
Incorporating Cooperative Portlets in Web Application Development

Nathalie Moreno, Jośe Rául Romero and Antonio Vallecillo
Dpto. de Lenguajes y Ciencias de la Computación

Universidad de Ḿalaga, Spain
{vergara,jrromero,av}@lcc.uma.es

Abstract

Portlets-based software development is gaining recog-
nition as a key technology for the construction of robust
and evolvable Web applications. Emerging portlet stan-
dards like JSR-168 or WSRP—along with commercial de-
velopment tools and portal servers—enable designers to
quickly develop, integrate and run “composite” Web por-
tals, which integrate specific platforms and partners. De-
spite this significant progress, there is a lack of guidelines
and models for addressing the development of portlet-based
Web applications from a technology-independent viewpoint.
This work tries to identify the main concerns involved in
modeling portlets, determine the major models required
to capture these concerns, and propose a way to address
their integration into Web applications, from a platform-
independent point of view. In so doing, we also introduce
mechanisms for modeling inter-portlet communication and
cooperation capabilities independently of the target portal
server product.

1. Introduction

A current tend in the development of distributed
Web applications is to reuse and assemble pre-produced
components—such as Web services or portlets—for reduc-
ing development costs and improving software quality. The
assembly of these third party systems for building Web
applications has been successfully applied in practice. In
fact, Web services are commonly used as the main building
blocks for generating Web applications and portals.

One of the limitations of Web services is that they fo-
cus on the servicefunctionality, but without dealing with
presentation issues. This forces the re-creation of the pre-
sentation layer in each client application that uses the Web
service. Besides, the corporative image and many of the
marketing aspects of the service are lost if presentation
is not considered, something which is very important for
some service providers (their brand name is a key factor

for their business—think for instance for Adobe, IBM, or
Coca-Cola, whose corporate image and logo are crucial for
selling their products and services). To overcome this limi-
tation,portletsprovide integration in both the business logic
and the presentation layer allowing end-users to interact di-
rectly with the service.

From an application perspective, a portlet isan individ-
ual Web-based component that typically handles requests
and generates only a dynamic fragment of the total markup
that a user sees from his or her browser[3]. The content
of a portlet is normally aggregated with the content of other
portlets to form the final portal page. That is the reason why
portlets are rarely run in an isolated way, but together with
other portlets. However, when a user navigates within one
portlet, the others usually remain unchanged ignoring what
is being rendered by it. In order to transfer data from one
portlet to another, users have to manually copy and paste
key data from sources to targets portlets. This means that
each portlet has to be searched individually for relevant in-
formation.

The need for effectively modeling, integrating, com-
municating and sharing data among cooperative portlets
has been addressed by many portal servers (Oracle, IBM,
BEA, etc). They provide proprietary extensions to indus-
try portlets standards such as theWeb Services for Remote
Portlets(WSRP) specification by OASIS [13], or the JSR-
168 development model proposed by JCP [6]. However,
these extensions are:(i) not portable to other servers,(ii)
often require the use of concrete development tools closely
tied to a particular platform technology and architectural
style (e.g., the WebSphere Portal tool only supports the
MVC design) and,(iii) implement a simplified means of
data sharing among portlets. As a consequence, there is cur-
rent a lack of guidelines and modeling concepts to address
the portlets-based portal development from a technology-
independent viewpoint.

Web Engineering proposals have traditionally aided the
industry Web software development to further improve its
productivity, quality and longevity. Although the major-
ity of those proposals provide excellent methodologies and

tools for the design and development of Web applications,
the study of integrating Web applications within cooperative
third party systems (such as Web services, portlets or legacy
systems) has been particularly overlooked until recently. It
is very likely to be introduced in future extensions, but cur-
rently there is current a lack of guidelines about how portlets
should be modeled, how they should be integrated in a Web
application or how inter-portlet communication capabilities
should be offered.

In this paper we try to identify the main concerns in-
volved in modeling portlets and determine the major mod-
els required to capture these concerns (see Section 2). Us-
ing the travel agency example, Section 3 proposes a strat-
egy for modeling portlets and their integration into Web
applications from a platform-independent viewpoint. In so
doing, we introduce also mechanisms for modeling inter-
portlet communication and cooperation capabilities inde-
pendently of the target portal server product. Finally, Sec-
tion 4 sketches some conclusions and outlines some further
research activities.

2. Reference Models for Portlets

Broadly speaking, the main difference between a Web
application and a portlet stems from the fact that the former
is an aggregate of pages whereas the latter is an aggregate
of fragments. Apart from that, both the Web application
design and the portlet design share many features and con-
cerns. Based on their similarities, we will make use of the
general framework presented in [11, 12] for describing Web
applications in order to identify the major required models
involved in the modeling of portlets1. Next subsections look
at framework viewpoints briefly and describe the concepts
and models that rise up during the portlet-based applica-
tions construction. How to use them for addressing portlet
specific requirements will be discussed in Section 3.

2.1 The User Interface Viewpoint

Typically, portlets are considered as user-facing appli-
cations which offer more than just content display to their
users. They also allow them to interact with the content
by means of forms, entry data fields, radio buttons, check
boxes, etc. The User interface viewpoint is directly con-
cerned with how the client interacts with the portlet and how
information is structured for providing a user-friendly inter-
face through a coherent look and feel of its visual elements.

1That framework was specifically designed to integrate third party ap-
plications and legacy systems into Web systems by separating independent
concerns into a set of views on the system, each one addressing one partic-
ular viewpoint (user interface, business logic, persistent data, distribution,
etc)

Processes

Internal
Processes

Choreography

Business Logic

Component
+

Architectural style

Distribution

Structure

Data

Information
Structure

Information
Distribution

User Interface

Conceptual Model

Navigation

Presentation

Adaptation

User

Context

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

Figure 1. Reference models for portlets

This viewpoint consists of six main models:Concep-
tual, Navigation, Presentation, User, ContextandAdapta-
tion (see Figure 1). For modeling an individual portlet we
need at least itsConceptual, Presentation, andNavigation
models at the User Interface level. In case of adaptation
requirements, the others could be needed, too. Generally,
all these models are not usually supplied from the portlet
providers; rather, they need to be built from the portlet in-
formation (which, by the way, tends to be imprecise, scarce,
and insufficient). In any case, they are required for any
model-driven development approach.

− The Conceptual model encapsulates the information
handled by the rest of the models at the User Inter-
face level. Since each user looks at the same infor-
mation and navigates through the application in a dif-
ferent way, different views of this model can be de-
fined. UserInformationUnits, AttributesandAssocia-
tions comprise the major elements of this representa-
tion.

− TheNavigation model describes the application navi-
gational requirements building the navigational struc-
ture of the final application—a portlet in this case. This
implies expressing how users can visit a collection of
related data in a non-linear way. To this end,Naviga-
tionUnits, NavigationLinks2, Eventsand AccesStruc-

2Not to be confused with UML “links”. NavigationLinks represent as-

tureshave been defining among other concepts for rep-
resenting the logic of this model.

− The Presentation model captures the presentational
requirements in a set ofPresentationUnits(text, im-
age, pages, sections, forms, etc.) andTransitions,
which sketch aesthetic aspects and the look&feel of
the portlet.

− TheUser model describes and manages the user char-
acteristics [5, 4] with the purpose of adapting the
content and the presentation of information to their
needs and preferences. Generally, theUser model is
expressed in terms of the following concepts:User,
UserFeature, Role, Preference, PreviousKnowledge,
HistoryandSession.

− TheContext model. Following [7], context is defined
as the reification of certain properties, describing the
environment of the application and some aspects of the
application itself which are necessary to determine the
need for customization. Context deals withDevice,
Network, LocationandTimeaspects.

− The Adaptation model is performed based on user’s
knowledge, preferences or context features to ob-
tain appropriate Web content characteristics and tar-
get markup for each device Generally, the Adaptation
Model is expressed as a set of mathematical expres-
sions or ECA rules associated with navigation and pre-
sentation concepts in adaptation models [5, 4, 9].

2.2 The Business Logic Viewpoint

This level describes the behaviour of the portlet, inde-
pendently of its user interface, and the persistent data it han-
dles. To provide detailed descriptions to perform business
processes, actions, events handling and errors management
is delivered to this viewpoint.

From our point of view, modeling the behaviour of a
portlet can be done using the following five models (see Fig-
ure 1): Structure, Internal Processes, Choreography, Dis-
tribution andArchitectural Style. Among them, the models
that comprise the description of the portlet are: thestruc-
ture, internal processes, andchoreographymodels.

− The Structure model describes the major classes or
component types representing services in the sys-
tem (BusinessProcessInformation), their attributes (At-
tributes), the signature of their operations (Signature),
and the relationships between them (Association). The
design of theStructuremodel is driven by the needs
of the processes that implement the business logic of

sociations in the Navigation model, whereas UML links are just instances
of UML associations.

the portlet, taking into account the tasks that users can
perform.

− TheInternal Processesmodel specifies the precise be-
havior of everyBusinessProcessInformationor com-
ponent as well as the set of activities that are executed
in order to achieve a business objective.

− TheChoreographymodel defines the valid sequences
of messages and interactions that the portlet may ex-
change [17]. The choreography may be externally ori-
ented, specifying the contract a component will have
with other components (PartialChoreography) or, it
may be internally oriented, specifying the flow of mes-
sages within a composition (GlobalChoreography).

− The Distribution model describes how functionality
is distributed inNodes, connected by means of point
to point connections orLinks. Nodescan be static,
dynamic or mobile. StaticNodesrepresentDevices,
Placesor Actorsof the system. Dynamic nodes model
points of computing (ComputingNode) where Activ-
ities are performed. BothStaticNodesand Comput-
ingNodesmay beMobileNodesfor relevant issues of a
mobileSystem, concerning the mobility of both phys-
ical (e.g. computing nodes) and logical entities (e.g.
software components). The global view ofNodesand
Linkscomprises aNetwork.

− TheArchitectural Style model deals with how func-
tionality is encapsulated into business components and
services. EachArchitectural Stylehas different asso-
ciated entities depending on the pattern applied which
makes the distinction between different architectural
styles. For portlets development, the MVC style is
the most used. It defines:(i) a Model that is respon-
sible for storing the state and the application logic;
(ii) Viewsthat provide the user of the application with
a presentation of the current state of the application;
and(iii) a Controller that is responsible for mapping
user interface events to calls that invoke operations on
the model. That is, the glue that ties the model to the
view and defines the interaction pattern in the portlet.

2.3 The Data Viewpoint

Although portlets cannot be considered as data-centric
applications, they require high-performance infrastructure
for data storing. Information is needed not only for portlet
consumers but also for its processes. This level describes
the information handled by the application and provides a
mechanism for managing and storing data persistently.

This viewpoint is organized around two models: theIn-
formation Structureand theLocationmodels.

− The Information Structure model deals with the in-
formation that has to make persistent in terms ofIn-
formationUnits, Attributes, Relationships, Constraints
andAccessOperations.

− The Location model describes the distribution and
replication of the data being modelled, since informa-
tion can be fragmented inNodesor replicated in dif-
ferentLocations.

These models are not relevant in our case, because we
are concerned on how to interact with the portlet, not how it
internally stores its persistent data.

For a more detailed description of these viewpoints and
the semantic of their associated models and concepts, the
interested reader can refer to [11].

2.4 Dependencies between Models

Although the models of the framework are ideally inde-
pendent of each other, some of them capture requirements
on the same element of design (e.g., events, properties or ac-
tions). Therefore some modifications in a model can affect
other models. We add precision to model elements and the
relationships among them by means of unambiguous OCL
constraints (preconditions, invariants and postconditions).
For example, Figure 1 shows a connection betweenPresen-
tation and Structure Businessmodels. In this way,Tran-
sitions in thePresentationmodel consists ofEventswhich
model a significant occurrence located in time and space.
TheseEventshave to be alsoEventsin the context ofIn-
ternal Processesmodels, which trigger the execution of an
associated behaviour. This can be formally expressed as an
OCL constraint.

Interdependencies determine not only the methodologi-
cal guidelines to be followed, but also something more im-
portant: they establish how the different viewpoints merge
and complement each other.

3. Designing Portlet-based Web Applications

The design of a portlet-based Web application can be ad-
dressed combining existing models of individual portlets
with additional models describing the extra-functionality
supported by our Web application. Following this strat-
egy, the design process is strongly governed by the (too
early) implementation decision of using portlets and, con-
sequently, if we want to reuse another type of component
technology or provider in the future, we are forced to rede-
fine all the Web application models from the beginning. On
the contrary, we have opted for delaying as much as pos-
sible implementation decisions, in order to obtain a set of
reusable platform-independent models.

Our proposal is aligned with the MDA framework [16,
1, 10] and particularizes general guidelines presented in
previous work [11, 12]. To be precise, the development
of portlets-based Web applications in the MDA context is
based on the following steps:

Step 1 Create the class diagrams (PIMs) describing models
for each Web application layer. In this step, we iden-
tify the global systems requirements at three levels of
abstraction:User Interface, Business LogicandData
levels. As a result of this phase, three PIMs are gener-
ated describing high-composition architectural views
of the services and components of our application.

Step 2 Mark the PIM elements with stereotypes identify-
ing the system scope and boundaries, i.e, the data and
services that will be provided by our system, and the
ones that will be externally required. At this point,
we will describe how portlets cooperate (portlet ag-
gregation[2]) with each other to produce and achieve
the global functionality that the system is required to
implement—either by sending signals or invoking op-
erations.

Step 3 Specify the target platform. We need to determine
the concrete platforms and communication mecha-
nisms between our application and the external sys-
tems identified previously.

Step 4 Generate the PSMs.

Step 5 Generate the code (e.g., the Web pages).

Integration and cooperation among portlets can be car-
ried out at two levels of abstractions: at the user interface
level and at business logic level. In following subsections
we are going to focus on these two viewpoints proposing a
strategy for addressing both issues through the travel agency
system (TAS) example (seehttp://www.lcc.uma.
es/˜av/mdwe2005/TheTASexample/ for a com-
plete description of this scenario).

3.1. Addressing the User Interface Level

At first sight, it could be considered that the role of the
main system for portlet-based Web applications is limited to
a customizable facade providing a single sign-on service for
assembled portlets. However, the unique rendering space of
a portal adds complexity to the application model when we
consider multiple portlets co-existing on a Web page.

As mentioned in the introduction, when a user navigates
within one portlet the others usually remain unchanged, ig-
noring what is being rendered by it. In order to transfer data
from one portlet to another, users have to manually copy and
paste key data from sources to targets portlets. We will try

to model inter-portlet data dependencies—at user interface
level—to free users from this task.

3.1.1 The Conceptual Model

To design the PIM of this viewpoint, we need to identify—
in the first place—the information that will be presented to
the user during a session . These requirements are captured
in theConceptual model. That model for the TAS example
is shown in Figure 2. However, we need to decide how
to deal with this model when we want to re-use particular
portlets such asIberia, Bancohotel or PepeCar which have
their own non-publicConceptual Models. In many cases,
these portlets will place additional constraints—as well as
specialized collaborations and data exchange—that can not
be modelled in a typical UML class diagram.

Flight

+departure_date
+departure_city

+seat_number

+arrival_date

+seat_class

+arrival_city

+seat_row

+idflight

Air_Line

+description

+name
+logo

Room

+room_type
+start_date

+end_date
+idroom

+city

...

Car

+car_reg_number

+start_date
+end_date

+car_type
+city

Car_Hire

+description

+name
+logo

Hotel

+description

+name
+logo

+city

Customer

+creditcardnumber
+creditcardtype

+idcustomer
+expiredate

+password
+name

+email

+login
+description
+idpackage
+price

+date

HolidayPackage

+description
+idbooking
+price

Booking

TravelAgency

+description
+name

books1
1..*

provides

0..*

provides0..*

request_for

0..*

provides

0..*

1..*

Figure 2. Conceptual model for the TAS

Therefore, we need to particularize and model the abil-
ity by which specific class instances (specific portlet imple-
mentations) will match the system requirements and will
communicate/share data with each other. In this regard,
UML 2.0 [15, 14] introduces a new structural diagram
calledComposite Structurediagram. AComposite Struc-
ture diagram “depicts the internal structure of a classifier,
including the interaction points of the classifier to other
parts of the system. It shows the configuration of parts
that jointly perform the behavior of the containing classi-
fier. The architecture diagram specifies a set of instances
playing parts (roles), as well as their required relationships
given in a particular context.”

Consequently, starting from Figure 2 we are going to de-
rive a Composite Structure Conceptual Model, as a set of

TravelAgency

Customer

+creditcardnumber
+creditcardtype

+idcustomer
+expiredate

+password
+name

+email

+login

+description
+idpackage
+price

+date

HolidayPackage

+description
+idbooking
+price

Booking

Hotel

Car_Hire

Air_Line

Flight

Car

Room

book
1..*

Figure 3. Composite conceptual model

parts interacting together to achieve user interface require-
ments. SinceAirline, Hotel andCarHire classes are only
used in the navigational context of theTravelAgencyclass,
we model this fact considering them as parts/properties of
the containing classTravelAgency. Likewise, theFlight,
RoomandCar classes form part of theAirline, Hotel and
CarHire data structures respectively. Thus, Figure 3 rep-
resents the fact that when an instance of theTravelAgency
is created, a set of instances corresponding to its properties
(one Airline, Hotel and CarHire instances) are created as
well—either immediately or at some later time. Each part
or property is isolated from its environment by means of
a port, which will drive the interactions with its environ-
ment3. On the other hand, connectors define channels along
which messages are sent. Thus, when a costumer makes any
request to the portal, the request is captured by theTravelA-
gencyport, which delegates it to the appropriate portlet on
the portal page.

Although this model works well at the Conceptual level,
it is incomplete because it does not reflect the internalcol-
laborationsbetween theTravelAgency, AirLine, Hotel and
Car classes. Rather, it models a travel agency system from
a global point of view. Moreover, if we want to model how a
data item is shared (or broadcasted) from one portlet to mul-
tiple target portlets in the page, we need to define a “collab-
oration”. A UML collaboration is a selective view of that
situation. It may be attached to an operation or a classifier
through aCollaborationOcurrence. Such acollaboration
can constrain the set of valid interactions that may occur
between the instances that are connected by a link. Further-
more, acollaborationspecifies the property instances that
can participate in thecollaboration.

For example, considerIberia, Bancotel and PepeCar,
three portlets on the same application screen. It would be
interesting to retrieve and use thearrival City from the row in
the summaryIberia portlet listing as an entry value for the

3As we shall see, ports will represent portlets containers at implemen-
tation level for theAirline, HotelandCarHire classes.

City textbox of theBancotel portlet. Then, the page would
present the list of hotel offers to the customer. In this way,
both portlets now would display related information, while
the third portlet still shows their entry panel (Figure 4 illus-
trates this collaboration).

Air_Line Hotel

Flight

+arrival_date
+arrival_city

...

Room

+start_date
+city

...

Filler

Client.city = Server.arrival_city
Client.start_date = Server.arrival_date

clientserver

Figure 4. Collaboration diagram for the TAS

As an aside, please note that although inter-portlet com-
munication can be modeled using any of the aforemen-
tioned methods (Composite Structurediagrams andcollab-
orations), one must be careful about the dependencies that
are introduced when using inter-portlet communication. In
the Iberia/Bancotel portlets example, what would happen if
the user decided to remove theIberia portlet from his page?
Would theBancotel portlet still be functional? Should we
force the user to remove theBancotel portlet as well? These
are some of the design considerations that need to be taken
in account before using inter-portlet communication.

3.1.2 The Navigation Model

At this point, theConceptualmodel is complete. Then,
the Navigationmodel is built as a refinement of theCon-
ceptual model we have just defined. TheNavigation
model specifies the navigational structures of the Travel
Agency, i.e., how users navigate through the available
information usingIndexes(¿IndexÀ HolidayPackageIn-
dex), Menus(¿MenuÀ HolidayPackageMenu, ¿MenuÀ
BookingMenu, ¿MenuÀ CustomerMenu) or Guided Tours
(¿GuidedTourÀ BookingGuidedTour). We have added con-
straints to¿NavigationLinksÀ describing which events will
trigger the navigation through the link (e.g., when a process
finishes, after clicking a¿MenuOptionÀ, etc.)

3.1.3 The Presentation Model

After that, the Presentation model further refers to
groups of pages organized around¿PresentationUnitsÀ
as: (i) ¿SinglePresentationUnitsÀ, with their attributes
marked as¿textÀ, ¿imageÀ, ¿buttonÀ, etc.; and
(ii) ¿GroupPresentationUnitsÀ that comprise UML
classes and packages stereotyped¿pageÀ, ¿sectionÀ
or ¿formÀ. Basically, we have used in our ex-
ample ¿ExternalSectionÀ to display portlet responses

and ¿pageÀ to display the main portal pages. We
have also marked as¿ExternalFormsÀ those UML
classes that invoke external services. Note that each
¿ExternalPresentationUnitsÀ has information about its
own data, structure, presentation, etc.

Since adaptation is not required in this case, the final
PIM of theUser Interfaceviewpoint is obtained by merging
these three models, and is shown in Figure 5.

Once the PIM of this layer is described, we need to pro-
vide some sort of support for its deployment, configuration
and execution in a particular platform, i.e., we need to gen-
erate its corresponding PSM. This last step only concerns
UML packages stereotyped¿GroupPresentationUnitsÀ,
because integrated portlets deal with their corresponding
¿ExternalGroupPresentationUnitÀ. Applying a two-fold
transformation process from model-to-model (based on,
e.g., ATL mapping rules) and model-to-code (using, e.g.,
templates that contain predefined parts of the meta-code
text), we can map the source PIM to a target PSM and to
code finally. The feasibility of these transformations and
how the Web pages are obtained from them is well docu-
mented in [8].

3.2. Addressing the Business Logic Level

The same as the User Interface Viewpoint, the Business
Logic view of the system needs to be platform-independent
and interchangeable. Portlets typically evolve over time and
are largely reused as bases for new portlets. Thus, the ability
to change a portlet model or to adapt it to a new provider
requires that each business logic model be self-contained
and extensible.

As shown in Figure 6, the PIM for this viewpoint is fo-
cused just on the system operations hiding the rest of the
details (software architecture, distribution, system bound-
aries, communication protocols, implementation platforms,
etc.). This solution is specified in terms of UML packages
and their interconnections in a platform independent way,
achieving reusability across different target platform envi-
ronments. Thus, the PIM does not contain any informa-
tion on the pieces of functionality that will be locally im-
plemented, and the ones that will be provided by external
services and applications.

Once that high-level PIM is specified, we need to iden-
tify the system scope and boundaries, and then build a
model of the system with this information. That tar-
get model (still a PIM, but with that information on
it) will be built by transforming the original PIM us-
ing marks (see Figure 7). To identify the elements in
the TAS PIM that should be transformed in a particular
way, we will use the stereotypes¿ExternalSystemÀ and
¿ExternalAssociationÀ. An ¿ExternalSystemÀ defines
any other external system interacting with the system under

<<ExternalGroupPresentationUnit>>

Hotel

<<ExternalForm>>

Hotel

<<inputElement>>+hotel_class

<<inputElement>>+room_type
<<inputElement>>+start_date

<<inputElement>>+end_date
<<text>>+description

<<image>>+logo
<<text>>+name

<<text>>+city Room

<<ExternalSeccion>>

<<text>>-hotel_name

<<text>>-room_type
<<text>>-start_date

<<text>>-end_date
<<text>>-hotel_id

<<text>>-idroom
<<text>>-price

<<text>>-city

<<ExternalMenu>>

HotelMenu

<<button>>+Find()

<<ExternalForm>>

Air Lines

<<inputElement>>+departure_date
<<inputElement>>+departure_city

<<inputElement>>+num_person

<<inputElement>>+arrival_date
<<inputElement>>+arrival_city

<<inputElement>>+one-way
<<listControl>>+round-trip

<<inputElement>>+class

<<text>>+description
<<image>>+logo
<<text>>+name

<<ExternalGroupPresentationUnit>>

AirLine

<<text>>-departure_date
<<text>>-departure_city

<<text>>-seat_number

<<text>>-arrival_date

<<text>>-seat_class

<<text>>-arrival_city

<<text>>-seat_row

<<text>>-idflight

<<text>>-price

<<ExternalSeccion>>

Flight

<<ExternalMenu>>

AirLineMenu

<<button>>+Find()

<<ExternalGroupPresentationUnit>>

CarHire

<<ExternalForm>>

Car_Hire

<<inputElement>>+start_date

<<inputElement>>+end_date

<<inputElement>>+car_type
<<inputElement>>+city
<<text>>+description

<<image>>+logo
<<text>>+name

<<Seccion>>

Car

<<text>>-car_reg_number

<<text>>-start_date

<<text>>-end_date

<<text>>-car_type

<<text>>-price

<<text>>-city

<<ExternalMenu>>

Car_HireMenu

<<button>>+Find()

<<GroupPresentationUnit>>

<<Menu>>

BookingMenu

<<button>>+BookPackage()

<<Page>>

Booking

<<text>>-description
<<text>>-idbooking
<<text>>-price

<<GuidedTour>>

BookingGuidedTour

TravelAgency Menu

<<Menu>>

<<SelectionElement>>SearchByFlight_Hotel_Car()
<<SelectionElement>>SearchByFlight_Hotel()

<<SelectionElement>>ListHolidayPackages()

<<SelectionElement>>SearchByFlight_Car()

<<SelectionElement>>SearchByHotel_Car()

<<SelectionElement>>SearchByFlight()

<<SelectionElement>>SearchByHotel()

<<SelectionElement>>SearchByCar()
TravelAgency

<<Page>>

<<text>>-description
<<image>>-logo
<<text>>-name

<<GroupPresentationUnit>>

TravelAgency

<<AnchorList>>

HolidayPackageIndex

<<tabbed>>+SortByBestValue()
<<tabbed>>+SortByDistance()

<<Menu>>

HolidayPackageMenu

<<button>>+ChangeSearch()
<<button>>+SelectPackage()
<<button>>+ViewDetails()

<<GroupPresentationUnit>>

HolidayPackage

<<Page>>

HolidayPackage

<<text>>-description
<<text>>-idpackage
<<text>>-price

<<text>>-date

<<Form>>

Customer

<<inputElement>>-creditcardnumber
<<inputElement>>-creditcardnumber
<<listControl>>-creditcardtype

<<inputElement>>-password

<<controlButton>>-expirydate

<<inputElement>>-name

<<inputElement>>-email

<<inputElement>>-login

...

CustomerMenu

<<Menu>>

<<button>>+NewMemberRegistration()
<<button>>+SigIn()

Customer

<<GroupPresentationUnit>>

<<ExternalNavigationLink>>

<<NavigationLink>>

<<NavigationLink>>

<<NavigationLink>>
<<NavigationLink>>

<<NavigationLink>>

<<NavigationLink>>

<<NavigationLink>>

Figure 5. The PIM of the User Interface viewpoint

Air_lines

+cancel_flight(reserv_inf : Reserv) : Ack_cancel

+reserve_flight(fly_sel : Fly_Inf) : Reserv
+pay_flight(pay_inf : Pay_Inf) : Ack_pay

+find_flight(inf_req : Fly_req) : Fly_list

air_lines

Travel_AG

+cancel_travel(reserv_inf : Reserv) : Ack_cancel

+find_travel(travel_req : Travel_req) : Travel_list
+reserve_travel(travel_sel : Travel_Inf) : Reserv
+pay_travel(pay_inf : Pay_Inf) : Ack_pay

travel_agency

Bank
+make_payment(pay_inf : Pay_Inf) : Ack_pay

bank

Car_Hire

+cancel_car(reserv_inf : Reserv) : Ack_cancel

+reserve_car(car_sel : Car_Inf) : Reserv
+find_car(car_req : Car_req) : Car_list

+pay_car(pay_inf : Pay_Inf) : Ack_pay

car_hire

Hotel

+cancel_room(reserv_inf : Reserv) : Ack_cancel

+find_room(room_req : Room_req) : Room_list
+reserve_room(room_sel : Room_inf) : Reserv
+pay_room(pay_inf : Pay_Inf) : Ack_pay

hotel

Figure 6. The TAS Structure PIM

consideration. In the same way, an¿ExternalAssociationÀ
defines an interaction between the system under deployment
and an¿ExternalSystemÀ [11].

<<InternalSystem>>

Travel_AG

+cancel_travel(reserv_inf : Reserv) : Ack_cancel

+find_travel(travel_req : Travel_req) : Travel_list
+reserve_travel(travel_sel : Travel_Inf) : Reserv
+pay_travel(pay_inf : Pay_Inf) : Ack_pay

travel_agency

<<ExternalSystem>>

Air_lines

+cancel_flight(reserv_inf : Reserv) : Ack_cancel

+reserve_flight(fly_sel : Fly_Inf) : Reserv
+pay_flight(pay_inf : Pay_Inf) : Ack_pay

+find_flight(inf_req : Fly_req) : Fly_list

air_lines

<<ExternalSystem>>

Bank
+make_payment(pay_inf : Pay_Inf) : Ack_pay

bank

<<ExternalSystem>>

Car_Hire

+cancel_car(reserv_inf : Reserv) : Ack_cancel

+reserve_car(car_sel : Car_Inf) : Reserv
+find_car(car_req : Car_req) : Car_list

+pay_car(pay_inf : Pay_Inf) : Ack_pay

car_hire

<<ExternalSystem>>

Hotel

+cancel_room(reserv_inf : Reserv) : Ack_cancel

+find_room(room_req : Room_req) : Room_list
+reserve_room(room_sel : Room_inf) : Reserv
+pay_room(pay_inf : Pay_Inf) : Ack_pay

hotel

<<ExternalAssociation>>

<<ExternalAssociation>>

<<ExternalAssociation>>

<<ExternalAssociation>>

Figure 7. The marked TAS PIM

Note that the marked PIM is, by definition, tech-
nology independent. In consequence, the prefix “Ex-
ternal” used by the stereotypes¿ExternalSystemÀ and
¿ExternalAssociationÀ in Figure 7 does not imply any im-
plementation decisions. Instead, it is only used to limit the
system scope and boundaries.

At this point, when we have the marked PIM, we still
need to transform it further into a model that contains the
information about how the system services are “compo-

nentized”, prior to decide the technology and the service
providers. This componentization will be described using
the UML 2.0 constructs and infrastructure for describing
software architectures, because what we want to build in
this phase is the software architectural description of the
system. This transformation will be guided by the follow-
ing mapping rules:

• Packages transformation. Each UML package is
mapped to a UMLComponent initialized with the
same as its corresponding UML package.

• Classes transformation. The UML class stereo-
typed as¿InternalSystemÀ or¿ExternalSystemÀ is
mapped to a UMLClass holding the same characteris-
tics as its original (name, attributes and operations).

• Associations transformation.For each UML associa-
tion stereotyped¿ExternalAssociationÀ, two compo-
nent ports will be generated, each one as Association
ends of that relationship. Ports will be associated to
the UML Component derived in the previous step. Its
behavior is defined in terms of an interface associated
with that port, which specifies the nature of the inter-
actions that may occur over that port. Thus, the port
interface’s name is given the value of the UML class
name from which it is derived and its operations corre-
spond to its UML class operations.

• Association’s ends transformation. For the end-
point of an ¿ExternalAssociationÀ stereotyped
¿InternalSystemÀ, a usage dependency from the
port to the interface is generated, showing how the
¿InternalSystemÀ provides a set of services.

For the endpoint of an¿ExternalAssociationÀ stereo-
typed¿ExternalSystemÀ, an implementation depen-
dency from the port to the interface is generated, show-
ing how the¿ExternalSystemÀ requires a set of ser-
vices.

• Finally, an assembly connector is defined from every
required Interface to its provided Interface.

Applying these mapping rules on the PIM in Figure 7,
we obtain the model shown in Figure 8. However, this
model is incomplete since it does not model how naviga-
tion events (clicks on screen links or submission of Web
forms) result in portlet actions being received by the portal.
Analogously, it does not specify how the portal forwards the
actions it captures to the appropriate portlet containers that
will handle the requests. Another important issue that we
need to model is how message-forwarding across portlets
can be carried out. Messages are either calls to operations
(which are usually dispatched to methods on the receiving

Travel_Ag

Travel_Ag

+cancel_travel(...) : Ack_cancel

+reserve_travel(...) : Reserv
+find_travel(...) : Travel_list

+pay_travel(...) : Ack_pay

Hotel

Hotel

+cancel_room(...) : Ack_cancel

+reserve_room(...) : Reserv
+find_room(...) : Room_list

+pay_room(...) : Ack_pay

Car_Hire

Car_Hire

+cancel_car(...) : Ack_cancel

+reserve_car(...) : Reserv
+pay_car(...) : Ack_pay

+find_car(...) : Car_list

Air_Line

Air_Line

+cancel_flight(...) : Ack_cancel

+reserve_flight(...) : Reserv
+pay_flight(...) : Ack_pay

+find_flight(...) : Fly_list

Bank

Bank

+make_payment(...) : Ack_pay

Figure 8. The TAS PIM after applying the MDA transformation

object), or sending of signals (which are buffered on the re-
ceiving object and handled by the corresponding behaviors
in the objects). TheInternal Processmodel specifies both
internal and external behavioral aspects by means of activ-
ity, interaction and sequence diagrams.

Space limitations prevent us from giving a more detailed
description of these specifications. We show an excerpt of
the activity diagram for theFindTravel process in Figure
9. Notice that some portlet-data dependencies have been
previously captured in theUser Interface PIM.

Find_Flight
flightDetails

arrivalCity

arrivalDate
Find_Hotel

arrivalCity

arrivalDate

hotelDetails

Find_Travel

Validate

flightDetails

hotelDetails

HotelTravelAgency Air_Line

Figure 9. An excerpt of the Activity Diagram
for the FindTravelprocess

At this point, we have a set of models with the infor-
mation about:(a) the system functionality, from a global
point of view; (b) how it is “componentized” into different
services;(c) which of these services are internally imple-
mented, and which ones are provided by external services;
(d) the interactions between all the system services (both
internal and external).

From there, the process of building the PSM of the sys-
tem based on the implementation technologies and plat-
forms can proceed as in our previous work [11, 12].

4. Conclusions

In this paper we have discussed the issues involved in
the integration of portlets into model-based Web applica-
tion development. In general, the majority of Web Engi-
neering proposals do not yet support the integration of third
party systems with Web applications (by means of suitable
design concepts and models), including Web Services and
portlets. Our contribution tries to shed some light on this
area, by analyzing the different kinds of concerns that need
to be addressed, and the models required to capture such
information.

There is not much work that deals with these issues. Dı́az
et al. consider in [3] a subset of the concerns involved in a
portal construction and define a set of platform-independent
models for them, namely the service model, the orchestra-
tion model and the presentation model. Although it is a very
good and expressive approach, the proposal is in the context
of building Web portals using portlets, and not for develop-
ing general Web applications. Thus, the proposed design
process is strongly governed/influenced by the (too early)
implementation decision of using portlets. In this respect,
our proposal follows an MDA approach, and hence allows
the system developer to take that decision at a later stage,
and then use the portlet models if required.

This paper also extends our previous work on integrating
Web Services into Web applications using a model-driven
approach [12]. It is important to notice the strong relation-
ship between the User Interface models and the Business
Logic models of a portlet. Such a relationship was not re-
quired in the case of Web Services, since they sit at the Busi-
ness Logic level only. However, this relationship is crucial
for integrating portlets into Web applications, because they
contain not only functionality, but also presentation—and
they are closely related.

As future work we plan to continue working on case
studies and applications that help validate our proposal, and
that serve as proof-of-concept of our ideas. Our goal is to
develop a complete set of Web applications using our ap-
proach which can illustrate the problems that appear when
integrating external systems into Web applications, and how
to tackle them from a model-driven approach.

References

[1] A. W. Brown. Model driven architecture: Principles and
practice.Software System Model, 3:314–327, 2004.

[2] O. D́ıaz, J. Iturrioz, and A. Irastorza. Improving Portlet ag-
gregation through deep annotation.Proceedings of the 14th
International World Wide Web Conference (WWW 2005),
May 2005. Japan.

[3] O. D́ıaz and J. Rodrı́guez. Portlets as Web Components:
an Introduction. Journal of Universal Computer Science,
10(4):454–472, Apr. 2004.http://www.jucs.org/
jucs_10_4/portlets_as_web_components" .

[4] F. Frasincar, G.-J. Houben, and R. Vdovjak. An RMM-
Based Methodology for Hypermedia Presentation Design.
Proceedings of the 5th East European Conference on Ad-
vances in Data-bases and Information Systems (ADBIS
2001), LNCS 2151:323–337, September 25-28 2001. Vil-
nius, Lithuania.

[5] C. Gnabo. Web-based Information Systems Development –
A User Centerd Engineering Approach.Web Engineering:
Managing Diversity and Complexity of Web Application De-
velopment, LNCS 2016:105–118, 2001.

[6] Java Community Process.JSR 168 Portlet Specification
Version 1.0, 2003. http://www.jcp.org/en/jsr/
detail?id=168 .

[7] G. Kappel, W. Retschitzegger, and W. Schwinger. Mod-
elling Customizable Web Applications – A Requirement’s
Perspective. Proceedings of the International Conference
on Digital Libraries: Research and Practice (ICDL), 2000.
Koyoto, Japan.

[8] A. Kleppe, J. Warmer, and W. Bast.MDA Explained.
The Model Driven Architecture: Practice and Promise.
Addison-Wesley, Apr. 2003.

[9] N. Koch. Software Engineering for Adaptive Hypermedia
Systems - Reference Model, Modelling Techniques and De-
velopment Process. PhD thesis, Fakultt der Mathematic und
Informatik, Ludwig-Maximilians-Universitt Mnchen, Dec.
2000.

[10] J. Miller and J. Mukerji.MDA Guide. Object Management
Group, Jan. 2003. OMG document ab/2003-06-01.

[11] N. Moreno and A. Vallecillo. A model-based approach for
integrating third party systems with web applications.Fifth
International Conference on Web Engineering (ICWE2005),
July 2005. Sydney, Australia.

[12] N. Moreno and A. Vallecillo. Modeling interactions be-
tween web applications and third party systems.Fifth Inter-
national Workshop on Web Oriented Software Technologies
(IWWOST2005), June 2005. Porto, Portugal.

[13] OASIS. Web Service for Remote Portlets Specification
Version 1.0, 2003. http://www.oasis-open.org/
specs/index.php#wsrpv1.0 .

[14] Object Management Group.UML 2.0 Infrastructure Spec-
ification, 2003. http://www.omg.org/cgi-bin/
doc?ptc/03-09-15.pdf .

[15] Object Management Group.UML 2.0 Superstructure Spec-
ification, 2003. http://www.omg.org/cgi-bin/
doc?ptc/03-08-02.pdf .

[16] OMG. Model Driven Architecture. A Technical Perspec-
tive. Object Management Group, Jan. 2001. OMG docu-
ment ab/2001-01-01.

[17] OMG. A UML Profile for Enterprise Distributed Object
Computing. Object Management Group, May 2002. OMG
document PTC/2002-02-05.

