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Abstract

There are many applications of multilayer neural networks to pattern classification problems in the engineering field. Recently, it has been
shown that Bayes a posteriori probability can be estimated by feedforward neural networks through computer simulation. In this paper, Bayes
decision theory is combined with the approximation theory on three-layer neural networks, and the two-categoryn-dimensional Gaussian
classification problem is studied. First, we prove theoretically that three-layer neural networks with at least 2n hidden units have the
capability of approximating the a posteriori probability in the two-category classification problem with arbitrary accuracy. Second, we
prove that the input–output function of neural networks with at least 2n hidden units tends to the a posteriori probability as Back-Propagation
learning proceeds ideally. These results provide a theoretical basis for the study of pattern classification by computer simulation.q 1998
Elsevier Science Ltd. All rights reserved.
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1. Introduction

There are many studies of pattern classification problems
using feedforward neural networks in the engineering field.
Therefore, it is interesting to investigate the internal repre-
sentation of the hidden layer of neural networks after learn-
ing by the Back-Propagation (B-P) algorithm (cf.,
Rumelhart et al., 1986). At present, there is a result by
Ruck et al. (1990) that the statistical error between the
input–output mapping of the neural network and the a pos-
teriori probability densities of the classes decreases as the
mean-squared error in the B-P algorithm decreases, when
learning data are infinite (see also White, 1989). In connec-
tion with this result, Richard, and Lippmann (1991) show
that a three-layer network can be used to estimate the a
posteriori probability in the case of a two-category one-
dimensional Gaussian classification problem by computer
simulation. We study theoretically the following problems
from a statistical viewpoint:

1. What is the input–output mapping of the feedforward
neural network when it finished its learning in a pattern
classification problem?

2. What relationship is there between the input–output
mapping of the feedforward neural network and the
corresponding a posteriori probabilities of the classes?

To solve these problems, we combine the approximation
theory on three-layer neural networks introduced by
Funahashi (1989) and the Bayes decision theory (cf.,
Duda and Hart, 1973) which is a statistical theory of pattern
classification. In this paper we consider the case of the two-
category pattern classification problem, in which the prob-
ability density functions of the classes aren-dimensional
Gaussian, and we prove that the input–output function of
the neural network with at least 2n hidden units can approxi-
mate the a posteriori probability in the statistical sense.
Moreover, when we have infinite learning samples (i.e., in
the theoretical setting), the input–output function tends to
the a posteriori probability density when the B-P learning
proceeds ideally.

2. Feedforward neural networks and a posteriori
probabilities

In this section, we review the relationship between pat-
tern classification using feedforward neural networks and a
posteriori probabilities which is presented in Ruck et al.
(1990). We denoteRn the n-dimensional Euclidean space.
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Let x [ Rn be the input pattern and we defineF(x, w) to be
the output of a feedforward neural network wherew is the
weight vector. In this paper, we consider the two-category
pattern classification problem. Consider the input patternx
to be a random variable and letp(x) be its probability density
function. Let the probabilities of occurrenceq1 andq2 be
p(q1) and p(q2), respectively; these are the a priori
probabilities. Letp(xlq i) (i ¼ 1,2) be the state-conditional
probability density function forx. The conditional densities
p(q ilx) are the a posteriori probabilities that a given patternx
belongs to classq i. We defineX1 and X2 to be the finite
patterns which are fromq1 andq2, respectively. For sim-
plicity, we only consider in this paper three-layer neural
networks with one output unit. We assume that as teacher
signals for the neural network, the value 1 is given when the
input patternx is from classq1 and the value 0 is given when
the input pattern is from classq2. Under the above assump-
tion, we define the mean-squared error function as follows:

Es(q) ¼
∑

x[X1

(F(x,w) ¹ 1)2 þ
∑

x[X2

F(x, w)2:

If we assume that we have infinite learning samples, the
mean-squared error is given by

Ea(w) ¼ p(q1)
∫
Rn

(F(x,w) ¹ 1)2p(xlq1) dxþ p(q2)

3
∫
Rn

F(x,w)2p(xlq2) dx:

Using the Bayes formula

p(xlq1) ¼
p(q1lx)p(x)

p(q1)
,

where pðxÞ ¼ pðxlq1)p(q1) þ p(xlq2)p(q2), Ruck et al.
(1990) obtained the following formula

Ea(w) ¼ e2(w) þ

∫
Rn

p(q1lx)(1¹ p(q1lx))p(x) dx,

where

e2(w) ¼

∫
Rn

[F(x,w) ¹ p(q1lx)]2p(x) dx:

The B-P learning algorithm modifies the weight vectorw so
that the mean-squared errorEa(w) decreases. As the second
term of Ea(w) is independent ofw, e2(w) decreases as the
learning proceeds. That is, the statistical error between the
network output F(x,w) and the a posteriori probability
p(q1lx) decreases. However, we do not know whether the
error tends to zero or not.

3. Bayes decision theory

In this section, we briefly review Bayes decision theory
(cf., Duda and Hart, 1973). The Bayes decision is a method

that assigns discriminant functionsgi(x) (i ¼ 1,2,...,r) to
classesq1 (i ¼ 1,...r), respectively. For a patternx, we
decidex belongs toq1 if gi(x) . gj(x) (for all j Þ i). As
the discriminant functionsgi(x) (i ¼ 1,...,r), we usually use
gi(x) ¼ p(q1lx): a posteriori probability density forx. We
can usef ðpqi lx)) þ h(x) asgi(x) wheref is any monotone
increasing function, which leaves the resulting classification
unchanged. For example, from the Bayes formula, we obtain

log p(qi lx) ¼ log p(xlq1) þ log p(qi) ¹ log p(x):

Hence, we can usegiðxÞ ¼ log p(xlq i) þ log p(q i) (i ¼ 1,...,r)
as discriminant functions. Especially in the two-category
case, we may useg(x) ¼ g1(x) ¹ g2(x) as a discriminant
function. Then we decidex belongs toq1 if g(x) . 0 andx
belongs toq2 if g(x) , 0. To apply the Bayes decision
method, one needs to know

1. a priori probabilitiesp(q i) (i ¼ 1,...,r) and
2. a posteriori probability densitiesp(xlq i) (i ¼ 1,...,r)

If we assumep(xlq i) is an n-dimensional Gaussian
probability density, thenp(xlq i) is given by

p(xlqi) ¼
1������������������

(2p)nlSi l
p exp{ ¹

1t

2
(x¹ mi)S¹ 1

i (x¹ mi)} ,

wheremi is the mean vector of patterns which are from class
q i andS i is the covariance matrix of classq i, then the Bayes
discriminant functiongi(x) is given by the following:

gi(x) ¼ ¹
1t

2
(x¹ mi)S¹ 1

i (x¹ mi) ¹
n
2

log 2p ¹
1
2

loglSi l

þ log p(qi):
In the special case of the two-category classification
problem, a Bayes discriminant functiong(x) is given by

g(x) ¼ txw1x¹ txw2xþ tu1x¹ tu2xþ w10 ¹ w20, (1)

where

wi ¼ ¹
1
2
S¹ 1

i ,

ui ¼ S¹ 1
i mi ,

and

wi0 ¼ ¹
1
2

t

miS
¹ 1
i mi ¹

1
2

loglSi lþ log p(qi):

Becauseg(x) is a quadratic polynomial ofn variables,
the decision surfaceg(x) ¼ 0 is generally a quadratic
hypersurface inRn.

4. Approximation theory of the Bayes discriminant
function in the case of a two-category Gaussian
classification problem

4.1. Relationship between the input–output function of
three-layer network and Bayes discriminant function

In the rest of this paper, the following notation will be
used. Letf(x) be a sigmoid function, that is, a bounded,
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nonconstant, and strictly increasing continuous function
such thatf(R) ¼ (0,1). We definefl(x) ¼ f(lx). The
sigmoid function which is usually used is denoted byj(x),
i.e.,

j(x) ¼
1

1þ exp( ¹ x)
:

The following theorem is easily derived from the approxi-
mation theorem on three-layer neural networks by
Funahashi (1989).

Theorem 1.Let g(x) be a bounded Bayes discriminant func-
tion such that 0, g(x) , 1, and p(x) be the associated
probability function. Then for anye . 0, there exists a
three-layer neural network with a sigmoid output function
f(x) such that

kg¹ g̃k2 ¼

∫
Rn

[g(x) ¹ g̃(x)]2p(x) dx , e,

whereg̃ is the input–output function of the network.

The above theorem is purely an existence theorem, so the
number of hidden units necessary for the approximation is
not mentioned.

In the following, we will consider the two-category
classification problem withn-dimensional Gaussian prob-
ability densities. In this case, we consider the Bayes
discriminant functiong(x) given by (1) in Section 3 and
the approximation to it. For this purpose, we propose the
following:

Proposition 1. Any quadratic polynomial function
f(x1,...,xn) of n variables can be approximated by the
input–output function of three-layer neural networks with
at least 2n hidden units whose output function is C2-sigmoid
and one linear output unit, with any precision on any
compact subset K or Rn. In other words, for anye . 0,
and any compact subset K of Rn, there exist real constants
ci , vi (i ¼ 1,...,2n), wij (i ¼ 1,...,2n, j¼ 1,...,n), andt such
that

max
x[K

lf (x1, …,xn) ¹
∑2n

i ¼ 1
cif(

∑n

j ¼ 1
wij xj þ vi) ¹ tl , e:

Moreover, the above uniform approximation also applies to
the first order differential.

Because the Bayes discriminant functiong(x) in our
problem is a quadratic polynomial ofn variables,g(x) can
be approximated by three-layer networks with at least 2n
hidden units and a linear output unit, by the above proposi-
tion. For g(x) given by (1) in Section 3,fl(g(x)) is also a
Bayes decision function, we obtain the following theorem,
using the above proposition.

Theorem 2. Consider a two-category classification

problem with n-dimensional Gaussian probability densities.
For any l . 0, a Bayes discriminant function f(x)¼
fl(g(x)) can be approximated in the statistical sense by
the input–output functions of three-layer neural networks
with at least 2n hidden units whose output function isf(x),
where the approximation of statistical sense means the L2-
approximation with the density function p(x).

For the sigmoid function (j(x) ¼ 1/(1 þ exp(¹x)), we
consider the Bayes discriminant functionj(g(x)) whereg(x)
is given in Section 3. Ifj(g(x)) . 1/2 for x, we assignq1,
and ifj(g(x)) , 1/2 forx, we assignq2. Asj(g(x)) ¼ 1/(1þ

exp(¹ g(x))), where

g(x) ¼ g1(x) ¹ g2(x) ¼ log
p(xlq1)p(q1)
p(xlq2)p(q2)

,

we obtain

j(g(x)) ¼
p(xlq1)p(q1)

p(xlq1)p(q1) þ p(xlq2)p(q2)
¼ p(q1lx):

That is, j(g(x)) is equal to the a posteriori probability
density function for the categoryq1. Therefore we obtain
the following theorem, which follows from the above
discussion and Theorem 2.

Theorem 3. Consider a two-category pattern classification
problem with n-dimensional Gaussian probability densities
by the use of three-layer neural networks whose output
function isj(x) ¼ 1/(1 þ exp(¹x)). Then, the a posteriori
probability density of categoryq1: p(q1lx) (¼1 ¹ p(q2lx),
where p(q2lx) is a posteriori probability density ofq2) can
be approximated in the statistical sense by a three-layer
network with at least 2n hidden units.

As stated in Section 2, if there are infinite learning
samples, then the mean-squared error functionEa(w) is
given by

Ea(w) ¼ e2(w) þ

∫
Rn

p(q1lx)(1¹ p(q1lx))p(x) dx,

wheree2(w) depends only onw and is given by

e2(w) ¼

∫
Rn

[F(x,w) ¹ p(q1lx)]2p(x) dx:

Therefore,EaðwÞ . Ea(w9) implies e2(w) . e2(w9). On the
other hand, Theorem 3 implies infw e2(w) ¼ 0. Hence we
obtain the following theorem which is the main theorem of
this paper.

Theorem 4. (Main Theorem)Consider a two-category
pattern classification problem with n-dimensional Gaussian
probability densities by the use of three-layer neural net-
works with one output unit. As teacher signals, we assign 1
when the input data is fromq1 and 0 when the input data is
from q2. Suppose that we use the usual sigmoid function
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j(x)¼ 1/(1 þ exp (¹x)) for both output and hidden layer,
and the hidden layer has at least 2n units. Then, if the
learning proceeds ideally (i.e., the mean-squared error
decreases to its infimum), the input–output function of the
network tends to the a posteriori probability density p(q1lx)
for classq1 in the statistical sense, that is, the L2-distance
with weight p(x) between the input–output function and
p(q1lx) tends to zero.

To complete the proofs of theorems 2, 3 and 4, it remains
to prove Proposition 1. In the next subsection, we shall give
the proof.

4.2. Proof of the proposition

A general quadratic polynomial ofn variables is given by

f (x1, …,xn) ¼
∑n

i, j ¼ 1
aij xixj þ

∑n

i ¼ 1
bixi þ c, (2)

whereaij ¼ aji (i,j ¼ 1,...,n).
Because any quadratic form can be transformed into a

canonical form by an orthogonal transformx ¼ Py
whereP¼ ðpij Þ is an orthogonal matrix,x ¼ t(x1,...,xn) and
y¼ t(y1,...,yn), f(x1,...,xn) can be transformed to the
following:

F(y1, …,yn) ¼
∑n

i ¼ 1
liy

2
i þ

∑n

i ¼ 1
miyi þ t, (3)

where {l i} are eigenvalues of the symmetric matrixA ¼

(aij).
For l i Þ 0, liy

2
i þ miyi ¼ 6 ð

�������
lli l

p
yi þ mi =2

�������
lli l

p
Þ2 þ ni

whereni ¼ ¹
m2

i
4li

. Therefore, for the approximation of the
quadratic polynomial function, we must consider the
approximations of both the linear functionh(x) ¼ x and
the second-power functionf(x) ¼ x2. On the approximations
to these functions, we have Lemmas 1 and 2 as follows.

Lemma 1. The linear function h(x)¼ x can be approxi-
mated uniformly with any precision on any compact subset
K of R, by the use of a three-layer network with one linear
output unit and one hidden unit whose output function is a
C1-sigmoid function.

For proof of this Lemma, see Funahashi (1990),
Proposition 1.

Moreover, in Toda et al. (1991), it has been proven that
f(x,y) ¼ xy can be approximated uniformly on any compact
subsetK or R2 by three-layer neural networks with two
hidden units whose output function is aC2-sigmoid
function. By modifying this proof, we obtain Lemma 2
given below. Although a similar result has been proven by
Kreinovich (1991), we include the proof of Lemma 2 for
completeness.

Lemma 2. The second power function f(x)¼ x2 can be

approximated uniformly on any compact subset K of R by
the use of three-layer neural networks with one linear out-
put unit (i.e., the output function of the output unit is a linear
function) and two hidden units whose output functionf(x) is
a C2-sigmoid function. That is, for anye . 0, and any
compact subset K of R, there exist constants ci, wi, v i (i ¼

1,2) andt such that

max
x[K

lx2 ¹
∑2

i ¼ 1
cif(wixþ vi) ¹ tl , e:

Moreover the approximation is uniform including to the first
differential.

Proof. For the sigmoid functionf(x), here we define
fv(x) ¼ f(x þ v) unlike the definition given at the beginning
of Section 4. We can choosev so thatfv0(0) is not zero,
becausef is bounded and not constant. A Taylor expansion
to second order in the neighborhood ofx ¼ 0 gives:

fv(x) ¼ f9v(0) þ fv(0)xþ
1
2
fv0(0)x2 þ o(x2), (4)

whereo(x2) is the term which tends to zero faster thanx2 asx
tends to zero. We replacex by wx and ¹ wx in Eq. (4) and
obtain

fv( 6 wx) ¼ fv(0) 6 fv9(0)wxþ
1
2
fv0(0)w2x2 þ o(w2x2):

If x is included in the compact subsetK of R, we obtain

fv( 6 wx) ¼ fv(0) 6 fv9(0)wxþ
1
2
fv0(0)w2 þ o(w2),

whereo(w2) is the term which tends to zero uniformly onK
faster thanw2 asw tends to zero. For the sum offv(wx) and
fv( ¹ wx) we obtain

fv(wx) þ fv( ¹ wx) ¼ 2fv(0) þ fv0(0)w2x2 þ o(w2):
Hence,

x2 þ
o(w2)

fv0(0)w2 ¼
1

fv0(0)w2{fv(wx) þ fv( ¹ wx)} ¹
2fv(0)

fv0(0)w2:

(5)

This implies thatf(x) ¼ x2 can be approximated uniformly
with any precision on any compact subsetK of R by three-
layer neural networks with two hidden units.

Let the right hand side of Eq. (5) beg(x). Theng9(x) can
be expressed as

g0(x) ¼
1

fv0(0)w
{fv9(wx) ¹ fv9( ¹ wx)}

By applying Taylor’s formula tofv9( 6 wx), we obtain

g0(x) ¼ 2xþ
o(w)

fv0(0)w
,

whereo(w) is the term which tends to zero uniformly onK
faster thanw asw tends to zero. This shows that the approxi-
mation of the first differential is also uniform.q.e.d.

From Lemma 1 and Lemma 2 we see that the quadratic
polynomial F(y1,...,yn) can be approximated by input–
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output functions of three-layer neural networks with at least
2n hidden units on any compact subsetK of Rn and hence
the quadratic polynomial functionf(x1,...,xn) can be approxi-
mated by input–output functions of neural networks with
hidden units of the same number, because the trans-
formation from the input layer to the hidden layer of the
three-layer networks is an affine transformation.

5. Summary

In this paper, we considered the two-category pattern
classification problem with n-dimensional Gaussian
probability densities and proved the following.

1. The a posteriori density probability can be approximated
in the statistical sense by three-layer neural networks
with at least 2n hidden units and one output unit whose
output function is the usual sigmoid function.

2. If we have infinite learning samples and the learning
proceeds ideally (i.e., the mean-squared error
decreases to the infimum), then the input–output
function of the neural network with at least 2n hidden
units tends to the a posteriori probability density in the
statistical sense.

These results provide a theoretical basis for the study
of pattern classification by computer simulation. In the
future, we would like to study the extension of our
theory to the case of multi-category pattern classification
problem.
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