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Abstract

There are many applications of multilayer neural networks to pattern classification problems in the engineering field. Recently, it has b
shown that Bayes a posteriori probability can be estimated by feedforward neural networks through computer simulation. In this paper, Be
decision theory is combined with the approximation theory on three-layer neural networks, and the two-gatigmwysional Gaussian
classification problem is studied. First, we prove theoretically that three-layer neural networks with anlééddeh units have the
capability of approximating the a posteriori probability in the two-category classification problem with arbitrary accuracy. Second, w
prove that the input—output function of neural networks with at leasti@den units tends to the a posteriori probability as Back-Propagation
learning proceeds ideally. These results provide a theoretical basis for the study of pattern classification by computer s@nL@&#n.
Elsevier Science Ltd. All rights reserved.
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1. Introduction 2. What relationship is there between the input—output
mapping of the feedforward neural network and the
There are many studies of pattern classification problems  corresponding a posteriori probabilities of the classes?
using feedforward neural networks in the engineering field.
Therefore, it is interesting to investigate the internal repre-
sentation of the hidden layer of neural networks after learn-
ing by the Back-Propagation (B-P) algorithm (cf.,
Rumelhart et al., 1986). At present, there is a result by

Ruck et al. (1990) that the statistical error between the e . .
input—output mapping of the neural network and the a pos- category pattern classification problem, in which the prob-
ability density functions of the classes amalimensional

teriori probability densities of the classes decreases as the . . .
. . Gaussian, and we prove that the input—output function of
mean-squared error in the B-P algorithm decreases, whe

learning data are infinite (see also White, 1989). In connec-nthe neural network \.N't.h at Ieast];mdc'jen units can approxi-
mate the a posteriori probability in the statistical sense.

tion with this result, Richard, and Lippmann (1991) show Moreover, when we have infinite learning samples (i.e., in

that a three-layer network can be used to estimate the a . : . .
L S the theoretical setting), the input—output function tends to
posteriori probability in the case of a two-category one-

) X ; e the a posteriori probability density when the B-P learning
dimensional Gaussian classification problem by computer roceeds ideall
simulation. We study theoretically the following problems P y
from a statistical viewpoint:

To solve these problems, we combine the approximation
theory on three-layer neural networks introduced by
Funahashi (1989) and the Bayes decision theory (cf.,
Duda and Hart, 1973) which is a statistical theory of pattern
classification. In this paper we consider the case of the two-

1. What is the input—output mapping of the feedforward 2. Feedforward neural networks and a posteriori
neural network when it finished its learning in a pattern probabilities
classification problem?
In this section, we review the relationship between pat-
tern classification using feedforward neural networks and a

* Requests for reprints should be sent to Dr K. Funahashi. Tel.: 00 81 0242 Posteriori probabilities WhiC!‘l is p_resented i_n Ruck et al.
37 2719; Fax: 00 81 0242 37 2752; E-mail: funahashi@u-aizu.ac.jp. (1990). We denot&R" the n-dimensional Euclidean space.
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Let x € R" be the input pattern and we defiRéx, w) to be that assigns discriminant functiomg(x) (i = 1,2,...r) to

the output of a feedforward neural network wherés the classesw; (i = 1,..r), respectively. For a patterr, we
weight vector. In this paper, we consider the two-category decidex belongs tow, if gi(x) > g;(x) (for all j # i). As
pattern classification problem. Consider the input patkern the discriminant functiongi(x) (i = 1,...r), we usually use

to be a random variable and &) be its probability density  gi(X) = p(w1/X): a posteriori probability density fox. We
function. Let the probabilities of occurrencg and w, be can use (pw;lX)) + h(x) asg;(x) wheref is any monotone
p(w;) and p(w,), respectively; these are the a priori increasing function, which leaves the resulting classification
probabilities. Letp(xlw;) (i = 1,2) be the state-conditional unchanged. For example, from the Bayes formula, we obtain
probability density fun<_:t|(_)n fok. T_h_e_ condltlonz_;\I densities log p(wi1X) = log p(xle) -+ 10g p(e;) — log p(x).

p(w;lX) are the a posteriori probabilities that a given pattern ]

belongs to class;. We defineX; and X, to be the finite  Hence, we can usg(x) = log p(xlwj) + log p(w)) (i = 1,....1)
patterns which are frorw; and w,, respectively. For sim- @S discriminant functions. Especially in the _two_-c_ategory
plicity, we only consider in this paper three-layer neural €aS€, we may usg(x) = gi(X) — ga(x) as a discriminant
networks with one output unit. We assume that as teacherfunction. Then we decide belongs taw, if g(x) > 0 andx
signals for the neural network, the value 1 is given when the P€l0Ngs tow; if g(x) < 0. To apply the Bayes decision
input patterrx is from classo; and the value 0 is given when ~ Method, one needs to know

the input pattern is from class,. Under the above assump- 1. a priori probabilitiep(w;) (i = 1,...r) and

tion, we define the mean-squared error function as follows: 2. 4 posteriori probability densitiggxlw;) (i = 1,...7)

Eq(w)= Z (F(x,w) — 1) + Z F(x, W) If we assumep(xlw;) is an n-dimensional Gaussian

XEX XEXp probability density, thep(xlw;) is given by
If we assume that we have infinite learning samples, the o) = L Ly —
mean-squared error is given by P(xlaw:) = \ /(zw)n|zi|eXp{ 2(X ML (= m)},

200 wherem; is the mean vector of patterns which are from class
Ea(w) =p(w1) | (F(Xw) —1)"p(Xlwy) dX+ p(ws) w; andZ; is the covariance matrix of class, then the Bayes
R discriminant functiorg;(x) is given by the following:
1 _ n 1
X JF(X, w)2p(xlwy) dx. 60 = — 5(X— ML *(x—m) - 5 log 27 — Sloglx;|
RI’\
+ log p(w;).

Using the Bayes formula ; o
In the special case of the two-category classification

p(Xlwy) = M problem, a Bayes discriminant functigfx) is given by
Pe1) g(x) = xwy X — XWpX 4 U X — tUupX 4 Wy g — Wa, 1)
where p(x) = p(Xlw)p(w1) + p(Xlwz)p(wz), Ruck et al. where
(1990) obtained the following formula 1
w=— =5 1
EA() = W)+ | Plorh)(1— ples)p) 2
R u=X'm,
where and
1t o, 1
)= | [F0xw) — Pl 0 i Wo=— 3 MEm — 310gIZl + log plaw).
R

Becauseg(x) is a quadratic polynomial oh variables,
The B-P learning algorithm modifies the weight veatoso the decision surfacey(x) = 0 is generally a quadratic
that the mean-squared erBg(w) decreases. As the second hypersurface irR".
term of E4(w) is independent ofv, ew) decreases as the
learning proceeds. That is, the statistical error between the
network outputF(x,w) and the a posteriori probability 4. Approximation theory of the Bayes discriminant
p(w1lX) decreases. However, we do not know whether the function in the case of a two-category Gaussian
error tends to zero or not. classification problem

4.1. Relationship between the input—output function of
3. Bayes decision theory three-layer network and Bayes discriminant function

In this section, we briefly review Bayes decision theory  In the rest of this paper, the following notation will be
(cf., Duda and Hart, 1973). The Bayes decision is a method used. Let¢(xX) be a sigmoid function, that is, a bounded,
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nonconstant, and strictly increasing continuous function
such that¢(R) = (0,1). We definep,(X) = #(AX). The
sigmoid function which is usually used is denoteddgy),

i.e.,

a(X) =

T 1texp(—x)
The following theorem is easily derived from the approxi-

mation theorem on three-layer neural networks by
Funahashi (1989).

Theorem 1.Let g(x) be a bounded Bayes discriminant func-
tion such that 0< g(x) < 1, and p(x) be the associated
probability function. Then for ang > 0, there exists a

three-layer neural network with a sigmoid output function
¢(X) such that

lg—gi*= J [909 — 60J1*P09 dx < e,
R

whereg is the input—output function of the network.

The above theorem is purely an existence theorem, so th

number of hidden units necessary for the approximation is

not mentioned.

In the following, we will consider the two-category
classification problem witin-dimensional Gaussian prob-
ability densities. In this case, we consider the Bayes
discriminant functiong(x) given by (1) in Section 3 and
the approximation to it. For this purpose, we propose the
following:

Proposition 1. Any quadratic polynomial function
f(X4,....%) of n variables can be approximated by the
input—output function of three-layer neural networks with
at least 2n hidden units whose output function fssi@ymoid
and one linear output unit, with any precision on any
compact subset K or RIn other words, for any > 0,
and any compact subset K of ,Rhere exist real constants
G, 0; (i=1,.,2n),w (i =1,..2n,j=1,.,n), andr such
that

2n

n
maxlf (Xq, ..., X,) — Z cio( Z Wi +6;) — 7l <e.
xeK =1 =1
Moreover, the above uniform approximation also applies to
the first order differential.

Because the Bayes discriminant functigx) in our
problem is a quadratic polynomial ofvariables,g(x) can
be approximated by three-layer networks with at least 2

hidden units and a linear output unit, by the above proposi-

tion. Forg(x) given by (1) in Section 3¢$,(g(X)) is also a
Bayes decision function, we obtain the following theorem,
using the above proposition.

Theorem 2 Consider a two-category classification
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problem with n-dimensional Gaussian probability densities.
For any A\ > 0, a Bayes discriminant function f(>&
¢,(9(x)) can be approximated in the statistical sense by
the input—output functions of three-layer neural networks
with at least 2n hidden units whose output functiom(s),
where the approximation of statistical sense means the L
approximation with the density function p(x).

For the sigmoid functiond(x) = 1/(1 + exp(—x)), we
consider the Bayes discriminant functiefg(x)) whereg(x)
is given in Section 3. I6(g(x)) > 1/2 for x, we assignw,
and if a(g(x)) < 1/2 forx, we assignw,. Asa(g(X)) = 1/(1+
exp(— 9(x))), where

) o p(Xlwr)pler)

9(x) = g1(x) — 92(X) = log P(Xlw2)p(w2)’

we obtain

6 = p(Xlw1)p(ws) = p(w;1X).

p(Xlw1)p(wr) + p(Xlwp)p(ws)

That is, o(g(X)) is equal to the a posteriori probability
density function for the category,. Therefore we obtain

he following theorem, which follows from the above
discussion and Theorem 2.

Theorem 3 Consider a two-category pattern classification
problem with n-dimensional Gaussian probability densities
by the use of three-layer neural networks whose output
function iso(x) = 1/(1 + exp(x)). Then, the a posteriori
probability density of category: p(wilx) (=1 — p(w2lx),
where p,lx) is a posteriori probability density af,) can

be approximated in the statistical sense by a three-layer
network with at least 2n hidden units.

As stated in Section 2, if there are infinite learning
samples, then the mean-squared error functfw) is
given by

Ea(w) = (W) + j Pw1/X)(1 — plw1X))P(X) dx,
=

wheree®(w) depends only ow and is given by

&(w) = J [F (%, W) — p(w1X)]?p(x) dx.

R
Therefore E,(w) > E,(W') implies e (w) > e*(w’). On the
other hand, Theorem 3 implies ijpg%w) = 0. Hence we
obtain the following theorem which is the main theorem of
this paper.

Theorem 4. (Main Theorem)Consider a two-category
pattern classification problem with n-dimensional Gaussian
probability densities by the use of three-layer neural net-
works with one output unit. As teacher signals, we assign 1
when the input data is from; and 0 when the input data is
from w,. Suppose that we use the usual sigmoid function
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a(X)=1/(1 + exp (x)) for both output and hidden layer, approximated uniformly on any compact subset K of R by
and the hidden layer has at least 2n units. Then, if the the use of three-layer neural networks with one linear out-
learning proceeds ideally (i.e., the mean-squared error putunit (i.e., the output function of the output unit is a linear
decreases to its infimum), the input—output function of the function) and two hidden units whose output funciégx) is
network tends to the a posteriori probability density pk) a C?-sigmoid function. That is, for any > 0, and any
for classw; in the statistical sense, that is, thé-tistance compact subset K of R, there exist constantsvg 0; (i =
with weight p(x) between the input—output function and 1,2) andr such that
p(w./x) tends to zero. 2
max|x® — Z Cio(Wix+6;) — 7l <e.
To complete the proofs of theorems 2, 3 and 4, it remains *&K i=1

to prove Proposition 1. In the next subsection, we shall give \,reover the approximation is uniform including to the first
the proof. differential.

4.2. Proof of the proposition Proof. For the sigmoid functiong(x), here we define
d¢(X) = (X + 6) unlike the definition given at the beginning
A general quadratic polynomial ofvariables is given by  of Section 4. We can choogeso thate,”(0) is not zero,
because is bounded and not constant. A Taylor expansion

n n
f(Xgy oes Xp) = Z %% + z bix; +c, 2 to second order in the neighborhoodxo O gives:
ihj=1 i=1 1
X) = (0 0)X+ =" (0)X* + 0(x), 4
wherea  a (i = 1.1 90(%) = 84(0) + 940X+ 54"(O +0(x) )
Because any quadratic form can be transformed into awhereo(x?) is the term which tends to zero faster th@msx
canonical form by an orthogonal transform = Py tends to zero. We replaceby wx and — wxin Eq. (4) and

whereP = (p;) is an orthogonal matrixyx = (Xq,...%,) and obtain

t
y= (Yu...y¥n), f(Xs,..X;) can be transformed to the 1
following: Do = W) = $9(0) &y (Owx+ 569" (OWX° + O(Wx’).
4 4 If x is included in the compact subg¢tof R, we obtain
FOwL oY) = D N+ D wiyi+7, 3) 1
=1 =1 do( = WX) = ¢(0) = ¢y’ (O)wx+ E%”(O)WZ +0o(wW?),

\(/;h)ere P} are eigenvalues of the symmetric matix= whereo(w?) is the term which tends to zero uniformly &n

”F;)r N # O, N4y = + (VNI w2y N+ 3, faster tharw? asw tends to zero. For the sum ¢f(wx) and
wherey, = — g Therefore, for the approximation of the $o( — Wx) we obtain

quadratic polynomial function, we must consider the (WX -+ ds(—Wx) = 2¢4(0) + ¢5"(QWX* + O(W?).
approximations of both the linear functidi{(x) = x and Hence,
the second-power functidix) = x*. On the approximations o(w?)

2

to these functions, we have Lemmas 1 and 2 as follows. x°+ { pp(WX) + ¢g( — WX)} — 269(0)

1
69" (OW2 6" (O)W?" bg"(O)W
Lemma 1. The linear function h(x)= x can be approxi- (5)
mated uniformly with any precision on any compact subset This implies thatf(x) = x can be approximated uniformly
K of R, by the use of a three-layer network with one linear with any precision on any compact sub&etdf R by three-
output unit and one hidden unit whose output function is a layer neural networks with two hidden units.

C'-sigmoid function. Let the right hand side of Eq. (5) li§x). Theng’(x) can
be expressed as
For proof of this Lemma, see Funahashi (1990), | 1
Proposition 1. g(X¥ = W\I{%'(WX) — ¢y’ (—wx)}

Moreover, in Toda et al. (1991), it has been proven that : i
f(xy) = xy can be approximated uniformly on any compact BY @pplying Taylor's formula tap,’( = wx), we obtain
subsetK or R? by three-layer neural networks with two o o(w)
hidden units whose output function is &*sigmoid g0g=2x+ (O

function. By modifying this proof, we obtain Lemma 2 whereo(w) is the term which tends to zero uniformly &n

give_n b?'OW- Although gsimilar result has been proven by g, qier thanw asw tends to zero. This shows that the approxi-
Kreinovich (1991), we include the proof of Lemma 2 for  ation of the first differential is also uniform.e.d.

completeness.
From Lemma 1 and Lemma 2 we see that the quadratic
Lemma 2 The second power function f(x x> can be polynomial F(y,,...y,) can be approximated by input—
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