
Introducing Approximate Model Transformations

Javier Troya1 and Antonio Vallecillo2

1 Vienna University of Technology, Business Informatics Group, Austria

troya@big.tuwien.ac.at
2 Universidad de Málaga, ETSI Informática, Spain

av@lcc.uma.es

Abstract. Model transformations dealing with very large models need to count

on mechanisms and tools to be able to manage them. The usual approach to im-

prove performance in these cases has focused on the use of concurrency and

parallelization techniques, which aim at producing the correct output model(s).

In this paper we present our initial approach to produce target models that are

accurate enough to provide meaningful and useful results, in an efficient way,

but without having to be fully correct. We introduce the concept of Approximate
Model Transformations.

Keywords: Model Transformation, Approximation, Performance

1 Introduction

Model transformations are gaining acceptance as model-driven techniques are becom-

ing commonplace. So far the community has mainly focused on the correct implemen-

tation of a model transformation, according to its specification [5,6,11], although there

is an emergent need to consider other (non-functional) aspects such as performance,

scalability, usability, maintainability and so forth. In particular, the study of the perfor-

mance of model transformations is gaining interest as very large models living in the

cloud need being transformed [1,2,9]. The usual approach to improve performance has

focused on the use of concurrency and parallelization techniques.

In this paper we want to explore a different path. Our aim is to weaken the need to

produce correct target models but approximate ones. Such approximate target models

should be accurate enough to provide meaningful and useful results to users, but alle-

viate the need for the transformation to generate fully correct models—being able to

produce such target models in much shorter time.

We call Approximate Model Transformations (AMTs) those model transformations

that produce approximate target models. They are similar to the Approximation [10] or

Randomized [7] Algorithms used in Computer Science and Operations Research.

This kind of model transformations are needed in various circumstances. The most

obvious situation is when very large models have to be synthesized into much smaller

models for decision making. We introduce a case study to present this problem. Let

us consider a Wireless Sensor Network (WSN), where observation phenomena arrive

and keep arriving as time moves forward. Consequently, the models grow with time

(they are, in fact, streaming models [4]). Fig. 1 shows our metamodel for WSNs, de-

veloped with some ideas gathered from [8] and where four types of phenomena are

279

Fig. 1. Metamodel for observation phenomena in a WSN.

Fig. 2. Metamodel for defining consequences from observed phenomena.

identified. Each Phenomenon registers the time and location (in terms of the two ter-

restrial coordinates) where the observation takes place. Also, they keep record of the

phenomena of the same type that was registered before and after the current one hap-

pened (previousPh and nextPh, respectively). As an inherent characteristic of stream-

ing models, the latter relationship is not created when an object of type Phenomenon
appears, but will be established later in time (when future phenomena appear). Refer-

ence previousPh points from a phenomenon to others phenomena of the same type

that were obtained before, and only up to a certain point in time. Reference nextPh, in

turn, points only to the next phenomena. Attribute lookBackward establishes the range

of past observed phenomena – from the respective point in time of each phenomenon.

Finally, each specialization of Phenomenon contains an attribute to keep the value

obtained by the sensor node.

As explained in [8], to derive additional knowledge from semantically annotated

sensor data, it is necessary to define and use a rule-based reasoning. In this way, when

a group of sensor nodes provides information regarding for instance temperature and

precipitation, then, using such rules, we can specify possible road conditions. One of

these rules could be the following: if the temperature is less than 1 degree Celsius

and it is raining, then the roads are potentially icy. To be able to express this kind

of information in a model-based manner, we have created the metamodel shown in

Fig. 2. It contains four different Consequences that are to be predicted according

to the observed phenomena. Each consequence contains the time and location when

and where it is predicted, as well as the probability that such consequence actually

happens. Fig. 3 shows the preconditions in terms of observation phenomena, as well as

the postconditions in terms of consequences, considered in our case study.

280

Fig. 3. Phenomena and Consequences.

In this paper, in the context of WSNs, we aim at reasoning over this kind of models

not only considering the sliding window, i.e., the current information gathered from

sensors that we have, but also taking into consideration that the information within such

window can be potentially large. Thus, we focus on obtaining approximate predictions

using AMTs by redefining some of the traditional operators used to traverse or query the

models: allInstances(), select(), collect(), size(), etc. After this introduction, Sect. 2

presents our approach. Then, Sect. 3 describes an implementation and evaluation based

on the case study and, finally, Sect. 4 draws some conclusions and future work.

2 Proposal

An AMT will likely not transform all the elements from the input model, for different

reasons. For example, because they are not within the sliding window (e.g., they have

already passed or have not arrived yet and there is no time to wait for them), or because

the model is so large that we only work on a random sample of it [7]. This can result in

some pending relationships in the output metamodel, what may make the output model

not conform to its metamodel, and hence be incorrect. This kind of conformance is

normally specified by means of constraints (also called contracts [3,5] in some contexts)

that the model elements and their relations should respect.

In AMTs, it is also important the degree of correctness that the computed data have.

In our case study, we consider that the probability of a consequence in a specific point

in time is accurate according to certain rules as those shown in Fig. 3. Now, if the

calculation of the probability is only based on a sample, and not on all the previous

phenomena, the result may not be correct, just accurate enough for our purpose.

Approximate Operators. To elaborate our approach for defining AMTs, we apply a

concept used in Randomized algorithms [7], namely Random Sampling. It is based on

the idea that a small random sample from a population is representative of the popula-

tion as a whole, and thus the properties of the sample can be used to determine some

feature of the entire population.

Our proposal raises with the idea of redefining the common operators that current

model transformation languages use to manage and operate with collections, such as

allInstances(), collect(), select(), forAll(), etc. When transforming very large mod-

els, these operations become very expensive, performance-wise, because they have to

traverse the whole model and deal with a large number of elements. If we reduce this

number of elements, the transformation will execute faster. This is why we introduce a

set of new collection operators, each one corresponding to an OCL collection operator.

281

Fig. 4. Idea for Approximate Operators

The new ones end with “Approx” and incorporate an additional argument: an integer

that represents the maximum number of instances the operator will process.

Fig. 4 shows this idea. In our case study, we may not need to obtain the predictions

for all locations every time unit. Instead, we can randomly choose subsets of locations

whose results can be extrapolated to surrounding areas, what corresponds to the upper

part of the figure. Furthermore, since the creation of a consequence consists of the

observation of a certain number of previous phenomena, we can also select a subset of

them, what corresponds to the lower part of the figure. In this case, the values of the

probabilities obtained in the consequences vary with respect to the originals, but they

can be representative if they are close to the correct one.

3 Implementation and Evaluation

In our case study, the idea is to compute new consequences (conforming to the meta-

model shown in Fig. 2) every time unit according to the phenomena observed by some

sensor nodes (conforming to the metamodel shown in Fig. 1). This is potentially ex-

pensive, and the larger the number of sensor nodes deployed is, the longer it takes to

process all data. We consider that the values of the measures gathered by two related

sensor nodes (as shown in Fig. 3) has to be computed into a consequence if these nodes

are not further than 10 away from each other, in Euclidean distance.

In the model we have considered, the slicing windows will contain 400 different

locations, where the two locations which are collocated further away from each other

have an Euclidean distance of 21.21. In fact, the sensor nodes in these locations have

been randomly placed between coordinates (0, 0) and (15, 15). Sensor nodes of the four

types in the metamodel (temperature, precipitation, humidity and wind) are distributed

among these 400 locations, so that we have 100 points with each measure. Also, each

Phenomenon keeps the history of the 500 previous phenomena of the same type. This

means that attribute lookBackward has a value of 500 in our model.

We aim at obtaining the consequences for time 500. We have 200000 different phe-

nomena in our input model, given how we have built it. Our transformation consists of

one matched rule, four lazy rules and several helpers that perform the calculations. The

lazy rules are called from the matched rule to build the EventsModel from an Obser-
vationModel. Each lazy rule is used for obtaining consequences of the four different

types, and each of them contains two inputs, as graphically depicted in Fig. 3. The way

282

Table 1. Accuracy for some consequences.

Location Consequence Prob. Original Prob. AMT Deviation
(11, 10.2) Icy Road 78% 72.1% 5.9%
(5, 10.8) Storm 47.2% 48% 0.8%
(6.4, 3.2) Fire Risk 47.2% 49.4% 2.2%
(8.1, 3.8) Swell 35% 28% 7%

we compute the consequences is merely a simplification of how it would be done in re-

ality. Focusing for instance on icy roads, we say that the precipitation has to be equal or

above 0.2l/m2 and the temperature equal or below 1 degrees Celsius, both during the

previous 500 units of time, in order to have a 100% probability of icy roads. If not all

the previous phenomena satisfy this condition, but some of them do, then we calculate

the actual percentage by applying a simple cross-multiplication.

In the original transformation, a total of 28893 consequences are calculated in 111.2
seconds. An AMT has been constructed starting from the assumption that not all conse-

quences have to be calculated every time unit, but calculating some of them is enough

(upper part in Fig. 4). In the listing below we show how we make use of a selectApprox
operation in order to take only 50 phenomena of each type (we show only the retrieval

of Temperature phenomenon, it is the same for the others).

--Original Transformation
rule GenerateConsequences{
from om : MM !ObservationModel
using {
ts : Sequence (MM !Temperature) = om .observations −> select (p |

p .oclIsTypeOf (MM !Temperature) and p .time = 500) ;
(. . .)
--Approximate Model Transformation
(. . .)
ts : Sequence (MM !Temperature) = om .observations −> selectApprox (5 0 , p |

p .oclIsTypeOf (MM !Temperature) and p .time = 500) ;
(. . .)
}

These operations are implemented now simply as helpers, although we plan to inte-

grate them in the language as future work. Thus, since we choose a subset of the initial

phenomena from which to obtain consequences, only 7362 are produced in the AMT,

now in 22.1 seconds, what means a speedup of 5.03. We also realize an approximation

according to the lower part of the figure. Now, instead of looking at the previous 500
phenomena of each type in order to calculate the consequence, we only consider half

of the sample. As expected, the probability for the computed consequences is different

than in the original transformation. Table 1 shows the values obtained in some locations

in both approaches. As we can see, the deviation is not significant, so for this case study

it is worth applying an AMT due to the gain in performance.

4 Conclusions and Future Work

This exploratory paper has presented a novel approach for the definition of Approximate

Model Transformations (AMTs). We have explained its basic ideas and applied it in a

case study. This paper presents just initial ideas that require deeper investigations at

all levels. We were interested in exploring the possibility of defining AMTs, and our

283

initial results show that there are enough reasons to keep working on them. The work

presented here does not pretend to be conclusive, or comprehensive, but to open the

path for the modeling community to start working on it.

There are several open issues that we plan to address next. In the first place, we want

to realize a comprehensive study on how accuracy can be measured depending on the

particular scenarios, applications and model kinds. Second, we would like to provide

formal and precise specifications for our approximate operators, and integrate them in

the ATL language. Extending the approximate operators with a new argument that de-

fines the maximum interval of time that we want the operator to execute is another line

of work. Last, but not least, we need to study and develop methods for the appropriate

design of AMTs. Although this will normally require a deep knowledge on the domain

and the particular transformation scenarios, there is already a fair amount of work about

the design of approximate and randomized algorithms that could be applicable in this

context.

Acknowledgements. This work is partially funded by Research Project TIN2011-

23795 and by the EC under ICT Policy Support Programme (grant no. 317859).

References

1. van Amstel, M., Bosems, S., Kurtev, I., Pires, L.F.: Performance in Model Transformations:

Experiments with ATL and QVT. In: Proc. of International Conference on Model Transfor-

mations (ICMT). LNCS, vol. 6707, pp. 198–212. Springer (2011)

2. Burgueño, L., Troya, J., Wimmer, M., Vallecillo, A.: On the Concurrent Execution of Model

Transformations with Linda. In: Proc. of the Workshop on Scalability in Model Driven En-

gineering (BigMDE 2013). ACM Digital Library (2013)

3. Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL contracts for the verification of model

transformations. Electronic Communications of the EASST 24 (2009)

4. Cuadrado, J.S., de Lara, J.: Streaming Model Transformations: Scenarios, Challenges and

Initial Solutions. In: Proc. of International Conference on Model Transformation (ICMT

2013). LNCS, vol. 7909, pp. 1–16. Springer (2013)

5. Gogolla, M., Vallecillo, A.: Tractable Model Transformation Testing. In: Proceedings of

the 7th European Conference on Modelling Foundations and Applications (ECMFA 2011).

LNCS, vol. 6698, pp. 221–235. Springer (2011)

6. Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck,

J., Schwinger, W.: Automated verification of model transformations based on visual con-

tracts. Autom. Softw. Eng. 20(1), 5–46 (2013)

7. Motwani, R., Raghavan, P.: Randomized algorithms. ACM Comput. Surv. 28(1), 33–37

(1996)

8. Sheth, A., Henson, C., Sahoo, S.S.: Semantic Sensor Web. IEEE Internet Computing 12(4),

78–83 (2008)

9. Tisi, M., Perez, S.M., Choura, H.: Parallel Execution of ATL Transformation Rules. In: Proc.

of MODELS 2013. LNCS, vol. 8107, pp. 656–672. Springer (2013)

10. Vazirani, V.V.: Approximation Algorithms. Springer (2003)

11. Wimmer, M., Burgueño, L.: Testing M2T/T2M Transformations. In: Proc. of MODELS

2013. LNCS, vol. 8107, pp. 203–219. Springer (2013)

284

