW0 define the position and orientation of the
hyperplane in feature space.

ANN’s, and data sets. Section V presents experimental results
for both methods of ROC generation on simulated datasets and
several datasets from real applications. Section VI summarizes
the work and draws conclusions about ROC generation for
ANN’s.

II. THEORETICAL ANALYSIS: ANN DECISION BOUNDARIES

For the following discussions, it is assumed that the reader
is familiar with basic ANN concepts and the backpropagation
training algorithm. For a basic introduction to backpropagation
neural nets, the reader is referred to [7].

An ANN classifier defines a potentially complicated deci-
sion boundary in the feature space. This boundary is formed
as the nonlinear combination of a set of basic hyperplanes.
Each basic hyperplane is defined by a node in the first hidden
layer. A nonlinear decision boundary is formed by combining
the basic hyperplanes via weighted connections to nodes in
subsequent layers of the network.

Fig. 2 depicts a single sigmoidal node with two inputs, and
an offset which is represented by a bias unit connection. The
sigmoid activation function of the node is defined by

(1)

The input to the hidden node is

(2)

which is the equation of a hyperplane in feature space (a line
in two dimensions). The hidden node input can be put into the
form of a line equation as

(3)

In this form, it is easy to see that the orientation and location
of the linear boundary defined by one node is determined by
the connection weights from the network inputs and the bias
offset. When an input to the node produces a weighted sum
of zero, it corresponds to a point on the hyperplane, and the
activation function outputs a 0.5. If the weighted sum is greater
than zero, the point lies on one side of the hyperplane and the
activation function outputs a value in the [0.5, 1.0] range.
Similarly, if the weighted sum is negative, the point lies on
the opposite side of the hyperplane and the activation function
outputs a value in the [0.0, 0.5] range.

Now consider what happens in an ANN with multiple layers.
Each node on the first hidden layer computes an output value
which is a nonlinear scaling of the distance of the input point
from the hyperplane defined by that node’s weights. Each node
on the next layer computes some nonlinear function of these
nonlinearly scaled distances from the original hyperplanes.
The value computed by the output node retains this character
of being a nonlinear function of (a nonlinear function of ...)
nonlinearly scaled distances from the original hyperplanes in
feature space.

This simple example in two-dimensional (2-D) feature space
allows us to more easily observe the roles that the hidden
and output nodes take in dividing up the feature space into
decision regions. A network with more first hidden layer nodes
will simply have more hyperplanes that can be combined
to create the final decision boundary. Methods of generating
ROC curves for ANN’s could manipulate parameters of the
ANN controlling any or all of 1) the definition of the basic
hyperplanes, 2) the definition of the combination of hyper-
planes, or 3) the threshold value at the output node. It should
be clear that what is desired is a manner of systematically
shrinking/enlarging a decision region in feature space. The
question, then, is how to do this most effectively and directly
in the ANN framework.

III. M ETHODS: GENERATING ROC CURVES

The ANN must be trained before the ROC curve can be
generated. The resulting network is referred to as a “basic
trained network.” This initial instance of the ANN provides
one operating point. Based on the training data, each of the
two methods we discuss manipulates one or more parameters
of the basic trained network to give additional instances of the
ANN. The result is a set of instances of the network chosen to
represent points on the ROC curve. The goodness of this set
of network instances is then evaluated using separate test data.
So, ANN training involves both the learning of the network
connection weights, and the estimation of classifier parameter
settings for the purpose of generating an ROC curve.

A. The Standard Method: Output Node Thresholding

Generally, an ANN for a two-class problem has a single
output node. The commonly accepted method of generating
ROC points [3]–[6] is to vary a threshold over the range
of the output node activation (0.0–1.0). For each value of,
any feature vector which produces an output greater than or
equal to is classified a target, otherwise it is classified
a nontarget.

An optimal set of values, which correspond to suc-
cessively higher levels of sensitivity, can be found by sorting
the set of network outputs found when every training sample
from the target class is input to the trained network. Each
distinct value in this sorted set corresponds to a that
results in a new point in an ROC plotfor the training data.
Additional points, if desired, could be found by interpolation.
For example, assume the training data provides values
of 0.6 and 0.7 corresponding to sensitivity levels of 40% and
50%, but nothing in between. A of 0.65 might be assumed
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to produce an interpolated ROC point with a sensitivity of
45%. Note that this newly estimated value of will not
result in a new sensitivity level for the training data, but it
may for a different data set with a similar distribution (such
as the test data).

For the experiments reported here, we first find all of the
distinct values for the training set. Then, interpolating as
described above, we estimate a set of values correspond-
ing to TP rates ranging from 0% to 100% in 1% intervals.1 The
goodness of this set of 101 values as an ROC curve is then
evaluated using the test set. Of course, it would be possible
to generate an “optimal” ROC curve for the test data by se-
lecting values based on the test set. However, this would
constitute learning classifier parameters directly from test data.

Analysis of the Standard Method:Standard ANN training
algorithms arenot designed to vary the strength of the output
according to a training sample’s proximity to the final decision
surface. Ideally, all target samples would produce identical
outputs of “1,” and all nontarget samples would produce
identical outputs of “0.”

The typical ANN implementation contains an inherent
weakness which may cause problems when the standard
method is used to generate ROC curves. Since the sigmoid
activation function asymptotically approaches zero and one,
all inputs above a saturation value generate an output of one,
while all inputs less than another saturation value generate
an output of zero. These saturation values depend on the
precision of the ANN implementation. For example, using the
activation function of (1), all inputs greater than 14 generate
outputs identical to six significant digits. The overall effect
is that many different input samples appear identical to a
hidden node, even with a double precision floating-point
implementation. This grouping together of samples due to
saturation occurs at all nodes in the network, resulting in
multiple samples having the same network output regardless
of proximity to the decision surface. As a result, varying
a threshold on the output node activation may not generate
many distinct ROC points.

B. The Proposed Method: Scaling Bias Weights
for First Hidden Layer Nodes

Consider a basic trained network. At each node, the
weighted sum of inputs is passed through a sigmoid function
which determines the node activation

node activation

(4)
In this expression, the , are the inputs (other than
the bias) to the node, the , are the weights on the
inputs, and is the weight on the bias input. The bias input,

, is fixed at 1.0 during the backpropagation learning phase.
Scaling the bias weight, , of a node to make it greater than
the value learned during the training phase results in a greater
node activation for a given input. Scaling to less than the

1In principle, any desired number ofTout values with any predicted spacing
in TP rates can be created by appropriate interpolation between actualTout

values that are found directly from the training data. A set of 101 values with
1% intervals in TP rate was judged sufficient for our purposes here.

value learned during training results in a lower node activation
for a given input. Depending on other weights in the network,
scaling the bias weight for a given node to make it greater
could either increase or decrease the output node activation
for a given input vector.

Testing Individual Nodes:The mechanics of the proposed
method of generating ROC curves are as follows. First, for
each hidden node on the first layer, we determine whether it
is necessary to increase or decrease its bias weight in order to
cause more samples to be classified as targets (i.e., increase
TP and FP rates). This is accomplished in the following
manner. The training set data is passed through the basic
trained network, and the resulting TP and FP rates are noted.
This TP/FP pair represents the “natural” ROC point to which
the ANN has trained. Next, each first hidden layer node is
considered individually, its bias weight is modified, and the
resulting TP and FP rates are observed. In our implementation,
the bias input for all nodes in the ANN is kept at a constant
value of 1.0 during training. However, we can vary this value
individually for each node on the first hidden layer. In effect,
the bias input to a given node becomes a “scale factor” for
the bias weight. We use scale factors of9.0 and 11.0 to
decrease and increase, respectively, the bias weight for this
first step of the algorithm. We should note that for some nodes
the TP and FP rates may not be affected when the bias weight
is changed. These nodes have effectively been “turned off”
during training and play no role in determining the network
output. Such nodes are not considered in subsequent steps of
the algorithm. So, at this point we know which “direction”
(increasing, decreasing, or not at all) the bias weight of each
first hidden layer node must be scaled in order to increase or
decrease the ANN sensitivity.

Sweeping Out an ROC Curve:Since ANN training results
in an initial point on the ROC curve, generating the rest of
the curve involves changing the TP rate of the ANN and
observing the corresponding FP rate. Thus, the next step to
generate a ROC curve is to determine sets of scale factors
that change the ANN’s TP and FP rates in a desirable manner.
First, we determine scale factors that increase the TP rate from
the initial ROC point while increasing the FP rate as little as
possible. Then, we determine scale factors that decrease the
TP rate from the initial ROC point while decreasing the FP
rate as much as possible. Conceptually, we are “sweeping out”
an ROC curve by attempting to find operating points for the
training data that change the TP rate from 0% to 100% while
maintaining as low an FP rate as possible.

Implementation Details:Our implementation for determin-
ing sets of scale factors uses a lookup table. The table has a
row for each first hidden layer node. Each column in the table
contains the set of scale factors that correspond to a particular
operating point. The completed lookup table specifies how to
generate a set of ROC points from the basic trained network
(see Fig. 3).

The following algorithm is used to dynamically build the
lookup table. The lookup table initially has a single column
with all entries set to 1.0. This column represents the operating
point to which the ANN naturally trained. Next, the scale fac-
tors for all first hidden layer nodes are movedsimultaneously
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TABLE I
PORTION OF A LOOKUP TABLE THAT SPECIFIES THESCALE FACTORS FOR THEBIAS WEIGHT INPUTS OF EACH FIRST HIDDEN LAYER

NODE. EACH COLUMN IN THE LOOKUP TABLE CORRESPONDS TO ANOPERATING POINT FOUND FOR THE TRAINING SET DATA

Fig. 3. The lookup table of scale factors is used to set a desired operating
point for the ANN classifier. In this figure, the bias connections to the second
hidden layer and output nodes are not shown.

by the same amount in the direction that will increase the TP
and FP rates. Based on the first step in our algorithm we know
which direction the scale factors should be changed for each
first hidden layer node, but not by how much. Assuming we
would like to raise the TP rate in some specific increment, say
1%, we need to change the scale factors until at least 1% more
targets from the training set are correctly classified as targets.

In order to do this efficiently, we perform a “binary search”
over a range of possible scale factor changes until we zero
in on the smallest scale factor change (within some desired
degree of accuracy) that produces the desired increase in the
TP rate. Once the new set of scale factors has been determined,
the new TP and FP rates of this operating point are recorded.

If the density of the training data in feature space is the
same near all regions of the decision boundary, then changing

the scale factors of all nodes simultaneously makes sense.
However, if the density of training data is different near
different regions of the decision boundary, then it may be
better to scale only a selected subset of the bias weights.
To check for this possibility, the scale factor is changed
in the appropriate direction for each first hidden layer node
individually until the desired increase in the TP rate is found.
Again, we record the new TP and FP rates.

So, if we have nodes on the first hidden layer, then there
are possible sets of scale factors, and therefore
candidates from which to choose the next operating point. The
candidate selected is the one which increases the TP rate by
the desired amount while increasing the FP rate by the least
amount. In the case of a tie, changing the scale factors for
all first hidden layer nodes simultaneously takes precedence
over changing the scale factor for a single node, and ties
between changing different individual node scale factors are
resolved arbitrarily. Finally, the next column to the right in
the lookup table is created and filled in with the scale factors
that correspond to the selected ROC point. This procedure is
continued until reaching a TP rate of 100% on the training set.

A similar strategy is employed to create the columns of the
lookup table to the left of the initial column. We find new ROC
points to decrease the TP rate until either a TP rate or an FP
rate of 0% is found for the training set. The only difference
when selecting from the candidate operating points is
that we select the one that reduces the TP rate the desired
amount while reducing the FP rate the most.

Table I shows an example of part of an actual lookup table.
Notice that sometimes all scale factors are changing simulta-
neously between successive operating points, and sometimes
only a single scale factor is changing. Also, moving from left
to right, notice that the scale factor increases for some nodes
and decreases for others.

We should note that our solution for obtaining sets of scale
factors for the bias weights is a heuristic. It is possible that
better operating points may be found by changing more than
one but less than all scale factors. Considering all possible
subsets would require checking combinations, where is
the number of first hidden layer nodes, an exhaustive search
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would be out of the question for large. Our solution should
generally give good classification performance at reasonable
computational cost. More sophisticated heuristics might be
used to determine scale factor changes for varying numbers
of first hidden layer nodes.

Once the lookup table has been completed, we can inter-
polate between scale factors for successive operating points
to find a new set of scale factors that could result in a new
operating point for a data set with a similar distribution as the
training data. For example, using Table I and interpolating to
get an operating point with a predicted TP rate of 75%, the
scale factor for node ten would be approximately 1.23, while
the scale factors for the other nodes remain unchanged. Using
this interpolation procedure, we estimate sets of scale factors
that correspond to 101 equally spaced ROC points (0%–100%
TP rate in 1% increments). The goodness of the ROC curve
resulting from these 101 sets of scale factors is evaluated using
the test set.

Summary of the Proposed Method:From (1) and (2) we
see that the weights on the inputs of a first hidden layer
node define a hyperplane. Scaling the bias weight is equiv-
alent to a parallel shifting of the hyperplane. Since the final
decision surface is a combination of these hyperplanes, our
proposed method determines how to manipulate the individual
hyperplanes in a desirable manner. We first determine which
direction each hyperplane should be shifted in order to drive
the sensitivity up or down. Next, we determine how much
the hyperplanes should be shifted in feature space to create a
family of decision boundaries that correspond to a full set of
operating points. This is accomplished by changing the scale
factor in the appropriate direction for all first hidden layer
nodes simultaneously and then individually, and selecting the
change which produces the best new operating point.

IV. EXPERIMENTAL METHODS

This section provides descriptions of the datasets, ANN
configuration, training, testing, and the criteria for comparing
the ROC curves generated by the two methods.

A. The Experimental Data

We created 28 sets of simulated data with various input
dimensions, sample sizes, and data distributions. For 12 data
sets, both classes have a Gaussian distribution with some
overlap between classes. A 2-D example is shown in Fig. 4(a).
We created training sets using sample sizes of 500, 1000, 1500,
and 2000 with an equal number of samples from each class,
and input dimensions of 2-D, 3-D, and 5-D. We created three
sets of test data, one for each input dimension, with 2500
samples from each class. We would expect an ANN with a
single hidden node to be sufficient for these data sets.

For 12 other simulated data sets, only the target samples
have a Gaussian distribution. The nontarget samples are uni-
formly distributed throughout feature space except near the
target sample mean. Fig. 4(b) shows a 2-D example. As before,
we use training sets with four different sample sizes and three
different input dimensions. Again, we have three sets of test
data, one for each input dimension, with 5000 samples. We

might expect that an ANN solution will require several hidden
nodes to adequately solve these types of problems.

To test a more difficult type of classification problem, an
additional four data sets were created with the 2-D exclusive-
or distribution shown in Fig. 4(c). Here, the target class is
composed of two normally distributed clusters, one in the
lower-left quadrant and one in the upper-right quadrant of
feature space, while the two normally distributed nontarget
clusters occupy the upper-left and lower-right quadrants. As
before, we have four different size training sets, and a test set
with 5000 samples.

In addition to the simulated data, experimental results are
reported for six real data sets taken from applications involving
medical diagnosis. Four data sets were obtained from the
UCI Repository of Machine Learning Databases (available
via anonymous ftp to ftp://ics.uci.edu/pub/machine-learning-
databases). Another two data sets were taken from applications
in mammogram image analysis [8], [9].

Since training and test data is required, each data set
was randomly divided into two subsets, retaining the same
class distributions as the full data sets whenever possible.2

Each subset is alternately used as training data and test data.
Results are reported when each subset is used as training data.
Therefore, we have results for 12 experiments involving data
from real applications.

B. ANN Topology Selection and Training

All of the experiments reported here use fully connected
backpropagation networks with sigmoid activation functions
(output range: 0.0–1.0), a bias unit with weighted connections
to all nodes, and a single output node. The value produced by
the output node would typically be thresholded so that values
greater than or equal to 0.5 are labeled “target,” and values
less than 0.5 are labeled “nontarget.”

One important aspect of neural network applications is
the determination of a suitable topology (i.e., the number of
hidden layers and the number of nodes per hidden layer).
Theoretically, a single hidden layer is all that is required, but
in practice two or more hidden layers are often employed.
While some rules of thumb exist, an optimal solution to this
problem cannot be determined in any reasonable amount of
time. Generally, a network topology is selected by trial and
error. Many different networks are trained, and the “best”
one is selected. This is the approach we have taken, but
for brevity we will omit the details. For each set of training
data, about 100 different one- and two-hidden layer network
configurations were systematically evaluated. The best one-
hidden layer network and the best two-hidden layer network
found for each problem are utilized in the subsequent ROC
experiments.

Once a topology has been determined, the ANN’s are
trained. Given a set of training data, we first standardize each
feature value by subtracting the feature mean and dividing
by the feature standard deviation. Next, the data is divided

2The nature of mammography data did not permit division into two equal
subsets. It was necessary to prohibit samples from the same mammogram
image from belonging to the training data and the test data in the same
experiment.



334 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 16, NO. 3, JUNE 1997

(a) (b)

(c)

Fig. 4. Examples of 2-D simulated data sets in which (a) both classes have Gaussian distributions. (b) The target class has a Gaussian distribution, and
the nontarget class has a uniform distribution. (c) The two classes exhibit an exclusive-or distribution.

into training and validation subsets. The ANN is trained
using a standard backpropagation learning algorithm. Between
each training epoch, the error rate (sum of squared error) is
computed for the validation data. The network weights are
saved each time this error rate drops. Training continues until
there has been no improvement in the validation error rate
for 500 epochs. The use of validation data to halt the training
process prevents the ANN from over-fitting the solution to the
training data, and leads to better generalization. The results for
a trained ANN are naturally dependent on the initial values
of the weights, which are usually random. This being the
case, each ANN is trained five times with different random
initializations, and the one with the best validation error rate
is selected.

At this point, we have two basic trained networks for a
given training set: the best one-hidden layer ANN, and the best
two-hidden layer ANN. In this work, training also involves
determining the appropriate parameter settings ( for the

current standard method, and sets of bias weight scale factors
for the proposed method) required to generate ROC curves.
For the two ANN’s, both methods of ROC curve generation
use all the training data to determine appropriate parameter
sets which correspond to predicted sets of 101 ROC points at
1% increments in the TP rate. Therefore, given a trained ANN
and set of test data, both methods have the same potential to
produce 101 evenly spaced ROC points.

C. Testing and Comparing ROC Curves

Given a set of test data, four ROC curves are generated
(two methods each applied to the best one-hidden layer ANN
and the best two-hidden layer ANN) which may or may not
have 101 distinct points. We would like to determine if one
particular method of generating ROC curves is better than the
other, or if the ROC curves generated for the one-hidden layer
ANN’s are better than those generated for the two-hidden layer
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TABLE II
SUMMARY OF ALL 80 ROC EXPERIMENTS

ANN’s. The AUC is an accepted way of comparing overall
classifier performance [10], [11]. Hanley and McNeil [12],
[13] describe a method for comparing the AUC’s of two ROC
curves that have been derived from the same set of cases. We
use this approach to determine if the difference between two
AUC’s is statistically significant.

The “best” classifier for an application may well depend on
the particular combination of TP and FP rates that are required.
Additionally, classifier performance at very low sensitivities or
very high FP rates is usually not of practical interest. Thus,
while the AUC is useful as a single number for making a
general comparison of classifier performance, the distribution
of the selectableoperating points is also important. A finely
sampled range of operating points is important because a
TP/FP trade-off other than the one the ANN naturally trained
to may be needed for a particular application. We will also
compare the distribution of operating points generated by the
two methods.

V. RESULTS

We have a total of 40 data sets for the purpose of comparing
the ROC curve generating capabilities of the two methods.
Since we have two ANN’s for each data set, we begin by
comparing the performance of the two methods for all 80
ROC experiments. For the 80 ANN’s, the proposed method
results in the best AUC 61 times, 39 times the difference is
statistically significant. The current standard method results in
the greatest AUC 16 times, only two of which show statistical
significance. The methods produced equivalent AUC’s three
times. So, using the proposed method a statistically equivalent
or better ROC curve was found for 78 of the 80 ANN’s, or
97.5% of the time. By contrast, the current standard method
results in statistically equivalent or better ROC curves for 41
of the ANN’s, or 51.25% of the time. Table II summarizes
these results separately for one- and two-hidden layer ANN’s.

In practice, one would only select the single best ANN
for a particular task. Table III summarizes the results when
the single best ROC curve is selected for each data set. For
each data set, we show: 1) the selected ANN topology, 2) the
sample size of the training set, and 3) which method of ROC
curve generation produced a higher AUC measure. We denote
when the performances of the one-hidden layer network versus
the two-hidden layer network are statistically significantly
different. We also denote when the performances of the
two ROC generation methods are statistically significantly
different.

From Table III, we note the following. For 16 of the 40
experiments, our proposed method generates a statistically sig-

TABLE III
RESULTS FOR28 SIMULATED DATA SETS, 12 REAL APPLICATION DATA SETS.

AN ASTERISK IN COLUMN 2 INDICATES THE PERFORMANCE OF THE

SELECTED NETWORK IS STATISTICALLY SIGNIFICANTLY BETTER THAN

THE OTHER NETWORK (I.E., BEST ONE-HIDDEN LAYER ANN V ERSUS

BEST TWO-HIDDEN LAYER ANN). AN ASTERISK IN COLUMN FOUR

INDICATES THE SELECTED METHOD OF ROC CURVE GENERATION IS

STATISTICALLY SIGNIFICANTLY BETTER THAN THE OTHER METHOD

nificantly better ROC curve than the current standard method.
By contrast, the current standard method did not generate a
statistically significantly better ROC curve than our proposed
method for any data set examined in this work. Looking at
the ANN topologies selected for each problem, we see that
a network with two hidden layers resulted in a statistically
significantly better ROC curve for only four of 40 experiments,
or 10% of the time.

For the simulated data with overlapping Gaussian’s, a
practical upper bound on the AUC of an ROC curve can
be established using a linear Bayes classifier in which the
class-conditional probability density functions are assumed to
have Gaussian distributions [14]. For example, an ROC curve
generated from a linear Bayes classifier on the 2-D overlapping
Gaussian data with 500 samples has an AUC of 0.987 851. Our
proposed method generated an ROC curve with an AUC of
0.987 727, which is slightly less than the upper bound. The
current standard method generated an ROC curve with an
AUC of 0.966 757. These results are typical of the relative
performance obtained for the simulated data with overlapping
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Fig. 5. ROC curves generated by both methods for one of the Pima Indians
Diabetes data sets. Here, the current standard method was unable to generate
any operating points with TP rates between 0%, 58.2%, or between 64.2%
and 100%.

Gaussian’s.
For the simulated data in which the target class has a

Gaussian distribution and the nontarget class is uniformly
distributed, it should be possible to generate a reasonably
good ROC curve using a quadratic Bayes classifier in which
the class-conditional probability density functions are assumed
to have Gaussian distributions [14]. As an example, an ROC
curve generated from a quadratic Bayes classifier on the 2-D
data with 500 samples has an AUC of 0.987 603. Our proposed
method generated an ROC curve with an AUC of 0.990 667,
which is slightly better than the Bayesian classifier. The current
standard method generated an ROC curve with an AUC of
0.988 119. A linear Bayes classifier generated an ROC curve
with an AUC of 0.960 837. Again, these results are typical.

The current standard method occasionally had problems in
finding a full range of operating points. As an example, using
the current standard method for an ANN trained on one of
the Pima Indians Diabetes data sets, operating points with
only 8 distinct TP rates were found on the test data: 0%,
58.2%, 59.7%, 60.4%, 61.2%, 63.4%, 64.2%, and 100%. Using
the proposed method, operating points corresponding to 72
distinct TP rates were obtained. These points run from 0% to
100% with a gap of at most 3% between successive operating
points. Fig. 5 shows the ROC curves for this experiment. This
example illustrates that it may not be possible for an ANN
to operate near a desired sensitivity if the current standard
method is used to generate operating points.

As we noted before, the results for a trained ANN are
naturally dependent on the initial values of the weights.
Therefore, we might expect slightly different test results should
all these experiments be run again with different random
initializations. Table IV summarizes the results of a second run

TABLE IV
SUMMARY OF SECOND RUN FOR ALL 80 ROC EXPERIMENTS

of the 80 ROC experiments. This time the proposed method
a statistically equivalent or better ROC curve was found for
76 of the ANN’s, or 95.0% of the time. The current standard
method results in statistically equivalent or better ROC curves
for 48 of the ANN’s, or 60.0% of the time. So, the current
standard method faired slightly better than in the first round
of experiments. Even so, the test results overwhelmingly favor
the proposed method.

VI. SUMMARY AND CONCLUSION

Methods of generating ROC curves for ANN classifiers in a
two-class problem are examined. Two methods are compared.
These methods are 1) varying a threshold on the output node,
and 2) scaling the bias weight for selected first hidden layer
nodes. Varying a threshold on the output node is the current
standard method [3]–[6]. Scaling the bias input weight for
selected first hidden layer nodes is a new method proposed
here.

Our proposed method involves the construction of a lookup
table which contains a sequence of scale factors for the bias
weights of each first hidden layer node. The lookup table is
used as a “sensitivity dial” which facilitates the easy selection
of an operating point for an ANN classifier, and thereby
permits reliable classification at operating points other than
the one to which the ANN naturally trained.

Based on our experimental results, we suggest the following
methodology for utilizing ANN’s in diagnostic applications
in which it is necessary to generate an ROC curve. First,
select the “best” ANN topology for the application. Our results
suggest that approximately 90% of the time an network with a
single hidden layer will be sufficient. Since one may avoid
testing numerous two-hidden layer ANN configurations, a
considerable reduction in computational effort can be realized
if a trial and error approach to ANN topology selection is
utilized. Since the current standard method of generating ROC
curves for an ANN is simple to implement, one may want
to try this approach first. However, our test results would
indicate that a statistically significantly better ROC curve can
be generated using the proposed method between 40% and
50% of the time. Additionally, the current standard method
may, on occasion, have problems generating operating points
over a large range of sensitivity.

In the process of developing this work, several other meth-
ods of ROC generation were considered and eventually dis-
carded. One approach attempted to create ROC points by
repeating target or nontarget training samples some extra
number of times in extra training epochs. Another approach
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attempted to create ROC points by an additional training epoch
in which the error value for training samples in different
classes was scaled by some factor prior to backpropagation.
Neither of these approaches yielded results as good as the
method of adjusting the first hidden layer bias values.

We have not considered attempts to generate ROC curves
by repeatedly training an ANN to the different operating
points. Changing the ANN architecture for each ROC point,
manipulating the training set, or weighting the different error
types are all methods that would require the ANN to be trained
“from scratch” many times to derive each operating point.
While these methods may be feasible, they are not generally
done in practice because they are potentially problematic
and time-consuming. We would prefer to generate an ROC
curve from an already trained classifier by manipulating some
underlying parameter(s) of a classifier. The manipulation of
classifier parameters will in turn move a decision boundary
in feature space between the two classes and result in a
new sensitivity/specificity tradeoff. Thus, our proposed method
and the current standard method both start with a decision
boundary found via training, and directly manipulate the
decision boundary in order to obtain new operating points.
This is not the case if we retrain the ANN each time from some
random initialization to find a set new decision boundaries for
each operating point.
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