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Abstract  The sparseness of the encoding of stimuli by sin-
gle neurons and by populations of neurons is fundamental to
understanding the efficiency and capacity of representations
in the brain, and was addressed as follows. The selectivity
and sparseness of firing to visual stimuli of single neurons
in the primate inferior temporal visual cortex were measured
to a set of 20 visual stimuli including objects and faces in
macaques performing a visual fixation task. Neurons were
analysed with significantly different responses to the stim-
uli. The firing rate distribution of 36% of the neurons was
exponential. Twenty-nine percent of the neurons had too few
low rates to be fitted by an exponential distribution, and were
fitted by a gamma distribution. Interestingly, the raw firing
rate distribution taken across all neurons fitted an exponential
distribution very closely. The sparseness a® or selectivity of
the representation of the set of 20 stimuli provided by each
of these neurons (which takes a maximal value of 1.0) had
an average across all neurons of 0.77, indicating a rather dis-
tributed representation. The sparseness of the representation
of a given stimulus by the whole population of neurons, the
population sparseness aP, also had an average value of 0.77.
The similarity of the average single neuron selectivity a® and
population sparseness for any one stimulus taken at any one
time aP shows that the representation is weakly ergodic. For
this to occur, the different neurons must have uncorrelated
tuning profiles to the set of stimuli.

L. Franco - J. M. Jerez

Depto. de Lenguajes y Cs. de la Computacion,
Universidad de Malaga, Campus de Teatinos S/N,
29071 Malaga, Spain

E. T. Rolls (X)) - N. C. Aggelopoulos

Department of Experimental Psychology,

University of Oxford, South Parks Road, Oxford OX1 3UD, UK
e-mail: Edmund.Rolls@psy.ox.ac.uk

URL: http://www.cns.ox.ac.uk

1 Introduction

The question of how information is encoded by populations
of neurons in the brain is fundamental for understanding how
the brain operates. Towards the end of the primate ventral
visual system, in the inferior temporal visual cortex, neu-
rons respond with some selectivity to different faces or ob-
jects (Perrett et al. 1982; Desimone 1991; Tanaka 1996; Rolls
2000, 2005, 2007, 2008; Rolls and Deco 2002), with smaller
and smaller firing rates for more and more objects, as illus-
trated in Fig. 1 (Rolls and Tovee 1995; Baddeley et al. 1997,
Rolls et al. 1997b; Treves et al. 1999). The selectivity of
neurons and the sparseness of representations in the visual
system are topics of great interest in relation to whether the
sparseness of the representation matches that of image statis-
tics, and whether the encoding is efficient by utilizing only a
small proportion of neurons firing for any one stimulus (Bar-
low 1961; Barlow et al. 1989; Atick 1992; Field 1994, 1999,
Olshausen and Field 1997, 2004; Rolls et al. 1997b; Treves
etal. 1999; Vogels 1999; Vinje and Gallant 2000, 2002; Rolls
and Deco 2002; Lehky et al. 2005). The single neuron selec-
tivity reflects response distributions of individual neurons
across time to different stimuli. Part of the interest of mea-
suring the firing rate probability distributions of individual
neurons is that one form of the probability distribution—
the exponential—maximizes the entropy of the neuronal re-
sponses for a given mean firing rate, which could be used to
maximize information transmission consistent with keeping
the firing rate on average low, in order to minimize metabolic
expenditure (Levy and Baxter 1996; Baddeley et al. 1997).
In this paper we show that, while some single neurons do
fit an exponential distribution and others do not, there is a
very close fit to an exponential distribution of firing rates if
all spikes from all the neurons are considered together. The
implication is that a neuron with inputs from the inferior
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Fig. 1 Firing rates of four neurons to the set of stimuli, with the stimuli
ranked according to the firing rates they produced. Top row The firing
rates for the three intervals 100-300 ms, 300-500ms, and 100-500 ms
for one of the neurons. Bottom row The firing rates for three more

temporal visual cortex will receive an exponential distribu-
tion of firing rates on its afferents.

Instead, if we consider the responses of a population of
neurons taken at any one time (to one stimulus), we might
also expect a sparse graded distribution, with few neurons fir-
ing fast to a particular stimulus. It is important to measure the
population sparseness, for this is a key parameter that influ-
ences the number of different stimuli that can be stored and
retrieved in networks such as those found in the cortex with
recurrent collateral connections between the excitatory neu-
rons, which can form autoassociation or attractor networks
if the synapses are associatively modifiable (Hopfield 1982;
Treves and Rolls 1991; Rolls and Treves 1998; Rolls and
Deco 2002). Further, in physics, if one can predict the dis-
tribution of the responses of the system at any one time (the
population level) from the distribution of the responses of a
component of the system across time, the system is described
as ergodic, and a necessary condition for this is that the com-
ponents are uncorrelated (Lehky et al. 2005). Considering
this in neuronal terms, the average sparseness of a popula-
tion of neurons over multiple stimulus inputs must equal the
average selectivity to the stimuli of the single neurons within
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neurons for the interval 100-300ms. The horizontal line indicates the
spontaneous firing rate of each neuron. The number 213 11 etc. in each
panel indicates the neuron number

the population, provided that the responses of the neurons
are uncorrelated (Foldiak 2003).

To address these issues of how populations of neurons
encode stimuli, in this paper we describe measurements of
the population sparseness. We then examine to what extent
ergodicity is shown by neurons in the inferior temporal cor-
tex, and the implications this has for whether the components
of the system—the individual neurons—have uncorrelated
responsiveness to a set of stimuli. The results described here
are the first we know to directly address the issue of the
sparseness of the population code of inferior temporal cor-
tex neurons, and the first to directly compare the single cell
and population sparsenesses, and show that weak ergodic-
ity is apparent in the neuronal representations in the inferior
temporal visual cortex. Previous findings imply that the pop-
ulation code is not very sparse, in that for example qualitative
analysis using multidimensional scaling suggests a popula-
tion code (Young and Yamane 1992); individual neurons do
not have very sparse tuning to a set of stimuli (Rolls and
Tovee 1995); and each neuron conveys information about
many stimuli in the set of stimuli (Rolls et al. 1997b). We
note that the analyses described in this paper are concerned
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with the mean firing rates to each of a set of stimuli, i.e. with
the response profile or tuning of a neuron to a set of stimuli.
Evidence on how trial by trial variation in the firing of simul-
taneously recorded neurons influences the information that
can be obtained from neuron populations is a very different
issue that has been considered elsewhere using a partially
overlapping set of the same neurons (Rolls et al. 2003, 2004,
20006; Franco et al. 2004).

2 Methods
2.1 Recording techniques

The responses of single neurons in the temporal cortical
visual areas were measured to a set of 20 visual stimuli in
two rhesus macaques performing a visual fixation task using
experimental procedures similar except as described below
to those described in detail previously (Rolls et al. 1997a).
The stimuli in the standard stimulus set included § = 20
greyscale images of objects (7), faces (8), natural scenes (3),
and geometrical stimuli (2) of the type which produce differ-
ential responses from inferior temporal cortex neurons, and
examples of which have been illustrated previously (Rolls
and Tovee 1995). The resolution of these images was 256
wide x 256 high with 256 grey levels. Grey level rather
than color images were used as we were especially inter-
ested in form encoding rather than just color features (Rolls
and Deco 2002). From 64 cells recorded simultaneously in
groups of 2—4 neurons in 33 experiments, 41 neurons had sig-
nificant differences in their firing rate to the set of 20 stimuli,
as shown by ANOVA (p < 0.05). These 41 neurons were
used to characterize the firing rate probability distributions
described in this paper. When the sparseness of the popula-
tion was measured, the data were from 29 neurons recorded
in one monkey with the standard stimulus set, so that the
population firing rate distribution to a given set of stimuli
was being measured. When comparisons are made between
the single cell and population sparsenesses described below,
these were always using the same set of 29 neurons.

The neurons were selected to show responses that dif-
fered between the different stimuli (as shown by a one-way
ANOVA). Usually, 20 trials for each stimulus were available.
The set of stimuli were shown once in random order, a sec-
ond time in a new random sequence, etc. Populations of two
to nine neurons were recorded simultaneously using two to
four independently movable single neuron epoxy-insulated
tungsten electrodes with uninsulated tip diameters of less
than 10 um (FHC Inc., USA) using an Alpha-Omega (Israel)
recording system. Typically, we were able to move the micro-
electrodes until two to four of the simultaneously recorded
neurons responded differentially to the set of stimuli used.
The microelectrodes were stereotaxically guided, and the

location of the microelectrodes was reconstructed on each
track using X-rays and subsequent histological reconstruction
using microlesions made on selected tracks as described by
Feigenbaum and Rolls (1991). The recording system (Neura-
lynx Inc., USA) filtered and amplified the signal and stored
spike waveforms which were later sorted to ensure that the
spike waveforms from each neuron in the small number of
cases when there were spikes from more than one neuron
on one microelectrode were clearly separated into differ-
ent waveform clusters using the Datawave (USA) Discovery
software. The neurophysiological methods used here have
been described in detail by Booth and Rolls (1998). All pro-
cedures, including preparative and subsequent ones, were
carried out in accordance with the NIH Guide for the Care
and Use of Laboratory Animals and the guidelines of The
Society for Neuroscience, and were licensed under the UK
Animals (Scientific Procedures) Act, 1986.

Eye position was measured to an accuracy of 0.5° with
the search coil technique (Judge et al. 1980), and steady fix-
ation of a position on the monitor screen was ensured by use
of a (blink version of a) visual fixation task. The timing of
the task is described below. The stimuli were static visual
stimuli presented at the centre of the video monitor placed
at a distance of 53 cm from the eyes. A full-size face image
typically subtended 21° in the visual field. The fixation spot
position was at the centre of the screen. The monitor was
viewed binocularly, with the whole screen visible to both
eyes.

2.2 Visual fixation task

Each trial started at —500ms (with respect to the onset of
the test image) with a 500 ms warning tone to allow fixation
of the fixation point, which appeared at the same time. At
—100ms the, fixation spot was blinked off so that there was
no stimulus on the screen in the 100ms period immediately
preceding the test image. The screen in this period, and at
all other times including the inter-stimulus interval, was set
at the mean luminance of the test images. At Oms, the tone
was switched off and the test image was switched on for
500ms. At the termination of the test stimulus, the fixation
spot reappeared, and then after a random interval in the range
150-3,350ms it dimmed, to indicate that licking responses
to a tube in front of the mouth would result in the delivery of
fruit juice. The dimming period was 500 ms, and after this,
the fixation spot was switched off, and reward availability
terminated 500ms later. [A diagram of the timing of this
task is provided by Tovee et al. (1994) and Tovee and Rolls
(1995).] The monkey was required to fixate the fixation spot
in that, if he licked at any time other than when the spot was
dimmed, saline instead of fruit juice was delivered from the
tube; in that the dimming was by so little that it could only
be detected if the monkey fixated the spot; and in that, if the
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eyes moved by more than 0.5° from time O until the start
of the dimming period, then the trial was aborted. (When
a trial aborted, a high frequency tone sounded for 0.5s, no
reinforcement was available for that trial, and the inter-trial
interval was lengthened from 8 to 11s.)

2.3 Profile of responses to the set of stimuli

For each neuron, the firing rate to each stimulus was averaged
across trials in selected epochs, as described in the results to
produce the response profile to the set of stimuli. It was these
mean rates to each stimulus that were used for the majority of
the analyses described in this paper, except where as stated
the individual rates from every trial were used to generate a
distribution.

2.4 Selectivity or sparseness of the tuning of an individual
neuron to a set of stimuli

The selectivity or sparseness a* of the representation of a set
of stimuli of an individual neuron can be measured as

B (Zf:l (s S))2
B f:l (ys)z/s 7

where y;s is the mean firing rate of the neuron to stimulus s in
the set of S stimuli. (§ is the number of stimuli s in the set.)

The selectivity or sparseness a® has a maximal value of 1.0.
This is a measure of the extent of the tail of the distribution, in
this case of the firing rates of the neuron to each stimulus. A
low value indicates that there is a long tail to the distribution,
equivalent in this case to only a few stimuli with high firing
rates. If these neurons were binary (either responding with a
high firing rate, or not responding differently from the spon-
taneous rate), then a value of 0.2 would indicate that 20% of
the stimuli produced high firing rates, and 80% had 0 firing
rates. In the more general case of a continuous distribution
of firing rates, the selectivity measure—a®,—still provides a
quantitative measure of the length of the tail of the firing rate
distribution (Treves and Rolls 1991). Although a® has been
named the single cell sparseness or selectivity, we note that
because high values of a® indicate broad tuning of a neuron,
the measure might also be called the single cell breadth of
tuning (Foldiak 2003). One advantage is that it can be applied
to neurons which have continuously variable (graded) firing
rates, and not just to firing rates with a binary distribution
(e.g. 0 or 100 spikes/s) (Treves and Rolls 1991). A second is
that it makes no assumption about the form of the firing rate
distribution (e.g. binary, ternary, exponential, etc.), and can
be applied to different firing rate distributions (Treves and
Rolls 1991). Third, it makes no assumption about the mean
and the variance of the firing rate. Lehky et al. (2005) are
incorrect in their surmize on this. Because it is the ratio of
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the terms (X5=1.5(y5/5))? and Ty—; s(y2/S) that is used to
calculate a®, the scaling terms such as that for different mean
firing rates cancel, and Lehky et al. (2005) formulated their
argument in terms of a difference of these terms, which is
not how «® is defined. Fourth, the measure does not make
any assumption about the number of stimuli in the set, and
can be used with different numbers of test stimuli. Its maxi-
mal value is always 1.0, corresponding to the situation when
a neuron responds to all the stimuli in a set of stimuli with
the same mean rate. We preferred this measure of selectiv-
ity to kurtosis, as kurtosis may be inappropriate for asym-
metrical distributions (Olshausen and Field 2004), which the
probability distributions are, as shown in Figs. 1, 2, and 3.
We also preferred this measure to the entropy measure of
Lehky et al. (2005), which requires large numbers of stimuli
and measures of the neuronal response to each stimulus, or
very careful correction of the type developed for measures
of information representation by Treves and Panzeri (1995)
and Panzeri and Treves (1996) (see also Vinje and Gallant
2000). We checked whether the calculated value of a® can
be estimated accurately with the number of stimuli used, and
showed by Monte Carlo simulations that the estimates given
20 stimuli for every neuron for the neuron sparseness with
exponentially distributed firing rates for which the true value
is 0.50 is quite close with 20 stimuli (which gave an estimate
of a® of 0.54). A similar argument applies to the population
sparseness desribed below, for which 29 and 41 neurons give
estimated values of 0.53 and 0.52, respectively.

2.5 Sparseness of the population code

The sparseness aP of the population code may be quantified
(for any one stimulus) as

(Zri:lzl (O N))2
Zrllv:l (yn)z/N ,

aP? =

where y, is the mean firing rate of neuron » in the set of N
neurons.

This measure, aP, of the sparseness of the representation of
stimulus by a population of neurons has a number of advan-
tages. One is that it is the same measure of sparseness which
has proved to be useful and tractable in formal analyses of the
capacity of associative neural networks and the interference
between stimuli that use an approach derived from theoretical
physics (Rolls and Treves 1990, 1998; Treves 1990; Treves
and Rolls 1991). We note that high values of aP indicate broad
tuning of the population, and that low values of aP indicate
sparse population encoding. This is a measure of the extent
of the tail of the distribution, in this case of the firing rates of
a population of neurons to a stimulus. A low value indicates
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The measures a® and aP have an analogous formulation,
but measure different quantities. We explore the relation
between these measures in this paper.

3 Results

From 64 cells recorded simultaneously in groups of 2—4 neu-
rons in 33 experiments, we performed the analyses on 41
neurons that had significant differences in their firing rate to
the set of 20 stimuli, as shown by ANOVA (P < 0.05). There
were typically 20 trials of data available for each stimulus for
each neuron. Examples of peristimulus time rastergrams and
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histograms for this type of neuron have been shown previ-
ously in Fig. 3 of Tovee et al. (1993) and are therefore not
reproduced here. Most of the neurons had their best responses
to objects, and such neurons sometimes responded to one or
two faces in the set.

3.1 Firing rate probability distributions

Firing rate probability distributions based on the mean firing
rate to each of the 20 stimuli were calculated for three differ-
ent post-stimulus time intervals: 100-300 ms, 300-500 ms,
and 100-500ms. The first time interval—100-300 ms,—is
the most relevant interval in terms of perceptual processing
and the use by other brain areas of the information, in that
the onset latency of the neuronal responses to visual stim-
uli in the inferior temporal visual cortex is in the order of
80—-100ms (Rolls 1984), and correct behavioural responses
to visual stimuli can be made in a visual discrimination task
with latencies of 350—450ms (Rolls et al. 1979).

Figure 1 shows the firing rates of four neurons to the set
of stimuli. Figure 2 shows the firing rate probability distribu-
tions for examples of neurons in which the distribution was
closely fitted by an exponential. (The neurons correspond to
those shown in Fig. 1.) The distributions shown are for the
interval 100-300 ms, but similarly good fits to the exponential
were found for these neurons for the other time intervals, as
illustrated for one of the neurons. The accuracy of the fits to an
exponential was determined using (P (r) = A x exp(B xr))
where r is the firing rate and then performing a Chi-square
test, and the probability values of a good fit are shown.

Figure 3 shows the firing rate probability distributions for
examples of neurons with a poor fit to an exponential fir-
ing rate distribution, but fitted by a gamma distribution. The
distributions shown are for the interval 100-300 ms, but simi-
larly good fits to the gamma distribution were found for these
neurons for the other time intervals, as illustrated for one of
the neurons. (The parameters of the gamma distribution were
similar for the different time intervals.)

Of the 41 neurons in the dataset, 15 were not rejected
(taking P < 0.05 as a poor fit) as a good fit to the expo-
nential (i.e. they had exponential distributions), and 12 did
not fit an exponential but did fit a gamma distribution (cf.
Treves et al. 1999; see Table 1). The remaining 14 neurons
could be fitted by a gamma distribution if a third param-
eter to allow the location of the distribution to shift from
zero was included. For the neurons with an exponential dis-
tribution, the mean firing rate across the stimulus set was
5.7 spikes/s, and for the neurons with a gamma distribution
was 21.1spikes/s (r = 4.5, df = 25, P < 0.001). It may be
that neurons with high mean rates to a stimulus set tend to
have few low rates ever, and this accounts for their poor fit to
an exponential firing rate probability distribution, which fits
when there are many low firing rate values in the distribution.
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Table 1 Firing rates and sparseness values for each neuron

Cell Spontaneous Mean Minimum Maximum Fit Sparseness
bj185.01 7.5 33.0 150 50.8 2 094
bj185.03 21.5 28.2 8.3 89.4 2072
bj207.02 0.0 41.1 244 64.5 2 094
bj207.11 3.8 8.7 0.7 23.1 1 0.69
bj213.01 10.6 16.6 8.8 48.1 0 0.82
bj213.11 1.3 52 0.6 20.6 1 058
bj215.11 4.9 7.8 2.8 15.0 2 083
bj215.12 11.2 14.9 6.0 19.0 2092
bj220.01 6.8 12.8 5.4 23.5 0 088
bj220.02 2.4 3.1 0.3 8.2 1 0.67
bj220.03 17.8 222 115 33.4 0 093
bj220.11 3.1 5.9 0.0 15.0 0 0.63
bj226.02 0.0 10.6 6.7 21.9 2 0.89
bj229.03 7.5 7.4 2.5 15.4 1 082
bj229.21 1.6 2.2 0.0 6.3 1 0.68
bj239.11 8.1 5.1 2.8 7.5 0 091
bj239.12 3.9 1.7 0.0 53 1 0.66
bj643.01 3.9 6.5 1.9 14.0 0 081
bj643.21 0.8 1.7 0.0 6.1 1 052
bj244.02 10.5 9.7 3.8 20.3 0 081
bj244.11 20.7 19.3 128 27.6 1 097
bj278.31 2.3 3.7 0.0 10.8 1 058
bj280.32 1.4 18.8 6.5 63.8 0 0.68
bj280.01 11.6 45 2.0 7.8 0 092
bj287.01 0.0 10.9 0.0 222 0 0.84
bj288.01 8.3 25.2 6.0 47.6 2 084
bj690.02 3.4 4.9 0.0 9.2 0 0.80
bj690.21 6.7 6.7 0.0 16.5 1 072
bj690.22 10.0 13.4 0.0 18.3 1 082
bj291.11 0.0 13.8 8.4 20.0 0 095
bj291.24 13.5 13.1 2.3 30.0 2 0.68
bj292.01 25.0 309 19.7 57.3 2092
bj292.02 0.8 0.8 0.0 3.1 1 053
bj292.21 1.8 2.8 0.3 7.0 1 075
bj292.23 17.4 17.2 6.7 38.7 2 081
bj293.02 3.7 14.3 3.0 38.0 2 0.67
bj293.11 1.2 2.3 0.0 9.0 1 050
bj293.12 4.1 5.7 1.7 135 1 0.80
bj293.21 4.6 5.9 1.5 15.0 2 078
bs46.01 2.0 232 125 40.0 0 091
bs56.01 0.9 1.9 0.7 33 0 0.89
Average 6.5 11.8 4.5 24.5 0.77

Fit: 0 no fit, 1 exponential fit, 2 gamma fit

The spontaneous firing rate was calculated from the firing in the period 0-99 ms
after stimulus onset, before the neuron had started to respond to the visual stimuli.
The other columns show the mean firing rate across stimuli, and the minimum
and maximum firing rate to any stimulus, in spikes/s calculated in the period
100-300ms after visual stimulus onset. In this 100-300 ms period, the firing rate
could be lower than the preceding spontaneous firing rate. The sparseness value
is the single cell selectivity a®
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The probability distribution was generated from the firing
rate of a neuron to a set of stimuli typical of the stimuli that
activate neurons in the inferior temporal visual cortex. The set
in a sense was intended to represent a natural set of stimuli for
the neurons. The approach is effective as used, in that similar
distributions were found when we showed videos of natural
scenes to macaques, and measured the firing rate in short tem-
poral windows (e.g. 100 ms) while the monkey watched the
video (Baddeley et al. 1997; Treves et al. 1999). Moreover,
we were able to confirm that the population of neurons anal-
ysed was well tuned to this set of stimuli, in that the neurons
with an exponential firing rate distribution conveyed 1.12 bits
(£ 0.16 SEM calculated over 15 neurons) of information
about the most effective stimulus in the set (i.e. the surprise,
calculated as described by Rolls et al. 1997b), and the neu-
rons with a gamma firing rate distribution conveyed 1.75 bits
(£ 0.18 SEM calculated over 12 neurons) of information
about the most effective stimulus in the set. Thus both sub-
sets of neurons were well tuned to the stimulus set.

Interestingly, if the probability distribution was calculated
for the firing rate counts from all 41 neurons across all stim-
uli, then the fit to an exponential firing rate distribution was
very accurate, as shown in Fig. 4a (Chi-square test, P value
= 0.85, time interval 100-300ms). The raw spike counts,
with no normalization or scaling, were used in this com-
posite distribution (as also was the case for the distributions
for individual neurons shown in Figs. 2, 3). (Figure 4a thus
includes all mean spike counts for each stimulus/neuron com-
bination in the dataset.) The data in Fig. 4a are for the time
windows: 100-300 ms, but similar close fits were found for
the two other time windows: 100-500ms (P = 0.70) and
300-500ms (P = 0.77). The result shown in Fig. 4a is not
trivial, for if the data from each cell was first scaled to the
same mean rate, and then a composite distribution was cal-
culated, this was far from exponential as shown in Fig. 4b.
Given the result shown in Fig. 4a, we performed a check with
an independent data set of inferior temporal cortex neurons
recorded while a macaque performed a visual discrimina-
tion task in which one of two objects shown in a complex
or blank scene had to be touched to obtain a juice reward
(Aggelopoulos et al. 2005). We found a similarly exact fit of
the raw (unscaled) firing rate probability distribution to an
exponential distribution.

3.2 Selectivity of individual cells

The selectivity or sparseness a® of the representation was cal-
culated across stimuli of individual neurons as described in
the methods. The mean single cell selectivity or sparseness
is 0.77 & 0.13 (mean 4+ SD) for the interval 100-300 ms.
(For the interval 100-500 ms, the sparseness a® was 0.79 +
0.14, and for 300500 ms was 0.74 &£ 0.18.) [The sparseness
a® of the cells with a fit to an exponential distribution for the
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Fig. 4 a The population firing rate probability distributions for the
100-300ms interval formed by adding the spike counts from all 41
neurons, and across all stimuli. The fit to the exponential distribution
was high. b The population normalized firing rate probability distribu-
tions for the 100-300ms interval formed by adding the spike counts
from all 41 neurons, and across all stimuli. The firing rate for each cell
was normalized to the same mean before the probability distribution
was calculated

100-300ms time window was 0.70, and for the neurons
that fitted a gamma distribution was 0.83 (r = 3.09,
df = 25, P = 0.05).] These sparsenesses were calculated
for the 29 neurons tested with the standard stimulus set so
that the values could be compared with the population sparse-
nesses described next. However, the values were essentially
identical for the set of 41 neurons.

3.3 Population sparseness
The distribution of raw (i.e. unscaled, and without any spon-

taneous value subtracted) firing rates of the population of
29 neurons to one of the stimuli (stimulus 14) is shown is
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Fig. 5 a The (unscaled, raw) firing rates of the population of 29 cells
to one of the stimuli, stimulus number 14. b The firing rates of the pop-
ulation of 29 cells to the same stimulus as in (a), but with the response
for each neuron scaled relative to its average firing rate across the set of
stimuli, which was taken as 10 Hz. ¢ The firing rates of the population of
neurons to any one stimulus. The rates of each neuron were normalized
to the same average value of 10, then for each stimulus, the cell firing

Fig. 5a. (These were the 29 neurons in the set of 41 neurons
that were tested with the identical stimulus set.)

Because each neuron has its own range of firing rates
(some may have peak rates of 20spikes/s, others of
30 spikes/s, and their spontaneous firing rates may be differ-
ent, as shown in Table 1), what is shown in Fig. 5a needs
further analysis. It is useful to normalize the firing rates of
each neuron when considering the population code for any
stimulus, because otherwise a population of neurons all with
the same profile of responses to the set of stimuli would have
a population sparseness for any one stimulus that could take
any value, depending on the exactraw firing rates of each neu-
ron. That is, for any stimulus, each neuron in the population
could have its own level of firing, and thus the population vec-
tor would appear to have firing rates that would have nothing
to do with encoding the stimulus. To clarify this point fur-
ther, assume that we can characterize the tuning profile of
for example a V1 neuron responding to oriented bars by an
angle (preferred orientation) and mean (or peak) firing rate.
In order to analyse how the population of neurons encodes
a set of stimuli it is more relevant to analyse the distribu-
tion of the preferred orientations of the neurons rather than
using the firing rate of the neuron. If we then consider a
cortical column where all neurons were tuned to the same
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rates were placed in rank order, and then the mean firing rates of the first
ranked cell, second ranked cell, etc. were taken. The graph thus shows
how, for any one stimulus picked at random, the expected normalized
firing rates of the population of neurons. d The population normalized
firing rate probability distributions for any one stimulus. This was com-
puted effectively by taking the probability density function of the data
shown in Fig. 5¢

preferred orientation but where neurons have different firing
rates to the preferred stimulus, and then compute the popu-
lation sparseness, a value will be obtained just depending on
the distribution of the firing rate values, even if all the neu-
rons have the same tuning profile. The analogy for inferior
temporal cortex neurons is with respect to the tuning profile
of each neuron measured across the set of stimuli.

For this reason, some normalization, to allow the neurons
to be treated equally even though each may have its own char-
acteristic range of firing, is needed. We therefore normalized
the firing rates of each neuron with the range of rates scaled
for each neuron so that the mean rate for each neuron was
the same value. Which mean rate value is chosen does not
matter for the calculation of the sparseness, as long as some
normalization is performed. We chose to normalize so that
the mean firing rate of each neuron across the range of stimuli
was 10spikes/s. This was chosen instead of scaling so that
each neuron had the same scaled spontaneous rate, because
some of the neurons had no spontaneous or very low spon-
taneous firing, which would greatly distort the scaling. We
also did not scale so that each neuron had the same maximum
and minimum firing rate, because this could be affected by
using a restricted set of stimuli, whereas setting to the same
average rate takes into account the firing of the neurons to all
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stimuli in the set, and is thus more robust. It was also inap-
propriate to attempt to scale the responses of the neurons
(i.e. the firing rate minus the spontaneous firing rate), as this
could result in negative values which could lead to ambigu-
ous results when the sparseness is calculated. Moreover, we
note that a neuron receives the actual firing rates, not some
calculated response that artificially subtracts a spontaneous
firing rate, so that use of firing rates to a stimulus, and not
the change of firing rate, i.e. the response to a stimulus, is
appropriate. For these reasons scaling of the firing rates of
each neuron to the same mean rate of 10 spikes/s was chosen
for the population analyses.

We therefore show in Fig. 5b the firing rate of the neurons
to the same stimulus, with the range of rates scaled for each
neuron so that the mean rate for each neuron was 10 spikes/s.
It is now possible to see that for this stimulus, each neuron
fires to a different extent above or below its mean rate, and
this is a population code for that stimulus.

The firing rates of the population of (29) neurons to any
one stimulus are shown in Fig. Sc. The rates of each neuron
were scaled so that each neuron has the same mean rate of 10,
then for each stimulus, the cell firing rates were placed in rank
order, and then the mean firing rates of the first ranked cell,
second ranked cell, etc. were taken. This is what is shown in
Fig. 5c. The graph thus shows, for any one stimulus picked at
random, the expected normalized firing rates of the popula-
tion of neurons. The population sparseness aP of this normal-
ized (i.e. scaled) set of firing rates is 0.77. This is effectively
the sparseness of the idealized set of firing rates of the pop-
ulation of neurons to any one stimulus. It is very close to
the average value of the population sparseness calculated by
taking the mean of the population sparsenesses calculated for
each stimulus (which has the value 0.77, as described below.)

Figure 5d shows the probability distribution of the
normalized firing rates of the population of (29) neurons to
any stimulus from the set. This was calculated by taking the
probability distribution of the data shown in Fig. 5c.

The probability distribution of firing rates of the popula-
tion of neurons to any one stimulus that is shown in Fig. 5d
is effectively also a normalized version of what is shown in
Fig. 4b, which is the probability distribution of firing rates
of all the neurons to all the stimuli. The reason is that the
data used to generate the population firing rate distribution
to any one stimulus shown in Fig. 5d is generated by averag-
ing across all stimuli, and this contains the normalized firing
rates of every neuron to every stimulus. The reason for mak-
ing this comparison is because it is necessary to normalize
(i.e. scale) the firing rates when considering how a popu-
lation encodes a stimulus (so that differences in the firing
rates of each neuron can be factored out); yet, we see from
Fig. 4a that the population firing rate distributions averaged
across all stimuli do in fact follow in their unscaled form an
exponential distribution, allowing the population encoding
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Fig. 6 The sparseness aP of the population code for the 20 different
stimuli. This is the probability distribution of the sparseness for each
of the 20 stimuli using the 29 cells tested with the same 20 stimuli.
a Calculated from the raw, normalized, firing rates. b The sparseness
calculated after the mean firing rate of each neuron to the set of 20
stimuli was normalized to the same mean

to be related to energy efficient arguments about exponential
firing rate distributions. We emphasize this point because of
its potentially important implications: in the unscaled form,
the probability distribution of the firing rates of a population
of neurons is on average for a given stimulus very close to
an exponential distribution.

The sparseness aP of the population code was calculated
as described in the Sect. 2. The mean (across the set of stim-
uli) population cell sparseness when computed with normal-
ized firing for each neuron was 0.77 £ 0.06 (mean & SD)
(and when calculated without scaling was 0.52 4 0.06). The
distribution of population sparseness values for the different
stimuli in the set (calculated for the 100—300 ms window) is
shown in Fig. 6 (top: raw firing rates without normalization;
bottom with the sparseness calculated with normalized firing
rates, i.e. with the mean rates of each neuron in response to
the 20 stimuli normalized to the same mean before the sparse-
ness to any one stimulus of the population was calculated).
For the interval 100-500ms, the population sparseness aP
was 0.79 £ 0.14 (mean *+ SD) (and when calculated without
scaling was 0.51 £ 0.05).

The single cell and population sparseness values given
above were for a set of 29 neurons from among the 41 neurons
that were all tested with the identical set of 20 stimuli. To take
advantage of the full size of this dataset of 41 neurons, we
also calculated the population sparseness for the 41 neurons,
now ranking for each cell its responses from the highest to
the lowest for whichever stimulus set it was tested on. (All
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the sets of stimuli were statistically similar, in that they all
contained a set of faces and non-face images that can be
effective for different neurons in the inferior temporal visual
cortex. This procedure can thus be seen as a check that the
results are not due to the particular set of 20 stimuli in the
standard set used for 29 of the 41 neurons, but may be gen-
eralized to other exemplars of typically effective stimuli for
inferior temporal cortex neurons.) For the 41 neurons, the
population sparseness aP was 0.79, very similar to the value
of 0.77 for the set of 29 neurons tested with the standard
stimulus set. For direct comparison, the mean of the single
cell sparsenesses a® was 0.78 & 0.13, also very close to the
mean of the single cell sparseness for the 29 neurons of 0.77.
These values are for the 100-300ms time interval. For the
100-500 ms time interval, for the 41 neurons the population
sparseness was 0.81, and the mean of the single cell sparse-
nesses a® was 0.80 £ 0.13. For the 300500 ms time interval,
for the 41 neurons the population sparseness was 0.76, and
the mean of the single cell sparsenesses a® was 0.75 £ 0.16.
Thus for the large dataset of 41 neurons, the single cell and
population sparseness measures were close to each other, as
they also were for the 29 neurons tested with the standard set
of stimuli. This extension of the analysis to the larger number
of neurons (41) helps to establish that the sample was suffi-
ciently large to obtain very similar values when the sample
size was increased, and that the results hold for different
stimulus sets containing stimuli of the type to which inferior
temporal cortex neurons are tuned.

We note that weak ergodicity necessarily occurs if a® and
aP are the same and the neurons are uncorrelated, i.e. each
neuron is independently tuned to the set of stimuli (Lehky
et al. 2005; see Sect. 4). Given that the values of ¢* and aP
are very similar for this population of neurons, an implica-
tion is that this could arise if the response profiles of the
neurons are uncorrelated. We tested this in two ways. In
a first test, we measured whether the response profiles of
pairs of neurons to the set of 20 stimuli were uncorrelat-
ed. We found that the mean (Pearson) correlation computed
over the 406 neuron pairs was low, 0.049 + 0.013 (SEM).
In a second test, we computed how the multiple cell infor-
mation available from these neurons about which stimulus
was shown increased as the number of neurons in the sam-
ple was increased, using the method described previously
(Rolls et al. 1997a; Franco et al. 2004). It was found, as
shown in Fig. 7, that the information increased approxi-
mately linearly with the number of neurons in the ensem-
ble. The implication is that the neurons convey independent
(non-redundant) information, and this would be expected to
occur if the response profiles of the neurons to the stimuli are
uncorrelated. As shown in Sect. 4, this evidence that the re-
sponse profiles of the neurons are uncorrelated can be taken
as a contributing factor to the finding that the responses of
this population of neurons are weakly ergodic.
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Fig. 7 Multiple cell information available in a 200 ms window starting
100 ms after stimulus onset about which of 20 stimuli was shown as a
function of the number of neurons in the ensemble

The recording sites of the neurons analysed in this
paper in the cortex in the inferior temporal visual cortex
are shown in Fig. 8; 0mm with respect to the sphenoid cor-
responds approximately to the antero-posterior level of the
anterior commissure, and is approximately 18 mm anterior
to the auditory meatus.

4 Discussion

We found that the firing rate probability distribution of some
of these inferior temporal cortex neurons was closely expo-
nential (see Fig. 2). For other neurons, the fit to an expo-
nential was poor, this was associated with a higher mean
firing rate (which may tend to take the distribution away
from exponential because there are few very low firing rate
counts), and the distributions could be fitted by a gamma
function (see Fig. 3).

What was remarkable about the firing rate probability
distribution was that when all the firing rate counts were
collected together across all stimuli and across all neurons,
the resulting firing rate probability distributions were very
close to exponential, as shown in Fig. 4a. The implication is
that across a large number of neurons in a given brain area
(at least the inferior temporal visual cortex), the firing rate
probability density function (pdf) in any short time window
from all the neurons has a rather strict form, that of an expo-
nential distribution. This is an interesting new finding that is
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Fig. 8 The recording sites 358 mm
shown on coronal sections of the
neurons included in this study. L1

I y. = //
The positions of the coronal . )
sections are shown on a lateral e

view of the macaque brain. The
distances refer to mm posterior
(P) to the sphenoid reference
plane (see text). ST S superior
temporal sulcus, /7 inferior
temporal cortex

Level of brain sections

reported here, and its implications include the following. At
the level of single neurons, an exponential pdf is consistent
with minimizing energy utilization and maximizing infor-
mation transmission, for a given mean firing rate (Levy and
Baxter 1996; Baddeley etal. 1997). An additional implication
is that a neuron that receives inputs from this population of
neurons will see a firing rate distribution on its afferents that
is closely exponential, and this is therefore the type of input
that needs to be considered in theoretical models of neuronal
network function in the brain (Rolls and Deco 2002).

The selectivity of individual cells for the set of stimuli,
or single cell sparseness a®, had a mean value of 0.77. This
is close to a previously measured estimate, 0.65, which was
obtained with a larger stimulus set of 68 stimuli (Rolls and
Tovee 1995). Thus, the single neuron pdfs (see Figs. 2, 3) do
not produce very sparse representations. Therefore, the goal
of the computations in the inferior temporal visual cortex may
not be to produce sparse representations [as has been pro-
posed for V1 (Field 1994; Vinje and Gallant 2000)]. Instead
one of the goals of the computations in the inferior temporal
visual cortex may be to compute invariant representations of
objects and faces (Rolls 2000; Rolls and Deco 2002).

The fact that the single cell sparseness values a* found
here, and the firing rate distributions, are similar to those
measured previously in the same brain region with a larger
set of 68 stimuli of the type found to activate inferior temporal
visual cortex neurons (Rolls and Tovee 1995) indicates that
the set of 20 stimuli used here is sufficiently large and repre-
sentative to provide good estimates of the firing rate pdfs and
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sparseness a® of the neurons analysed in this paper. Further
evidence that the results described here are representative
of what happens with a large set of natural stimuli is that
the firing rate pdf takes approximately the same form when
the firing rates of inferior temporal visual cortex neurons
are measured when macaques watch videos lasting several
minutes of the natural scenes that they normally encoun-
ter (Baddeley et al. 1997). However, we note that the exact
sparseness value obtained is likely to be influenced by the
exact stimulus set used and by the criteria used to include
neurons in the study; that the distributions described in this
paper are similar to those with larger stimulus sets represen-
tative of what is normally seen by monkeys (Rolls and Tovee
1995), and to those with the natural video images (Baddeley
etal. 1997); and that similar distributions were obtained with
the standard and other stimulus sets used in this paper. We
note that part of the value of the present results is that we
directly compare the single cell and population sparseness
measures on an identical stimulus set, with identical neuro-
nal populations.

The major issue of the sparseness of the representation
provided by populations of neurons is also directly addressed
by this investigation. Figure Sc shows the firing rates of the
population of 29 cells to a typical stimulus (averaged across
the set of stimuli). The population firing rate probability dis-
tribution for this average stimulus is shown in Fig. 5d. The
implication of this probability distribution is that to repre-
sent any one stimulus, a few neurons will have relatively
high activity, more will have moderate activity, and most
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will have little activity. The population sparseness values aP
for each stimulus are shown in Fig. 6, and have a mean value
(across stimuli) of 0.77 with normalization of each neuron
to the same mean firing rate (and of 0.52 without normaliza-
tion). It is this (normalized) population sparseness which is
important for considering the storage capacity of associative
neural networks, and interference between patterns stored in
these networks (Rolls and Treves 1990; Treves 1990; Treves
and Rolls 1991; Rolls and Treves 1998). (The normalized
form is appropriate in that otherwise each neuron would
contribute unequally to the information stored in the asso-
ciative memory. The normalization could be performed by
the synaptic weights.) This value of 0.77 for the population
sparseness is not low, and this relatively non-sparse popu-
lation representation indicates that a very large number of
separate memories may not be maintainable by the recur-
rent collateral connections between pyramidal cells if they
are associatively modifiable. On the other hand, the infor-
mation that could be made available to perform for example
constraint satisfaction between neurons in a small cortical
area would be large due to this high value of the population
sparseness aP (i.e. the non-sparse representation) (see Rolls
and Treves 1998; Rolls and Deco 2002), and high information
transmission, rather than storing a large number of patterns,
could be a useful property of this type of encoding found in
the inferior temporal visual cortex.

We now consider the relation between the selectivity or
sparseness of the representation of different stimuli by a sin-
gle neuron—a®—and the population sparseness aP. They are
not necessarily very similar. [For example, if each of the sin-
gle neuron selectivities is high (i.e. a low value of «@*), but
each neuron is tuned to respond to have the same profile of
responsiveness across the set of stimuli, then the population
firing rate distribution for any one stimulus will be flat, and
the value for aP will be 1.0. If the firing rates of the neu-
rons were not normalized to the same average firing rate,
then aP (and the population firing rate distribution) could
take any value depending on how different the average firing
rates of the different neurons were.] However, we found that
the sparseness aP of the (normalized) firing rate distribution
for the population of neurons firing to any one stimulus (see
Fig. 6b) has an average value (across stimuli) of 0.77 &£ 0.06
(£SD) that is essentially the same value as the single cell
selectivity or sparseness a® = 0.77 £ 0.13.

The single neuron selectivity, a®, reflects response dis-
tributions of individual neurons across time. [Willmore and
Tolhurst (2001) described this as “lifetime sparseness”.] The
population sparseness aP reflects response distributions
across all neurons in a population measured simultaneously.
The similarity of the average values aP and a® (both 0.77)
indicates, we believe for the first time experimentally, that
the representation (at least in the inferior temporal cortex)
is ergodic. The representation is ergodic in the sense of
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statistical physics, where the average of a single component
(in this context a single neuron) across time is compared with
the average of an ensemble of components at one time (cf.
Masuda and Aihara 2003; Lehky et al. 2005). In comparing
the neuronal selectivities a®* and population sparsenesses aP,
we formed a table in which the columns represent different
neurons and the stimuli different rows (Foldiak 2003). We
are interested in the probability distribution functions (and
not just their summary values a®, and aP), of the columns
(which represent the individual neuron selectivities) and the
rows (which represent the population tuning to any one stim-
ulus). We could call the system strongly ergodic (cf. Lehky
et al. 2005) if the selectivity (probability density or distribu-
tion function) of each individual neuron is the same as the
average population sparseness (pdf). (Each neuron would be
tuned to different stimuli, but have the same shape of the
pdf.) We have seen that this is not the case, in that the prob-
ability distribution functions of different neurons are differ-
ent (Figs. 1, 2). We can call the system weakly ergodic if
individual neurons have different selectivities (i.e. different
response pdfs), but the average selectivity (measured in our
case by (a®)) is the same as the average population sparse-
ness (measured by (aP)), where (- - - ) indicates the ensemble
average. We have seen that the neuron selectivity pdfs are
different (Figs. 1, 2), but that their average (a®) is the same
as the average (aP) of the population sparseness, 0.77, and
thus conclude that the representation in the inferior tempo-
ral visual cortex of objects and faces is weakly ergodic. We
note that, although Lehky et al. (2005) have modelled such a
situation of weak ergodicity for V1, the present investigation
may be the first in which this has been shown to apply in any
brain region.

We note that weak ergodicity necessarily occurs if a® and
aP are the same and the neurons are uncorrelated, i.e. each
neuron is independently tuned to the set of stimuli (Lehky
et al. 2005). (The independence in this case refers to the fact
that the mean response profiles of the neurons to a set of stim-
uli are uncorrelated, and this was shown to be the case in the
analysis described in the penultimate paragraph of Sect. 3
(Rolls et al. 2003, 2004).) The fact that both hold for this
population of neurons thus indicates that their responses are
uncorrelated, and this is potentially an important conclusion
about the encoding of stimuli by these neurons. This con-
clusion is confirmed by the linear increase in the information
with the number of neurons which is the case not only for this
set of neurons (Fig. 7), but also in other datasets for the infe-
rior temporal visual cortex (Rolls et al. 1997a). Both types of
evidence thus indicate that the encoding provided by at least
small subsets (up to e.g. 20 neurons) of inferior temporal cor-
tex neurons is approximately independent (non-redundant),
which is an important principle of cortical encoding.

In conclusion, the results described here are the first we
know to directly address the issue of the sparseness of the
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population code of inferior temporal cortex neurons, and
the first to directly compare the single cell and population
sparsenesses, and to show that weak ergodicity is apparent
in the neuronal representations in the inferior temporal vi-
sual cortex. Moreover, these findings provide a new type of
evidence that the encoding provided by different inferior tem-
poral cortex neurons is, up to tens of neurons, approximately
independent. The findings further show that if all the neu-
ronal spiking is considered in the inferior temporal visual
cortex (i.e. including from all neurons and stimuli analysed),
then the pdf is very close to exponential. This has the poten-
tially important implication that an exponential distribution
of firing rates will be seen by any neuron receiving infor-
mation from the inferior temporal visual cortex. The fit to
an exponential firing rate distribution also has the interesting
interpretation that in a large region of cortex such as the
inferior temporal visual cortex, there will be, in response to
effective stimuli, a high probability of low firing rates (which
might be metabolically efficient) and a long thin tail of high
firing rates.
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