
Department of Languages and Computer Science
University of Málaga

Measuring the Compatibility of Service Interaction Protocols

1 Meriem Ouederni, 2 Gwen Salaün, and 1 Ernesto Pimentel

1 University of Málaga, Spain
2 Gr. INP–INRIA–LIG, France

Email 1 {meriem,ernesto}@lcc.uma.es
2 Gwen.Salaun@inria.fr

Technical Report ITI 4-10

October 2010



Abstract
Checking the compatibility of service interfaces allows one to avoid erroneous executions when composing ser-
vices together. This task is especially difficult when considering interaction protocols in service interfaces. Al-
though the compatibility verification has been intensively studied, in particular for discovery purposes, most of
existing work return a Boolean result. However, if two services are incompatible, these approaches do not indicate
whether the services are almost compatible or totally incompatible. This information is crucial if one wants to
apply adaptation techniques, for instance, to successfully compose these services in spite of existing mismatches.
In this paper, we propose a flooding-based approach for measuring the compatibility degree of service interfaces.
We illustrate our approach with two compatibility notions, namely unspecified receptions and unidirectional com-
plementarity. Our proposal is fully automated by a prototype tool we have implemented.

Keywords: Service Interfaces, Interaction Protocols, Formal Verification, Compatibility Flooding.

1 Introduction
Service Oriented Computing (SOC) promotes the construction of new systems by reusing existing software units
called services. These services are developed independently and accessed through their interfaces which distin-
guish several interoperability levels (i.e., signature, interaction protocol, quality of service, and semantics). A key
issue is to check whether the service interfaces are compatible or not. The goal of this check is to guarantee the
successful interoperation of services. In this report, we focus on the interaction protocol level of service interfaces.
Checking the compatibility of interaction protocols is a tedious and hard task even though this is of utmost impor-
tance to avoid run-time errors, e.g., deadlock situations or unmatched messages. Most of the existing approaches
(see for instance [10, 33, 2, 17, 12, 4]) return a “True” or “False” result to detect whether services are compatible
or not. Unfortunately, a Boolean answer is not very helpful for many reasons. First, in real world case studies,
there will seldom be a perfect match, and when service protocols are not compatible, it is useful to differentiate
between services that are slightly incompatible and those that are totally incompatible. Furthermore, a Boolean
result does not give a detailed measure of which parts of service protocols are compatible or not.

To overcome the aforementioned limits, a new solution aims at measuring the compatibility degree of ser-
vice interfaces. This issue has been addressed by a few recent works, see for instance [32]. However, most of
them are based upon description models of service interfaces which do not consider value-passing coming with
exchanged messages and internal behaviours (τ transitions). Internal behaviours in interface models are very im-
portant because some services can be compatible from an observable point of view, but their execution will behave
erroneously if these behaviours are not taken into account (see Section 2 for a detailed discussion). Moreover, ex-
isting approaches measure the interface compatibility using a simple (i.e., not iterative) traversal of protocols, and
consider a unique compatibility notion making their application quite restricted.

In this report, we propose a generic framework where the compatibility degree of service interfaces can be au-
tomatically measured according to different compatibility notions. We illustrate our approach using a bidirectional
and an unidirectional compatibility notions, namely unspecified receptions and unidirectional complementarity.
Additional compatibility notions can easily be added to our framework. We consider a formal model for describ-
ing service interfaces with interaction protocols (messages and their application order, but also value-passing and
internal actions). In our approach, the compatibility is computed in two steps. A first step computes a set of
static compatibility degrees where the execution order of messages is not taken into account. Then, a flooding
algorithm computes the compatibility degree of interaction protocols using the static compatibility results. The
computation process also returns the mismatch list indicating the interoperability issues. The proposed framework
is fully automated by a prototype tool (called Comparator) we have implemented.

Our compatibility measure brings more advantages than the Boolean approaches and this opens a wide range
of applications, in particular automatic service adaptation [22]. If a set of services are incompatible, the detailed
measures and the mismatch list help to understand what parts of these services do not match. Thus, the mismatches
can be worked out using adaptation techniques, and service composition can be achieved in spite of existing
mismatches.

The remainder of this report is structured as follows. Section 2 describes our model of services. Section 3
introduces the compatibility notions we use in this report for illustration purposes. In Section 4, we present our
solution for measuring the service compatibility. Section 5 introduces our prototype tool and some experimental
results. Section 6 states a brief comparison with related approaches. Finally, Section 7 draws some conclusions.

1



2 Service Model
We assume service interfaces are described using their interaction protocols represented by Symbolic Transition
Systems (STSs). Our STS is a variant of STG (Symbolic Transition Graph) presented in [18], where guards are
abstracted here as transitions labelled with τ actions. Communication between services is represented using events
relative to the emission and reception of messages. Events come with a list of typed parameters (possibly empty).
In our model, a label is either the (internal) τ action or a tuple (m, d, pl) where m is the message name, d stands
for the communication direction (either an emission ! or a reception ?), and pl is either a list of typed data terms
if the label corresponds to an emission (output action), or a list of typed variables if the label is a reception (input
action).1

Definition 1 (STS) A Symbolic Transition System, or STS, is a tuple (A,S, I, F, T ) where: A is an alphabet
which corresponds to the set of labels associated to transitions, S is a set of states, I ∈ S is the initial state,
F ⊆ S is a nonempty set of final states, and T ⊆ S\F ×A× S is the transition relation.

This model is simple yet offers a good abstraction level for describing and analysing service behaviours.
Moreover, STSs can be easily derived from abstract descriptions implemented in existing platform languages
(e.g., Abstract BPEL or WF), see for instance [14, 29, 13, 5] where such abstractions for Web services were used
for verification, composition or adaptation purposes. For the sake of clarity, in the rest of the article, we will
describe service interfaces only with their corresponding STSs. Signatures will be left implicit, yet they can be
inferred from the typing of arguments (made explicit here) in STS labels.

2.1 STS Operational Semantics
The operational semantics of one STS (−→b) is defined with three rules for, respectively, internal action (TAU),
emission (EM), and reception (REC) given in Figure 1. The pair 〈si, Ei〉 consists of an active state2 si ∈ Si and a
data environment Ei. A data environment is a set of pairs 〈x, v〉 where x is a variable and v a ground value. The
environment can be updated using the operator “�” which assigns a new ground value to an existing variable. The
update operator can also add a new variable and its ground value to the environment:

(E ∪ {〈x, v〉})� 〈x′, v′〉 , E ∪ {〈x, v′〉} if x = x′

(E ∪ {〈x, v〉})� 〈x′, v′〉 , (E � 〈x′, v′〉) ∪ {〈x, v〉} if x 6= x′

∅ � 〈x, v〉 , {〈x, v〉}

The data evaluation operator “ev” is defined as follows:

ev(E, x) , E(x)

ev(E, f(v1, . . . , vn)) , f(ev(E, v1), . . . , ev(E, vn))

where the function E(x) returns the value of x in the environment:

(E ∪ 〈x, v〉)(x′) , v if x = x′

(E ∪ 〈x, v〉)(x′) , E(x′) if x 6= x′

Notice that, using the STS model, a choice can be represented using either a state and at least two outgoing
transitions labelled with observable actions (external choice) or branches of τ actions (internal choice).

The operational semantics of n STSs STSi∈{1 ,...,n} = (Ai ,Si , Ii ,Fi ,Ti) (−→c) is formalised using the syn-
chronous communication3 rule COM and the independent evolution rule INEτ given in Figure 2. The function
get-type returns the type of a variable or value, and {as1, . . . , asn} denotes a set of active states. In the COM
rule, value passing and variable substitutions rely on a late binding semantics [24].

1The message names and parameter types respect the service signature.
2We assume that the state identifiers are disjoint.
3Although checking protocol compatibility is undecidable with asynchronous communication [3], Fu et al. proved in [15] that a large

class of interfaces can be analysed under an asynchronous communication model using techniques and tools existing for the synchronous
communication model.

2



s
τ−−→ s′

〈s, E〉 τ−−→b 〈s′, E〉
(TAU)

s
a!e−−−→ s′ v′ = ev(e, E)

〈s, E〉 a!v′−−−−→b 〈s′, E〉
(EM)

s
a?x−−−→ s′

〈s, E〉 a?x−−−→b 〈s′, E〉
(REC)

Figure 1: Operational semantics of a STS.

i, j ∈ {1..n} i 6= j

〈si, Ei〉
a!v−−−→b 〈s′i, Ei〉 〈sj , Ej〉

a?x−−−→b 〈s′j , Ej〉
get-type(x) = get-type(v) E′

j = Ej � 〈x, v〉

{as1, .., 〈si, Ei〉, .., 〈sj , Ej〉, .., asn}
a!v−−−→c {as1, .., 〈s′i, Ei〉, .., 〈s′j , E′

j〉, .., asn}
(COM)

i ∈ {1..n} 〈si, Ei〉
τ−−→b 〈s′i, Ei〉

{as1, .., 〈si, Ei〉, .., asn}
τ−−→c {as1, .., 〈s′i, Ei〉, .., asn}

(INEτ )

Figure 2: Operational semantics of n STSs.

Internal Behaviours. Service analysis could be worked out without taking into account their internal evolution
because that information is not observable from its partners point of view (black-box assumption). However, keep-
ing an abstract description of the non-observable behaviours while analysing services helps to find out possible
interoperability issues. Indeed, although one service can behave as expected by its partner from an observable
point of view, interoperability issues may occur because of unexpected internal behaviours that services can ex-
ecute. For instance, Figure 3 shows two service protocols (Client and Client’) exhibiting the same observable
behaviour. However, Client’ gives information about internal decisions whereas Client does not. The Client
and the Server can interoperate on update and terminate in final states (register! in Client has no counterpart
in Server and cannot be executed due to the synchronous communication semantics). However, if we consider
Client’, which is an abstraction closer to what the service actually does, we see that this protocol can (choose to)
execute a τ transition in state s1 and arrives in state s3 while Server is still in state u1. At this point, both Client’
and Server cannot exchange messages, and the system deadlocks. This issue would not have been detected with
Client.

Client

update?

it:str

Server

tau

Client’

update! 

it:str

register!

id:int

tau

s1

s2

u1

u2

s1

s2

s4

s3

update! 

it:str

register!

id:int

Figure 3: Internal Behaviours in Service Protocols.

Now, let us focus on higher-level languages, such as abstract BPEL or abstract Windows workflow (WF),
which are used in the literature [22, 9, 21] as abstract descriptions (Interface Description Languages) of service
behaviours. Here we choose WF to illustrate how STSs and in particular τ transitions are extracted from this
workflow-based notation. WF describes service behaviours using a set of basic activities, e.g., IfElse, Listen and
While, for which it is useful to keep some τ transitions in their respective STS descriptions.

The IfElse activity corresponds to an internal choice deciding which activity has to be performed, e.g., sending
different messages using the WebServiceOutput activity, depending on the condition truth value. The corre-
sponding STS contains as many transitions labelled with τ as there are branches in the IfElse activity (including
the else branch), see the first example in Table 1.

3



Transitions labelled with τ can describe timeouts, as it is the case in the Listen activity of WF. This activity
waits for possible receptions (EventDriven). If no message is received, a timeout occurs (Delay) which stops
the Listen activity. In the STS model, the Listen activity is translated into a set of branches labelled with the
receptions used in this activity and a τ transition corresponding to the timeout, see the second example in Table 1.

The While activity is used to repeat an activity as long as the loop condition is satisfied. Hence, the corre-
sponding STS encodes this activity using a non-deterministic choice, specified using τ transitions, between the
looping behaviour and the behaviour that can be executed after the While activity (when the condition becomes
false), see the third example in Table 1.

Abstract WF activity STS description

WebServiceInput(a?(p1:t1))

ifElse

 (((p1 < 10),

    WebServiceOutput(b!(p2:t2))),

  ((p1 ≥ 10),
    WebServiceOutput(c!(p3:t3)))

 )

...

s2

s1

s4

a ?
p1: t1

τ

b !
p2: t2

c !
p3: t3

s3

s5 s6

τ

...

listen(

 EventDriven

 (WebServiceInput(b?(p2:t2)),...),

 EventDriven

 (WebServiceInput(c?(p3:t3)),...),

 EventDriven(Delay,...)

 )

s2

s4

τ

b ?
p2: t2

c ?
p3: t3

s5

s3

WebServiceInput(b?(p2:t2))

While

 (

  (p2 < 10),

   InvokeWebService

    (b!(p3:t3), b?(p2:t2))

 )

... 

s2

b ?
p2: t2b ! p3: t3

s3

τ

τ

s4

s5b ? p2: t2

[while (p2 < 10)]

Table 1: Examples of Abstract WF Activities and their Corresponding STSs

Other abstract WF activities such as Terminate, Parallel and Code can also generate τ transitions in the
corresponding STS model.

3 Protocol Compatibility
Compatibility checking verifies the successful interaction between services wrt. a criterion set on their observable
actions. This criterion is referred to as a compatibility notion. In this report, we distinguish two classes of
notions depending on the direction of the compatibility checking. We refer to these classes as bidirectional and
unidirectional checking. We particularly illustrate our approach with a bidirectional compatibility notion, namely
unspecified receptions (UR for short), and with an unidirectional notion, namely unidirectional complementarity
(UC for short).

4



3.1 Preliminaries
This section introduces some basic concepts needed to define the UR and UC compatibility notions. In what
follows, we describe a transition using a tuple (s, l, s′) such that s and s′ denote the source and target states,
respectively, and l stands for its label. We suppose that for all transitions (s, τ, s′), s 6= s′. Given two services
described using STSs, STSi∈{1 ,2} = (Ai ,Si , Ii ,Fi ,Ti), we define a global state as a pair of states (s1, s2) ∈
S1 × S2. For the sake of comprehension, we have chosen to present several simple examples instead of a single
running example. However, we have applied our approach to many real-world case studies. Some of them are
mentioned in Section 5 and other ones are available on-line at [26]. For clarity purposes, we assume in the rest
of this report that the different functions defined have access to the STSi∈{1 ,2} = (Ai ,Si , Ii ,Fi ,Ti) even if they
are not explicitly passed as input parameters. However, we made parameters explicit if they are modified.
Parameter Compatibility. The usual meaning of parameter compatibility requires that the parameter list expected
to be received perfectly matches (same types in the same order) the parameter list coming with the sent message.
We refer to this definition as parameter matching (pm for short).

Definition 2 (Parameter Matching) Two parameter lists pl1 = (p11, . . . , p1n) and pl2 = (p21, . . . , p2m) are
compatible, par -match(pl1, pl2), iff n = m, and ∀k ∈ {1, . . . , n}, get-type(p1k) = get-type(p2k).

Notice that more sophisticated strategies may similarly be defined, e.g., it is possible to receive less parameters
than those being sent, the parameters can be sent and received in a different order, or the types do not need to
coincide (subtyping, automatic conversion, etc.).
Label Compatibility. Label comparison is necessary to check whether exchanged messages and their param-
eters are compatible. Two labels are considered compatible if they have opposite directions, same names, and
compatible parameters. This definition is called label matching and formalised as follows:

Definition 3 (Label Matching) Two labels l1 and l2 are compatible, lab-match(l1, l2), iff:

• l1 = (m1, d1, pl1) and l2 = (m2, d2, pl2), m1 = m2, d1 = d2 and par -match(pl1, pl2), or

• l1 = τ and l2 = τ ,

where ! =?, ? =!.
Reachable States. Reachability analysis aims at computing the set of global states that interacting protocols can
access, in zero or more steps, from a current global state (s1, s2). Protocols can move into reachable states through
synchronisations on compatible labels or independent evolutions, i.e., τ transitions.

Definition 4 (Reachable States) The function reachable((s1, s2)) returns the smallest set of global states reach-
able from (s1, s2) such that:
∀(s1, l1, s′1) ∈ T1:

• if l1 = τ , then:

– reachable((s′1, s2)) ⊆ reachable((s1, s2)), and

– if s′1 ∈ F1, or ∃(s′1, l′1, s′′1) ∈ T1, l′1 6= τ , then (s′1, s2) ∈ reachable((s1, s2)).

• else, ∀(s2, l2, s′2) ∈ T2 with lab-match(l1, l2), {(s′1, s′2)} ∪ reachable((s′1, s′2)) ⊆ reachable((s1, s2)).

Additionally, if (s′2, s
′
1) ∈ reachable((s2, s1)), then (s′1, s

′
2) ∈ reachable((s1, s2))

Example 1 Figure 4 shows an example of two service protocols, which allows to make an update in a database
once a user account is created. As we can observe, the protocols can initially transit from (s1, c1) to state (s2, c2)
through the compatible labels register?id:int and register!id:int. However, both protocols cannot synchronise on
the update message because update? is not compatible with any label in c1. Applying the same reasoning on
(s2, c2), the set of global states reachable from the initial one is {(s2,c2),(s1,c3),(s3,c4)}.

Deadlock-Freeness. An important property required for checking the successful system termination is deadlock-
freeness. In order to check that services can always interoperate starting from a given global state until reaching
final states, we define deadlock-freeness as follows:

5



Figure 4: Database Handling System (I).

Definition 5 (Deadlock-Freeness) Given two STSs STSi∈{1 ,2} = (Ai ,Si , Ii ,Fi ,Ti), the set of their deadlock-
free global states, df , is the least set such that (s1, s2) ∈ df if and only if either (s1, s2) ∈ (F1 × F2) or
∀(s′1, s′2) ∈ reachable((s1, s2)), s′1 6= s1 and s

′
2 6= s2, (s′1, s

′
2) ∈ df .

State Compatibility. Service interaction basically depends on synchronisations over observable actions and then
can be defined using a criterion set on them. The criterion is used to check the state compatibility as follows. For a
given global state (s1, s2), this state is considered compatible if every the message l1 sent (received, respectively)
by protocol 1 at state s1 will be eventually received (sent, respectively) by protocol 2 at state s2, such that both
protocols evolve into a compatible global state, and vice-versa. If protocol 2 is not able to interact with protocol
1’s action, then both protocols must be able to reach a global state (s1, s

′
2) in which this action will be satisfied,

i.e., ∃(s′2, l2, s′′2) ∈ T2 such that l1 and l2 are compatible, and vice-versa. In this case, the protocols must also
be compatible in (s1, s

′
2) and (s′1, s

′′
2). Since services can evolve independently through some τ transitions, the

behavioural compatibility requires that each internal evolution must lead both services into compatible states [7,
10]. This means that every time a τ transition is traversed in one protocol, then the compatibility has to be checked
again on the target state. We refer to this compatibility definition as state matching which is formally defined as
follows:

Definition 6 (State Matching) Given two STSs, STSi∈{1 ,2} = (Ai ,Si , Ii ,Fi ,Ti), and a label direction d, the
set of d-compatible states, state-matchd, is the largest set such that if a global state (s1, s2) ∈ state-matchd
then:

• (s1, s2) ∈ state-matchd,→(s1, s2)

• (s2, s1) ∈ state-matchd,→(s2, s1)

where ∃i, j ∈ {1, 2}, i 6= j, and state-matchd,→(si, sj) is the largest set such that ∀(si, li, s′i) ∈ Ti, if (si, sj) ∈
state-matchd,→(si, sj), then:

• if li = (mi, d, pli), then either

– ∃(sj , lj , s′j) ∈ Tj such that lab-match(li, lj) and (s′i, s
′
j) ∈ state-matchd, or

– ∃(si, s′j) ∈ reachable((si, sj)) such that ∃(s′j , l′j , s′′j ) ∈ Tj where:

∗ lab-match(li, l
′
j),

∗ (si, s
′
j) ∈ state-matchd, and

∗ (s′i, s
′′
j ) ∈ state-matchd.

• else if li = τ, then (s′i, sj) ∈ state-matchd.

Example 2 Let us show that the global state (s1, c1) is in the set state-match? ∪ state-match ! obtained for
protocols Database and Engineer in Figure 4. Although the label register?id:int at state s1 can match the label
register!id:int at state c1, this is not the case of the label update? at state s1 because it does not match any
label at state c1. However, both STSs are able to reach the global state (s1, c3) in which the label update? can
be matched. Furthermore, Database and Engineer are compatible in (s1, c3) and also in (s3, c4). As we can
observe, every synchronisation leads both STSs into compatible global state, therefore (s1, c1) ∈ (state-match?∪
state-match !).

6



c0

register!

id:int

ack?

reject?

c1

c2

Engineer

s0 s1

s2

register?

id:int

udpate?

ack!

Database

Figure 5: Database Handling System (II).

s0

s1

s2

register!

id:int

ack?

Subscriber ConfServer

c0

register?id:int

ack!

c2

email !

c4
tau

c3

update?

Figure 6: Conference Registration System.

3.2 Notions of Protocol Compatibility
Unspecified Receptions (UR). This notion is inspired from [33] and requires that two services are compatible
(i) if they are deadlock-free at their initial global state, and (ii) if one service can send a message at a reachable
state, then its partner must eventually receive that emission such that both services evolve into a compatible global
state. The second condition is checked using the verification of state compatibility over the emission transitions.
In real-life cases, one service must receive all requests from its partner, but can also be ready to accept other
receptions, since the service could interoperate with other partners. Hence, there might be additional unmatched
receptions in reachable states, possibly, followed by unmatched emissions. These emissions do not give rise to an
incompatibility issue as long as their source states are unreachable when protocols interact with each other.

Definition 7 (Unspecified Receptions) Two STSs, STSi∈{1 ,2} = (Ai ,Si , Ii ,Fi ,Ti), are UR compatible iff:

• (I1, I2) ∈ state-match !, and

• (I1, I2) ∈ df .

Example 3 Let us illustrate the verification of the UR compatibility on the Engineer and Database protocols in
Figure 5. At the initial global state (s0, c0), there is a unique emission, register!id:int, which perfectly matches
with register?id:int. There is also an unmatched reception update? at state s0 but this does not raise an incom-
patibility issue according to the above definition. At the global state (s1, c1), the unique emission ack! perfectly
matches with ack?, and here again there is an additional reception reject?. Moreover, these protocols do not
deadlock. As a result, they are compatible wrt. the UR notion.

Unidirectional Complementarity (UC). Two services are compatible wrt. the UC notion if there is one service
(complementer) which must eventually receive (send, respectively) all messages that its partner (complemented)
expects to send (receive, respectively) at all global reachable states. In addition, both services must be deadlock-
free in all reachable global states. Hence, the complementer service may send and receive more messages than
the complemented service.4 This asymmetric notion is useful to check the successful communication in the clien-
t/server model where a server can interact with clients having different behaviours. In this setting, each client
behaviour must be satisfied (complemented) by the server.

Definition 8 (Unidirectional Complementarity) An STSer complements another one STS ed iff ∃T ′er ⊆ Ter
such that for STSer = (Aer, Ser, Ier, Fer, T

′
er) and STSed = (Aed, Sed, Ied, Fed, Ted):

• (Ier, Ied) ∈ state-match !,

• (Ier, Ied) ∈ state-match?, and

• (Ier, Ied) ∈ df .

Example 4 Figure 6 consists of two protocols: the Subscriber (complemented) first asks for a conference reg-
istration and waits for an acknowledgment. The conference server ConfServer (complementer) can receive a

4Our definition is different than the usual simulation or preorder [8] relation since we compare protocols with opposite directions.

7



request for either a registration or an updating. Then, the server sends back to the subscriber an acknowledge-
ment followed by a confirmation email, or terminates if this confirmation has not to be sent (described with a
τ transition). We notice that the ConfServer complements the Subscriber because every time the Subscriber
wants to transit into another state the ConfServer enables that transition. Moreover, both protocols are free of
deadlocks. Although there is an unmatched emission email! in the reachable global state (s2, c3), the protocols
remain compatible wrt. the UC notion, because this emission is in the complementer protocol. However, they are
not compatible wrt. the UR notion because of this reachable but unmatched emission.

4 Measuring Protocol Compatibility
This section presents our techniques for measuring the compatibility of two service protocols. All the compat-
ibility measures we present in the sequel belong to [0..1] where 1 means a perfect compatibility. The approach
overviewed in Figure 7 consists first in computing a set of static compatibility measures (Section 4.1). In a sec-
ond step, these static measures are used for computing the behavioural compatibility degree for all global state in
S1 × S2 (Section 4.2). Last, the result is analysed and a global compatibility degree is returned (Section 4.3).

Static Compatibility

State Nature

Parameters

Labels

uses

State Compatibility

uses

Compatibility Flooding

+ Mismatches

+ Global Compatibility

x
1

...

k

Behavioural Compatibility

uses

uses

uses

Unspecified Recpetions

Unidirectional Complementarity

Observational Compatibility

Bidirectional Propagation

Unidirectional Propagation

STSs

a? c!p:t’

tau

a!

b?

c?p:t

Foward Propagation Backward Propagation

Figure 7: Compatibility Measuring Process.

4.1 Static Compatibility
We use three static compatibility measures, namely state natures, labels, and exchanged parameters.
State Nature. To compare state nature, we use the function nat(s1, s2) which returns 1 if the two given states
s1 and s2 have the same nature, i.e., both states are either initial, final or none of them. Otherwise, nat(s1, s2)
returns 0.

nat(s1, s2) =


1 if (s1, s2) = (I1, I2)

∨ (s1, s2) ∈ F1 × F2

∨ ((s1, s2) 6= (I1, I2)) ∧ ((s1, s2) 6∈ F1 × F2)

0 otherwise

Parameters. According to Definition 2, the compatibility degree of two parameter lists pl1 and pl2 depends
on three auxiliary measures, namely: (i) the compatibility of parameter number computed using the function
number. This function compares the difference between the length of the parameter lists pl1 and pl2; (ii) the
compatibility of parameter order measured with the function order, and (iii) the compatibility of parameter type
determined using the function type. These measures must be set to 1 if pl1 ∪ pl2 = ∅. Otherwise, they are
computed as follows: First, we compute the score of the respective mismatch, i.e., different lengths of parameter
lists, unordered types and/or unshared types in both parameter lists. Then, we normalise the score by the maximal

8



value that can be achieved. Finally, we decrease the mismatch score from the perfect compatibility degree (1)
to get the final compatibility degree. For instance, to compute the compatibility degree of parameter number
number(pl1, pl2), the respective mismatch score consists of the absolute value of the difference between the
lengths of parameter lists (abs(‖pl1‖−‖pl2‖)) normalised by the maximum which is the maximal length between
those of pl1 and pl2 (max(‖pl1‖, ‖pl2‖)).

number(pl1, pl2) = 1− abs(‖pl1‖ − ‖pl2‖)
max(‖pl1‖, ‖pl2‖)

In order to compute order(pl1, pl2), we use a function unorderedTypeswhich returns the set of parameter types
existing in both parameter lists, i.e., shared types, but not in the same order from left to right. The set of shared
types is computed using a function sharedTypes(pl1, pl2).

order(pl1, pl2) = 1− ‖unorderedTypes(pl1, pl2)‖‖sharedTypes(pl1, pl2)‖
Last, to compute type(pl1, pl2), we need a function unsharedTypes which returns the set of parameter types

existing in one parameter list but not in the other.

type(pl1, pl2) = 1− ‖unsharedTypes(pl1, pl2)‖‖pl1‖+ ‖pl2‖
The function par-comp computes the parameter compatibility as the average of the measures returned by the

three previous functions:

par-comp(pl1, pl2) =
number(pl1, pl2) + order(pl1, pl2) + type(pl1, pl2)

3

Example 5 Let us consider two parameter lists pl1 = (usr:str, pwd:int) and pl2 = (log:str, sig:float, pwd:int).
We show below the computation of the aforementioned measures:

• The number compatibility is equal to 1− 3−2
3 = 0.66. In the worst case, a non-empty parameter list can be

compared with an empty one. Therefore, the denominator must be set as the maximal size among those of
pl1 and pl2.

• The order compatibility is equal to 1− 1
2 = 0.5 since pl1 and pl2 have one unordered type among two types

existing in both lists.

• The type compatibility is equal to 1 − 1
5 = 0.8 because pl2 does not share the type float with pl1. The

number of unshared types is normalised with the sum of pl1 and pl2 sizes because in the worst case both
lists could have types totally different.

• As a consequence, the parameter compatibility is equal to 0.66+0.5+0.8
3 = 0.65.

Labels. Given a pair of labels (l1, l2) ∈ A1 × A2, the function lab-comp(l1, l2) returns 0 if both labels l1 and l2
have the same direction. Otherwise, the compatibility measure of l1 and l2 is computed as the average of (i) the
semantic compatibility of message names (m1,m2) computed by the function sem-comp using the Wordnet
similarity package [28], and (ii) the parameter compatibility returned by par-comp:

lab-comp((m1, d1, pl1), (m2, d2, pl2)) =


0 if d1 = d2

sem-comp(m1,m2)+par-comp(pl1,pl2)
2 otherwise

Message names and parameters can be compared using other techniques such as the N-gram algorithm [20]. It
is also possible to compare the semantics of parameter names and/or types using the Wordnet similarity package.

4.2 Behavioural Compatibility
We consider a flooding algorithm which performs an iterative measuring of behavioural compatibility for ev-
ery global state in S1 × S2. This algorithm incrementally propagates the compatibility between neighbouring
states using backward and forward processing. The compatibility propagation is based on the intuition that

9



two states are compatible if their backward and forward neighbouring states are compatible, where the back-
ward and forward neighbours of global state (s′1, s

′
2) in transition relations T1 = {(s1, l1, s′1), (s′1, l′1, s′′1)} and

T2 = {(s2, l2, s′2), (s′2, l′2, s′′2)} are the states (s1, s2) and (s′′1 , s
′′
2), respectively. The flooding algorithm returns

a matrix denoted COMPk
CN ,D where each entry COMPk

CN ,D [s1, s2] stands for the compatibility measure of
global state (s1, s2) at the kth iteration. The parameter CN refers to the considered compatibility notion which
must be checked being given D that is either an unidirectional (→) or a bidirectional (↔) protocol analysis.
COMP0

CN ,D represents the initial compatibility matrix where all states are supposed to be perfectly compatible,
i.e., ∀(s1, s2) ∈ S1 × S2, COMP0

CN ,D [s1, s2] = 1. Then, in order to compute COMPk
CN ,D [s1, s2], we need

two functions, namely obs-compkCN,D and state-compkCN,D that we detail in the following. The first function
computes the compatibility of outgoing (incoming, respectively) observable transitions being given a compat-
ibility notion CN . We refer to this measure as observational compatibility. The second function propagates
the compatibility from the forward and backward (denoted fw and bw for short, and illustrated in figure 7 with
red dashed arrows) neighbouring states to (s1, s2) taking into account τ transitions. Thus, the computation of
state-compkCN,D combines two auxiliary functions, namely fw-propagkCN,D and bw-propagkCN,D.

In this report, we only present the forward compatibility, the backward compatibility can be handled in a
similar way based upon incoming rather than outgoing transitions. In the following, we start by introducing the
computation of observational compatibility wrt. to UR and UC notions presented in Section 3.2. In the following,
we first present obs-compk

CN ,D and fw -propagkCN ,D . Then, we define state-compk
CN ,D . Finally, we introduce

the computation of COMPk
CN ,D [si, sj ].

Before defining obs-compk
CN ,D , we need to present a few functions necessary to its computation. Given a

state s ∈ S and a transition set T , we define the set of emissions, receptions, and forward transitions going out
from s, respectively, as follows:

E(s, T ) = {t ∈ T | t = (s, (m, !, pl), s′)}

R(s, T ) = {t ∈ T | t = (s, (m, ?, pl), s′)}

Fw(s, T ) = E(s, T ) ∪R(s, T )

We also refer to tau(s, T ) as the set of transitions labelled with τ actions and going out from the state s:

tau(s, T ) = {t ∈ T | t = (s, τ, s′)}

We define the function sumk
CN ,D((si, sj), Ti, Tj) as the sum of the best compatibility degree of forward

neighbours of state si and those of state sj :

sumk
CN ,D((si, sj), Ti, Tj) =



∑
(si,li,s′i)∈Ti max(sj ,lj ,s′j)∈Tj

(lab-comp(li, lj) ∗ COMPk−1
CN ,D [s

′

i, s
′

j ])

if ‖Fw(si, Ti)‖ 6= ∅ and ‖(Fw(sj , Tj)‖ 6= ∅

0 otherwise

We are now able to define the function obs-compkCN,D wrt. to UR and UC notions presented in Section 3.2.
Unspecified Receptions. For all global state (s1, s2): (i) obs-compk

UR,↔ returns 1 if and only if every outgoing
emission in E(s1, T1) (E(s2, T2), respectively) perfectly matches an outgoing reception in R(s2, T2) (R(s1, T1),
respectively) and all synchronisations on those emissions lead to compatible states; (ii) obs-compk

UR,↔ returns 0
if there is a deadlock; (iii) otherwise, obs-compkUR,↔ measures the best compatibility of every outgoing emission
in E(s1, T1) with the outgoing receptions in R(s2, T2), leading to the neighbouring states which have the highest
compatibility degree, and vice-versa.

Definition 9 (Unspecified Receptions) Given a global state (s1, s2), the observational compatibility is computed
wrt. UR as follows:

10



Customer

c0

update!

tau

c1

c2

reply?

tau
c3update?

search?

O-Store

tau

s0

reply!

s1

s2

Figure 8: Online Store (I).

Customer

c0

seek!
c1

reply?

tau

c2

c3

search?

O-Store

s0

reply!
s1 s2

update? confirm!

s3 s4

Figure 9: Online Store (II).

obs-compkUR,↔((s1, s2)) =



1 if E(s1, T1) ∪ E(s2, T2) = ∅ and

((s1 ∈ F1) ∨ (tau(s1, T1) 6= ∅) or

(s2 ∈ F2) ∨ (tau(s2, T2) 6= ∅))

0 if E(s1, T1) ∪ E(s2, T2) = ∅ and
(s1 6∈ F1) ∧ (tau(s1, T1) = ∅) and
(s2 6∈ F2) ∧ (tau(s2, T2) = ∅)

sumkUR,↔((s1,s2),E(s1,T1),R(s2,T2))+sum
k
UR,↔((s2,s1),E(s2,T2),R(s1,T1))

‖E(s1,T1)‖+‖E(s2,T2)‖
otherwise

Example 6 In Figure 8, the O-Store service can receive either a search for an item or a cart update request,
reply it, and end up in a final state after a time-out. The Customer first asks for its cart update and then waits for
an answer. If no reply is received, the Customer can reach its final state after a time-out. Once the Customer
receives a reply, he/she can either start another request or end up in a final state after execution of the τ action. Let
us consider the global state (s0, c0) in Figure 8. Since both states s0 and c0 are not final and there is an emission
going out from c0, obs-comp1UR,↔((s0, c0)) is computed using the third case in Definition 9. Here, there is a
unique emission update! at c0 which perfectly matches with update? at s0, lab-comp(update!, update?) = 1.
The synchronisation on these compatible labels leads to (s2, c1) where COMP0

UR,↔[s2, c1] = 1. Thus, at the first
iteration:

obs-comp1
UR,↔((s0, c0)) =

sum1
UR,↔((c0, s0), E(c0, TClient), R(s0, TServer))

‖E(c0, TClient)‖
where:

• E(c0, TClient) = {(c0, update!, c1)}

• R(s0, TServer) = {(s0, update?, s2), (s0, search?, s2)}

• sum1
UR,↔((c0, s0), E(c0, TClient), R(s0, TServer)) = lab-comp(update!, update?)∗COMP0

UR,↔[s2, c1]

= 1.

Hence, obs-comp1UR,↔((s0, c0)) = 1.

Unidirectional Complementarity. We assume that one state ser (in the complementer protocol) perfectly com-
plements the state sed (in the complemented protocol), i.e., obs-compk

UC ,→((ser, sed)) = 1, if there is a subset
of outgoing observable transitions in Fw(ser, Ter) such that their respective labels are perfectly compatible with
those of transitions in Fw(sed, Ted). Additionally, these transitions must lead into compatible states. If there is
a deadlock, then this function returns 0. Otherwise, obs-compkUC,→((ser, sed)) measures the best compatibility
of every transition label hold in Fw(ser, Ter) with those hold in Fw(sed, Ted), leading to the neighbouring states
which have the highest compatibility degree.

11



Definition 10 (Unidirectional Complementarity) Given a global state (ser, sed), such that ser and sed are
states in the complementer and complemented service protocols, respectively, the observational compatibility
is computed wrt. UC as follows:

obs-compkUC,→((ser, sed)) =



1 if (sumk
UC,→((sed, ser), T

′
ed, T

′
er) = ‖Fw(sed, Ted)‖), or

((ser ∈ Fer) ∧ (sed ∈ Fed)), or
((sed ∈ Fed) ∧ (tau(ser, Ter) 6= ∅))

0 if ((ser 6∈ Fer ∨ sed 6∈ Fed)), and
(
⋃
(Fw(ser, Ter), tau(ser, Ter),

Fw(sed, Ted), tau(sed, Ted)) = ∅ or

∃i, j ∈ {ed, or}, i 6= j, si ∈ Fi, sj 6∈ Fj , Fw(sj , Tj) 6= ∅,
tau(sj , Tj) = ∅)

sumkUC,→((sed,ser),T
′
ed,T

′
er)

max(‖T ′
ed‖,‖T ′

er‖)

otherwise

where T ′ed = Fw(sed, Ted) and T ′er = Fw(sed, Ter).

Example 7 Let us consider the global state (s0, c0) in Figure 9. We want to check if the O-Store protocol
complements the Customer protocol. Initially, there is only one observable message seek! in the Customer pro-
tocol which perfectly matches with message search? in the O-Store protocol (the message names are synonyms
in Wordnet Similarity package), lab-comp(seek!, search?) = 1. In addition, the protocols can reach (s1, c1)
through the synchronisation on these compatible labels such that COMP0

UC ,→[s1, c1] = 1. Therefore, at the
first iteration, obs-comp1UC,→((s0, c0)) = 1 because the condition of the first case in Definition 10 is satisfied as
follows. Particularly,

sum1
UC,→((c0, s0, T ′Customer, T

′
O−Store) = ‖Fw(c0, TCustomer)‖

= 1

where

• sum1
UC,→((s0, c0)), T ′O−Store, T

′
Costomer) = lab-comp(seek!, search?) ∗ COMP0

UC ,→[s1, c1], and

• Fw(c0, TCustomer) = {seek!}.

As far as τ transitions are concerned, we define the function fw -propagkCN ,D , D ∈ {↔,→}, which handles
these internal behaviours based upon either a bidirectional or unidirectional compatibility propagation:
Bidirectional Compatibility. Regarding the bidirectional propagation, the compatibility is computed from both
services point of view. The function fw -propagkCN ,↔((s1, s2)) propagates to (s1, s2) the compatibility degrees
obtained for the forward neighbours of state s1 with those of state s2 (using function d -fw -propagkCN ,D((s1, s2))),
and vice-versa (using function d -fw -propagkCN ,D((s2, s1))). For each τ transition, fw -propagkCN ,↔ must be
checked on the target state. Observable transitions going out from (s1, s2) are compared using the function
obs-compkCN,↔((s1, s2)).

Definition 11 (Bidirectional Forward Propagation) Given a global state (s1, s1):

fw -propagkCN,↔((s1, s2)) =
d -fw -propagkCN ,↔((s1, s2)) + d -fw -propagkCN,↔((s2, s1))

2

12



such that ∀i, j ∈ {1, 2}, i 6= j

d -fw -propagkCN,↔((si, sj)) =



∑
(si,τ,s

′
i
) ∈Ti

fw -propagkCN,↔((s′i,sj))

‖tau(si,Ti)‖
if tau(si, Ti) 6= ∅, and ‖Fw(si, Ti)‖ = ∅

∑
(si,τ,s

′
i
) ∈Ti

fw -propagk
CN ,↔((s′i,sj))+obs-compk

CN ,↔((si,sj))

‖tau(si,Ti)‖+1

otherwise

Example 8 Let us consider again the global state (s0, c0) in Figure 8 and the UR notion. We show below the
computation of fw -propag1UR,↔ at the initial global state, and which results in the average of the auxiliary values
computed from each protocol point of view:

fw -propag1UR,↔((s0, c0)) = 1
2 ∗ (

fw -propag1
UR,↔((s1,c0))+obs-comp1

UR,↔((s0,c0))

2 +

fw -propag1
UR,↔((s0,c3))+obs-comp1

UR,↔((s0,c0))

2 )
where:

• fw -propag1UR,↔((s1, c0)) = obs-comp1
UR,↔((s1, c0)) = 0 due to the deadlock that can occur at state

(s1, c0).

• fw -propag1UR,↔((s0, c3)) = obs-comp1
UR,↔((s0, c3)) = 0 because there is also a deadlock at state

(s0, c3).

• obs-comp1
UR,↔((s0, c0)) = lab-comp(update?, update!) ∗ COMP0

UR,↔[s2, c1] = 1.

As a consequence, fw -propag1UR,↔((s0, c0)) = 1
2 .

Unidirectional Compatibility. The function fw -propagkCN ,→((s1, s2)) is computed from STS2 point of view,
i.e., the service compatibility is governed by STS2’s requirements. First, if there exists τ transitions at s1, this
state is considered compatible with s2 if fw -propagkCN ,→((s′1, s2)) = 1 for every (s1, τ, s

′
1) (see first case in

Definition 12). This check ensures that each time STS1 traverses an internal transition, this protocol is able
to fulfill the STS2’s requirements at the target state. If the last condition does not hold, we need to compute
fw -propagkCN ,→((s′1, s2)) for every (s1, τ, s

′
1), and also the compatibility of observable transitions going out

from (s1, s2) using obs-compk
CN ,D((s1, s2)) (see second case in Definition 12). Otherwise, if no (s1, τ, s

′
1)

exists, we compute fw -propagkCN ,→((s1, s
′
2)) for every (s2, τ, s

′
2), and also obs-compk

CN ,D((s1, s2)) (see third
case in Definition 12). Last, if no τ transition exists at (s1, s2), we deduce that fw -propagkCN ,→((s1, s2)) =

obs-compk
CN ,D((s1, s2)).

Definition 12 (Unidirectional Forward Propagation) Given a global state (s1, s2):

fw-propagkCN,→((s1, s2)) =



1 if tau(s1, T2) 6= ∅ and∑
(s1,τ,s′1) ∈T1

fw-propagkCN,→((s′1, s2)) = ‖tau(s1, T1)‖

(
∑

(s1,τ,s
′
1) ∈T1

fw-propagkCN,→((s′1,s2))) + obs-compkCN,→((s1,s2))

‖tau(s1,T1)‖+1

if tau(s1, T1) 6= ∅ and∑
(s1,τ,s′1) ∈T1

fw-propagkCN,→((s′1, s2)) 6= ‖tau(s1, T1)‖

(
∑

(s2,τ,s
′
2) ∈T2

fw-propagkCN,→((s1,s
′
2)))+obs-compkCN,→((s1,s2))

‖tau(s2,T2)‖+1

otherwise

Example 9 Let us show the computation of fw -propag1UC ,→ at states (s0, c0) and (s1, c1) in Figure 9. First,
fw -propag1UC ,→((s0, c0)) = obs-comp1UC,→((s0, c0)) = 1 because no τ transition exists. Since there is one τ
transition at c1:

fw -propag1UC ,→((s1, c1)) =
fw -propag1UC ,→((s1, c3)) + obs-comp1

UC ,→((s1, c1))

2

13



s0 s1 s2 s3 s4
c0 0.78 0.01 0.01 0.01 0.01
c1 0.01 0.68 0.01 0.35 0.01
c2 0.01 0.01 0.90 0.01 0.67
c3 0.01 0.45 0.76 0.35 0.76

Table 2: The compatibility matrix COMP7
UC ,→.

where:

• fw -propag1UC ,→((s1, c3)) = obs-comp1
UC ,→((s1, c3)) = 0 due to the deadlock at state (s1, c3).

• obs-comp1
UC ,→((s1, c1)) = lab-comp(reply!, reply?) ∗ COMP0

UC ,↔[s2, c2] = 1.

Hence, fw -propag1UC ,→((s1, c1)) = 1
2 .

State Compatibility. The function state-compkCN,D((s1, s2)) computes the weighted average of three measures:
the forward and backward compatibilities, and the value returned by the function nat(s1, s2).

state-compk
CN ,D((s1, s2)) =

w1 ∗ fw -propagk
CN ,D((s1, s2)) + w2 ∗ bw -propagkCN,D((s1, s2)) + w3 ∗ nat(s1, s2)

w1 + w2 + w3

where the weights w1, w2 and w3 are automatically computed. w1 (w2, respectively) denotes the number of best
matching found among the outgoing (incoming, respectively) transition labels in states si and sj . w3 is a binary
weight which is set to 0 if there is at least one state with outgoing or incoming τ transitions, and such that both
forward and backward compatibilities are equal to 1. Otherwise, w3 is set to 1.
Compatibility Flooding. The compatibility degree of (s1, s2) at the kth iteration is computed as the average of
its previous compatibility degree at the k − 1th iteration and the current state compatibility degree:

COMP kCN,D[s1, s2] =
COMP k−1CN,D[s1, s2] + state-compkCN,D((s1, s2))

2

Our iterative process terminates when the Euclidean difference εk = ‖COMPk
CN ,D − COMPk−1

CN ,D‖ of matrices
COMPk

CN ,D and COMPk−1
CN ,D converges.

Example 10 Table 2 shows the matrix computed for the example depicted in Figure 9 according to the UC notion.
This matrix was obtained after 7 iterations. Let us comment the compatibility of states c0 and s0. The measure is
quite high because both states are initial and the emission seek! at c0 perfectly matches the reception search?
at s0. However, the compatibility degree is less than 1 due to the backward propagation of the deadlock from the
global state (s1, c3) to (s1, c1), and then from (s1, c1) to (s0, c0).

Mismatch Detection. Our compatibility measure comes with a list of mismatches which identifies the incompat-
ibility sources, e.g., unmatched message names, different state natures or unshared parameter types. For instance,
the states s0 and c1 in Figure 9 present several mismatches, e.g., the first state is initial while the second is not,
and their outgoing transition labels have the same directions.
Extensibility. Our approach is generic and can be easily extended to integrate other compatibility notions. Adding
a compatibility notion CN only requires to define a new function obs-compk

CN ,D .

4.3 Analysis of Compatibility Measures
In this section, we propose some techniques for automatically analysing the measures obtained from the compat-
ibility matrix. We first present how the Boolean compatibility can be computed from the matrix. In the case of
incompatible services, we propose some techniques for computing a global compatibility measure.

Compatible Protocols. Our flooding algorithm ensures that every time a mismatch is detected in a reachable
global state, its effect will be propagated to the initial states. Hence, the forward and backward compatibility
propagation between neighbouring states implies that protocols are compatible if and only if their initial states
are also compatible, i.e., COMPk

CN ,D [I1, I2] = 1.5 Such information is useful for automatically discovering

5In this section, k stands for the last performed iteration.

14



available services that can be composed without using any adaptor service for compensating mismatches.

Global Protocol Compatibility. The global compatibility measure helps to differentiate between services that are
slightly incompatible and those which are totally incompatible. This is useful to perform a first service selection
step in order to find some candidates among a large number of services. Seeking for services with high global
compatibility degree enables to simplify further processing to resolve their interface incompatibility, e.g., using
service adaptation [22].

The global compatibility can be computed differently depending on the user preferences. A first solution con-
sists in computing the average of the maximal compatibility degrees computed for all states. Another alternative
is to compute the global compatibility degree as the weighted average of all behavioural compatibility degrees that
are higher than a threshold t. The weight is the rate of states having a compatibility degree higher than t, among all
states compared in one service, with the states in the partner service. Algorithm 1 defines a function global-comp
which accepts as input two state sets S1 and S2, the matrix COMPk

CN ,D and a threshold t. For each state s1 ∈ S1,
the nested “for” loops (lines 2-13) sum up the compatibility degree for all global state (s1, sj)sj∈S2

such that
COMPk

CN ,D [s1, sj ] ≥ t. If there exists at least one state (s1, sj) where COMPk
CN ,D [s1, sj ] ≥ t (line 10), then

the number of checked states is incremented (line 11). Finally, the obtained sum is normalised, i.e, divided by the
number of the performed sum operations (line 15), and multiplied with the weight checked‖S1‖ .

Algorithm 1 global -comp(S1, S2,COMPk
CN ,D , t)

// computes the global compatibility degree from a matrix COMPk
CN ,D

inputs S1, S2, t, COMPkCN,D
output global

1: global := 0, count := 0, checked := 0
2: for all s1∈S1 do
3: match := False
4: for all s2∈S2 do
5: if COMPk

CN ,D [s1, s2] ≥ t then
6: global := global + COMPk

CN ,D [s1, s2]

7: match := True; count = count+ 1
8: end if
9: end for

10: ifmatch == True then
11: checked = checked+ 1
12: end if
13: end for
14: if count 6= 0 then
15: global := global

count ∗
checked
‖S1‖

16: end if
17: return global

Algorithm 1 computes the global compatibility measure from one STS point of view, and this works for
the unidirectional compatibility notions. Regarding the bidirectional compatibility notions, the global compati-
bility is computed as the average of the values returned by functions global -comp(S1, S2,COMPk

CN ,D , t) and
global -comp(S2, S1,COMPk

CN ,D , t).

Example 11 Given a threshold t = 0.7 and the matrix in Table 2, running Algorithm 1 returns the following
global compatibility degree global -comp(SO−Store,SCustomer,COMP7

UC ,→, 0.7) = 0.6. This measure is lower
than 0.7 because checked

‖SCustomer‖ = 3
4 , i.e., the state c2 in the Customer has no match with any state in the O-Store

such that ∀j ∈ SO−Store, @COMP7
UC ,→[c2, sj] ≥ 0.7.

5 Prototype Tool and Experimental Results
Prototype Tool. Our approach for measuring the compatibility degree of service protocols has been fully im-
plemented in a prototype tool called Comparator [26]. The framework architecture is given in Figure 10. The
Comparator tool, implemented in Python, accepts as input two XML files corresponding to the service inter-
faces and an initial configuration, i.e., the compatibility notion, the checking direction, and a threshold t. The tool
returns the compatibility matrix, the mismatch list, and the global compatibility degree which indicates how com-
patible both services are. The implementation of our proposal is highly modular which makes easy its extension
with new compatibility notions, or other strategies for comparing message names and parameters.

15



Figure 10: Comparator Architecture.

Experimental Results. So far, we have validated our prototype tool on more than 110 real-world examples, e.g.,
a car rental, a travel booking system, a hard disk manager, a medical management system, an online email service.
Table 3 summarises the experimental results of some of the examples of our database. Experimentations have
been carried out on a Mac OS machine running on a 2.53 GHz Intel dual core processor with 4 GB of RAM. The
computation time differs with respect to the input interface size (states and transitions). Experiments show that
small examples with few states and transitions (e.g., Ex9, Ex44, Ex71) require a negligible time for measuring
their compatibility, whereas bigger examples (e.g., Ex90, Ex101) need more time (see Table 3). The computation
time increases with respect to the number of τ branchings and loops. For instance, Ex85 is quite big but consists of
protocols with sequential structure and including very few loops, therefore the computation time does not exceed
two minutes. On the other hand, protocols involving many loops (e.g., Ex9) require more time (and iterations)
than those having only few loops (e.g., Ex85). To sum up, experiments have shown that Comparator computes
the compatibility degree of quite large systems (e.g., services with 210 states and 225 transitions) in a reasonable
time (many iterations are performed in a few minutes). In addition, the returned compatibility measures were
very satisfactory. As an example, each time a couple of states in two protocols presents several mismatches, this
corresponds to a low value in the matrix and vice-versa. The reader may refer to [26] for some case studies
illustrating the preciseness of our compatibility measure.

Evaluation. For the evaluation of our approach, the first author has been considered as an expert to validate
the measure automatically computed wrt. the manual verification of the protocol mismatches. This study has
shown that the prototype tool is well suited for checking the protocol compatibility. The returned measures were
satisfactory, that is, each time a couple of states in two protocols presents several mismatches, this corresponds to
a low value in the matrix and vice-versa.

The reader may refer to [26] for some case studies illustrating the preciseness of our compatibility mea-
sure. Although it can be relatively easy to compare some small protocols by hand, protocol verification is often
recognised as a hard and tedious issue, specially in case of large and complex systems. In such a case, manual
processing can be time-consuming, error-prone and hard if not possible to be achieved, specially if the user is not
well familiarized with the protocol issues. The conducted experiments proved that our automatic analysis covers
the aforementioned issues. The resulting matrix and detected mismatch list have always justified the difficulty of
reusing existing services into new systems. The use of Comparator has allowed us to compute the compatibility
degree of quite large systems (e.g., services with 210 states and 225 transitions) in a reasonable time – many
iterations were performed in a few minutes.

For the accuracy evaluation, we reuse the well-known precision and recall metrics [30] to estimate how much
the measure automatically computed meets the expected result. Precision measures the matching quality (number
of false positive matching) and is defined as the ratio of the number of correct state matching found to the total
of state matching found. Recall is the coverage of the state matching results and is defined as the ratio of the the
number of correct state matching found to the total of all correct state matching in two protocols. An effective
measuring should produces a highest precision and recall, though these metrics are inversely related in the reality.
In fact, the users can tolerate a small decrease in precision if it can bring a comparable increase of recall. The
intuition behind this is that it would be easier to remove incorrect match than find missing ones.

We have studied the precision and recall for a set of significative examples from our database. We assume
(si, sj) is a best match if the state si ∈ Si has the highest compatibility degree with sj ∈ Sj among those in
Sj . Our measuring process yields a precision and recall of 100% for compatible protocols, see for instance the

16



Example States Transitions Compatibility Notion global Time (mn) Iterations ε

Ex9 8/5 8/5 UR 0.29 0m0.415s 8 0.01
UC 0.18 0m10.581s 8 0.01

Ex44 20/22 19/21 UR 1 0m4.440s 8 0.02
UC 0.81 0m13.860s 3 0.19

Ex71 20/4 19/3 UR 1 0m4.112s 8 0.02
UC 1 0m5.848s 9 0.01

Ex85 59/59 64/75 UR 0.70 1m1.717s 4 0.13
UC 0.69 0m47.513s 3 0.17

Ex90 86/86 90/90 UR 0.72 8m15.806s 7 0.04
UC 0.74 2m48.400s 3 0.19

Ex101 124/86 135/90 UR 0.69 19m0.575s 10 0.02
UC 0.70 8m0.460s 6 0.13

Table 3: Some Experimental Results (t = 0.7).

medical management case study presented in [26]. The evaluation has proved the effectiveness of our approach
for matching incompatible protocols. For instance, the study of the car rental system [26] – which provides a
service for car rental and an example of user requirements – produces a precision and recall equal to 85% and
95%, respectively. We applied the same evaluation to a flight advice system [26] which helps travelers to find
flight information. This yields a precision and a recall equal to 91% and 100%, respectively. Other studies applied
to the rest of examples have shown a good trade-off between precision and recall such that both often achieve high
values.

6 Related Work
Analysing service protocols using quantitative techniques is emerging as an alternative to the classical approaches
which usually return a Boolean result. Existing works which are devoted to behavioural analysis focus on two
close research areas. The first one is known as substitutability checking and aims at finding correspondences
between similar services. The second one is referred to as compatibility checking and verifies whether interacting
services fulfill each other’s requirements. Regarding related approaches, we focus on three kinds of techniques
used for measuring the similarity or the compatibility of service interfaces.
Simple Protocol Traversal. The work given in [31] focused on two notions, namely, simulation and bisimulation
to measure the similarity of computer viruses described using Labelled Transition Systems (LTSs). The similarity
techniques use weighted quantitative functions which consist in a simple (not iterative), forward, and parallel
traversal of two LTSs. The authors take inspiration from the existing equivalence relations to propose a strong
and weak definition for their simulation and bisimulation notions, respectively. The weak relations allow one LTS
to perform a special stuttering step ε, which is similar to a τ transition, whenever two LTSs cannot perform a
transition with same labels. This work does not return the differences which distinguish one service from another,
and there is no computation of a global similarity degree. Such a measure is useful for, e.g., ranking and selecting
services. In [32], the authors proposed a compatibility notion for checking two services described using the
π-calculus. According to their proposal, two services are compatible if there is always at least one transition
sequence between them, until reaching final states. This compatibility definition is too weak in the sense that
when composing services together the deadlock-freeness cannot be guaranteed. Considering their compatibility
definition, the authors present a method to compute the compatibility degree of two services as the average of the
number of successful transition sequences. The compatibility computation relies on a simple and parallel traversal
of protocols. This work does not compute the detailed compatibility of different protocol states, and also there is
no mismatch detection.
Edit Distance. In [19, 1], the author assume that a service interface is initially synthesized to be compatible with
the environment requirements, i.e., referred to as correct interface. They claim that the interface can undergo
changes which give rise to incompatibilities with its environment, i.e., the service interface becomes defective.
Thus, their proposal calculates the minimal edit distance between a given defective service and synthesized correct
services. [19] extends the simulation algorithm given in [31] in order to correct deadlocking choreographies. In
particular, it detects the modifications needed to achieve service simulation and make the choreography free of
deadlocks. On the other hand, [1] focuses on the calculus of the differences between two versions of one service
interface described using finite State Machines (FSM). The quantitative simulation measures the state similarity

17



based on the analysis of outgoing transition labels without any semantic comparison of these label names. This
measuring technique does not consider the similarity of neighbouring states, therefore the main advantage of
propagation-based approach is missing. This approach computes a global similarity measure.
Similarity Flooding. In [23, 25], the similarity flooding technique was applied to the problem of model matching.
This algorithm returns a matrix for the similarity propagation which is updated iteratively by fixpoint computation.
In [23], Melnik et al. propose a set of metrics to measure correspondences between elements of data structures
such as data schemas, data instances or a combination of both, described with directed labelled graphs. Their
approach considers a forward and backward similarity propagation. This work aims at assisting human developers
in matching elements of a schema by suggesting candidates. However, the implemented tool does not enable a
fully automated matching because the user can manually adjust (delete and/or add) some matches. The match op-
erator introduced in [25] measures the similarity (correspondences) between models which can represent different
versions or variants across a family of software units described using Statecharts. The similarity measuring com-
bines a set of static and behavioural matchings. The behavioural matching is computed using a flooding algorithm
and relies on a bisimulation notion presented in [31]. In this work, the behavioural similarity is computed as the
maximum of forward and backward behavioural matching. By doing so, it is not possible to detect the Boolean
similarity from the initial states. More recently, [16] propose a semi-automated approach for checking the match-
ing of messages in two business process models such that the computed values can be updated depending on the
user feedback. The authors combine a depth and flooding-based interface matching for measuring the behavioural
compatibility of two interacting protocols. This work aims at detecting the message merge/split mismatch in or-
der to help the automatic specification of adaptation contacts. An interesting state-of-the-art on measuring the
similarity of business process models is given in [27].

Although the approaches presented so far consider different techniques to reason on service behaviours, a very
little attention was paid to value-passing, internal behaviours, and the semantical comparison of message names.
Considering such features enables to avoid several interaction issues. Our approach is also different since we
focus on measuring the compatibility of process-oriented models which are understood as refinements of business
process models [11]. Most of existing techniques rely on in a simple forward traversal of protocols, and also
lack the detection of mismatches or correspondences. The mismatch detection is of utmost importance to fix
and compensate the interaction issues. Another weakness of existing approaches is that the detailed comparison
of service states can be less useful for ranking and selecting services, and then computing a global measure
from the detailed ones is a good alternative. Our approach overcomes all these limits. Moreover, quantifying
service behaviours is commonly used for similarity measuring, whereas we focus on compatibility measuring. We
summarise in Table 46 the comparison of existing work with our proposal.

[25] [31] [19] [1] [32] [16] Our approach

Model

Messages and protocols
√ √ √ √ √ √ √

Value-passing × × × × × ×
√

Internal actions × × × ×
√

×
√

Description language Statechart LTS Finite Automaton FSM π-calculus FSM STS

Analysis Issue Similarity Similarity Similarity Similarity Compatibility Compatibility Compatibility
Notion(s) BIS (WK/ST) SIM/BIS WK SIM SIM OP DF UR/UC/. . .

Computation

Message semantics
√

× × × ×
√ √

Processing Iterative Simple Simple Simple Simple Iterative Iterative
Technique Flooding Parallel traversal Edit distance Edit distance Parallel traversal Flooding Flooding

Detailed measures
√ √ √ √

×
√ √

Mismatch detection × ×
√ √

×
√ √

Global measure × × ×
√ √

×
√

Tool support
√ √ √ √ √ √ √

Table 4: A Summary of Approaches Based on Quantitative Behavioural Analysis.

7 Conclusion
To the best of our knowledge, we are the first who suggest a generic framework to automatically measure the
compatibility degree of service interfaces. Our measuring method relies on a compatibility flooding algorithm,
and is parameterised by different compatibility notions. In addition to computing the matrix and the global mea-
sure of compatibility, a list of mismatches is returned. Our proposal is fully supported by the Comparator tool

6BIS, SIM, OP, DF, UR, UC, WK, and ST are used as abbreviations of bisimulation, simulation, one path, deadlock-freedom, unspecified
receptions, unidirectional complementarity, weak, and strong, respectively.

18



which has been validated on many examples. This work has some straightforward applications in the software
adaptation area. Our tool was already integrated into an environment for the interactive specification of adaptation
contracts [6]. Our main perspective is to apply our compatibility measuring approach for the automatic generation
of adaptor protocols.

Acknowledgements. This work has been partially supported by the project TIN2008-05932 funded by the Span-
ish Ministry of Innovation and Science (MICINN) and FEDER, and by the project P06-TIC220, funded by the
Andalusian government.

References
[1] A. Aı̈t-Bachir. Measuring Similarity of Service Interfaces. In Proc. of the PhD Symposium at ICSOC’08,

volume 421 of CEUR Workshop Proceedings, 2008.

[2] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When are Two Web Services Compatible? In Proc. of
TES’04, volume 3324 of LNCS, pages 15–28. Springer, 2004.

[3] D. Brand and P. Zafiropulo. On Communicating Finite-State Machines. J. ACM, 30(2):323–342, 1983.

[4] M. Bravetti and G. Zavattaro. Contract-Based Discovery and Composition of Web Services. In SFM’09,
volume 5569 of LNCS, pages 261–295. Springer, 2009.

[5] J. Cámara, J. Antonio Martı́n, G. Salaün, J. Cubo, M. Ouederni, C. Canal, and E. Pimentel. ITACA: An
Integrated Toolbox for the Automatic Composition and Adaptation of Web Services. In Proc. of ICSE’09,
pages 627–630. IEEE, 2009.

[6] J. Cámara, G. Salaün, C. Canal, and M. Ouederni. Interactive Specification and Verification of Behavioural
Adaptation Contracts. In Proc. of QSIC’09, pages 65–75. IEEE Computer Society, 2009.

[7] C. Canal, E. Pimentel, and J. M. Troya. Compatibility and Inheritance in Software Architectures. Sci.
Comput. Program., 41(2):105–138, 2001.

[8] R. Cleaveland and O. Sokolsky. Equivalence and Preorder Checking for Finite-State Systems. Handbook of
Process Algebra, pages 391–424, 2001.

[9] J. Cubo, G. Salaün, C. Canal, E. Pimentel, and P. Poizat. A Model-Based Approach to the Verification and
Adaptation of WF/.NET Components. In Proc. of FACS’07, volume 215 of ENTCS, pages 39–55, 2008.

[10] L. de Alfaro and T. Henzinger. Interface Automata. In Proc. of ESEC/FSE’01, pages 109–120. ACM Press,
2001.

[11] R. M. Dijkman, M. Dumas, and L. Garcı́a-Bañuelos. Graph Matching Algorithms for Business Process
Model Similarity Search. In Proc. of BPM’09, volume 5701 of LNCS, pages 48–63. Springer, 2009.

[12] F. Durán, M. Ouederni, and G. Salaün. Checking Protocol Compatibility using Maude. In Proc. of FO-
CLASA’09, volume 255, pages 65–81. ENTCS, 2009.

[13] H. Foster, S. Uchitel, and J. Kramer. LTSA-WS: A Tool for Model-based Verification of Web Service
Compositions and Choreography. In Proc. of ICSE’06, pages 771–774. ACM Press, 2006.

[14] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In Proc. of WWW’04, pages
621–630. ACM Press, 2004.

[15] X. Fu, T. Bultan, and J. Su. Synchronizability of conversations among web services. IEEE Trans. Software
Eng., 31(12):1042–1055, 2005.

[16] G. Y. Xu H. R. M. Nezhad and B. Benatallah. Protocol-aware Matching of Web Service Interfaces for
Adapter Development. In Proc. of WWW’10, pages 731–740. ACM, 2010.

[17] N. Hameurlain. Flexible Behavioural Compatibility and Substitutability for Component Protocols: A Formal
Specification. In Proc. of SEFM’07, pages 391–400. IEEE Computer Society, 2007.

19



[18] M. Hennessy and H. Lin. Symbolic Bisimulations. TCS, 138(2):353–389, 1995.

[19] N. Lohmann. Correcting Deadlocking Service Choreographies Using a Simulation-Based Graph Edit Dis-
tance. In Proc. of BPM’08, volume 5240 of LNCS, pages 132–147. Springer, 2008.

[20] C.D. Manning and H. Schütze. Foundations of Statistical Natural Language Processing. MIT Press, 1999.

[21] J. A. Martı́n and E. Pimentel. Automatic Generation of Adaptation Contracts. In Proc. of FOCLASA’08,
volume 229 of ENTCS, pages 115–131. Elsevier, 2009.

[22] R. Mateescu, P. Poizat, and G. Salaün. Adaptation of Service Protocols Using Process Algebra and On-the-
Fly Reduction Techniques. In Proc. of ICSOC’08, volume 5364 of LNCS, pages 84–99. Springer, 2008.

[23] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity Flooding: A Versatile Graph Matching Algorithm
and Its Application to Schema Matching. In Proc. of ICDE’02, pages 117–128. IEEE Computer Society,
2002.

[24] R. Milner, J. Parrow, and D. Walker. Modal Logics for Mobile Processes. TCS, 114(1):149–171, 1993.

[25] S. Nejati, M. Sabetzadeh, M. Chechik, S. M. Easterbrook, and P. Zave. Matching and Merging of Statecharts
Specifications. In Proc. of ICSE’07, pages 54–64. ACM Press, 2007.

[26] M. Ouederni. Comparator Web Page. Available at http://www.lcc.uma.es/˜meriem/
comparator.html.

[27] C. Ouyang, M. Dumas, W. M. P. van der Aalst, A. H. M. ter Hofstede, and J. Mendling. From Business
Process Models to Process-Oriented Software systems. ACM Trans. Softw. Eng. Methodol., 19(1), 2009.

[28] T. Pedersen, S. Patwardhan, and J. Michelizzi. WordNet::Similarity - Measuring the Relatedness of Con-
cepts. In Proc. of AAAI’04, pages 1024–1025. AAAI, 2004.

[29] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and Reasoning on Web Services using Process Algebra.
IJBPIM, 1(2):116–128, 2006.

[30] G. Salton and M.J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill New York, 1983.

[31] O. Sokolsky, S. Kannan, and I. Lee. Simulation-Based Graph Similarity. In Proc. of TACAS’06, volume
3920 of LNCS, pages 426–440. Springer, 2006.

[32] Z. Wu, S. Deng, Y. Li, and J. Wu. Computing Compatibility in Dynamic Service Composition. Knowledge
and Information Systems, 19(1):107–129, 2009.

[33] D. M. Yellin and R. E. Strom. Protocol Specifications and Component Adaptors. ACM Trans. Program.
Lang. Syst., 19(2):292–333, 1997.

20


