
CoSP2P: A Component-Based Service Model for
Peer-to-Peer Systems

C. Alcaide, M. Dı́az, L. Llopis, A. Márquez, B. Rubio and E. Soler
Dpto. Lenguajes y Ciencias de la Computación

University of Málaga
29071 Málaga, SPAIN

{calcaide, mdr, luisll, amarquez, tolo, esc}@lcc.uma.es
fax: +34 952 131397; phone: +34 952 137147)

Abstract— The increasing complexity of the software development
based on peer to peer networks makes necessary the definition of new
frameworks in order to simplify the developer tasks. Additionally,
some applications, e.g. fire detection or security alarms may require
real time constraints and the high level definition of these features
eases the application development. In this paper, a service model
based on a component model with real-time features is proposed. The
high-level model will abstract developers from implementation tasks,
such as discovery, communication, security or real time requirements.
The model is oriented to deploy services over small mobile devices,
such as sensors, mobile phones and PDAs, where the computation
is light-weight. Services can be composed among them by means of
the port concept to form complex ad-hoc systems and their im-
plementation is carried out using a component language called UM-
RTCOM. In order to apply our proposal, a fire detection application
is described.

Keywords— Peer-to-peer, mobile systems, real-time, Service-
Oriented Architecture.

I. INTRODUCTION

Peer-to-peer (P2P) systems [1] represent a new challenge
in the development of software for distributed systems and an
interesting alternative to centralized and client-server models.

Each node in the P2P network is symmetrical and the
mechanisms of communication are based on dynamic ad-
hoc networks among peers. The P2P approach can be ported
to mobile systems, which are composed by a set of nodes
intending to cooperate, while they are entering/leaving the net-
work continuously. Some mixed approaches keep a minimum
part of infrastructure and central control, but our proposal
is focussed on pure ad-hoc systems. Examples of this type
of system are sensor networks [2], consisting of spatially
distributed autonomous devices using sensors to cooperatively
monitor physical or environmental conditions; and MANET
(Mobile Ad-hoc NETworks) [3], self-configuring network of
mobile devices such as PDAs and mobile phones connected
by wireless links.

Due to the increasing complexity of the development of
applications based on the P2P architecture, new high level
programming models are necessary in order to simplify the
developer tasks. This paper presents a component-based ser-
vice model to enable developers to specify P2P applications.

This work is supported by the EU funded project FP6 IST-5-033563 and
the Spanish project TIN2005-09405-C02-01

The model allows us to define the services that peers can
provide or require in the network. The access points to the
peer services are the ports that define the commands and
events that other peers can require. P2P applications can need
to define real time requirements, as example, the establishment
of a priority order to attend to service queries. In this sense,
the model allows us to include real time constraints in the
ports, that is, developers can assign to commands and events
characteristics as service periods, priorities or deadlines. This
way, two services would be able to be required simultaneously
in the peer and priority would establish an ordered delivery.
Additionally, the period would allow us to receive events
without carrying out the invocation. The proposed model
is platform independent and tools can be defined in order
to map the specification to the necessary implementation
as example using Windows peer-to-peer networking [4] on
Windows platforms or JXTA [5] on Java platforms. The
service implementation is carried out using the component
based paradigm by means of the component language UM-
RTCOM [6]. It proposes a distributed model based on light-
weight component composition with real-time features. The
UM-RTCOM specification is also platform independent and
includes the possibility of defining real time requirements.

The Service-Oriented Architecture (SOA) has been success-
fully applied in a lot of infrastructure-based and client-server
model based distributed systems, being Web Services the most
known standard [7]. Recently, some work based on the (SOA)
paradigm oriented to P2P systems has appeared. The following
list shows some related work. They mainly differ from our
approach because either they do not provide a high level
abstraction model that facilities the application programmer
task or they are focused on infrastructure based systems:

• The JXTA plaform, is a set of simple, open source
P2P protocols that enable any device on the network to
communicate, collaborate, and share resources. It is a
useful tool to implement P2P systems, but in complex
systems can be difficult to apply without an abstract
model. It is a good platform to support a service model.

• JMobiPeer [8], developed in the University of Cata-
nia, proposes an alternative to JXTA more oriented to
MANETs. It tries to solve the faults existing in the JXME
version of JXTA at the moment of the development.

2

However, it does not offer an abstraction model.
• DeEvolve [9] approaches the problem giving a flexible

notation for the composition of services including the
handling of exceptions such as failure of peers. It is based
on JXTA and offers a exception handling mechanism to
control the peer failures. It is oriented to infrastructure-
based P2P systems.

• The middleware for wireless sensor networks (WSNs)
presented in [10], provides a layer between user ap-
plications and the network. Such middleware offers an
automatic choice of the network configuration and data
dissemination strategy. It is implemented in Java and use
the XML language and the SOAP protocol for represent-
ing all application communications.

• The work proposed in [11] tries to build a middleware for
WSNs that is based on the service-oriented architecture
using Web services and Grid technologies. They include
probability models in order to improve the quality of
service for service-oriented WSN applications.

In the following sections a concise explanation of the UM-
RTCOM model and a detailed vision of the proposed model
are presented in (Section III) and (Section II), respectively.
Additionally, in Section IV a fire detection system example
is described using our approach. Finally, in Section V some
conclusions and future work are sketched.

II. THE UM-RTCOM MODEL

UM-RTCOM is based on light-weight components which
do not depend on any specific execution platform or heavy
framework. Instead, UM-RTCOM components are developed
in a platform independent way and are later deployed in
specific platforms like executable or libraries with a min-
imum overhead. In addition, UM-RTCOM components are
complemented by an abstract model of their behavior (based
on SDL). This abstract model allows us to perform different
analysis types such as for example real-time analysis, deadlock
freedom, liveness properties, etc. In this sense, a UM-RTCOM
component is the sum of the code and abstract model.

The model improves some features of standard component
models, adding constructions to express temporal constraints,
synchronization, quality of service, events, etc. It is a hierar-
chical model where components act like containers of other
components and, at the same time, provide interfaces.

A. Component Types

There are two main component types: primitive and generic.
Generic components are the standard components of the
model. They provide services through interfaces and can
require services of other generic components. On the other
hand, primitive components (active or passive) are contained
in generic components. They are the basis for building
generic components, representing execution threads or shared
resources.

1) Generic Components: These components are the basis
of the model. They act like containers of other components,
generic or primitive, and they can be composed of other
generic components in order to complete their functionality.

A generic component has a public definition part with the
provided and required interfaces, and an implementation part
which includes the implementation of the services offered. The
model distinguishes between input interfaces (provided) and
output interfaces (required).

UM-RTCOM also allows events to be used through
the declaration of produced and consumed events. In this
programming-style, a component declares what events pro-
duce and what events consume. This way, components can
communicate with each other without common interfaces.

2) Active Components: These components are primitive
elements used to to express ”execution flows” inside a generic
component. Concurrency is an important factor in real-time
systems, so we use first-order elements to model it. In addition,
the use of these components is also motivated by the later
analysis phases.

Active components are responsible for the execution flow
inside generic components through the interaction with other
elements such as passive components or generic components.
Active components are also responsible for the treatment of
the invocation requests on the generic container. Thus, the
response to incoming requests is delegated to these primitive
components.

The utilization of an Active component requires a definition
part and a declaration part. In the definition part, the com-
ponent defines a special ”execute” method to be invoked by
the system in different ways: time-triggered, event-triggered,
service requests, etc.

3) Passive Components: Shared resources are another im-
portant element in embedded and real-time systems. Passive
components are primitive elements which allow us to use
shared resources in the model. Basically, they cannot initiate
any action and offer some basic services which can be invoked
from active components. This behavior is used in order to
facilitate later analysis phases. Passive components provide
mutual exclusion with priority ceiling mechanisms which
avoid priority inversions.

Generic1.o1 <-> Generic2.I1;

Active MyActive2 {
 void execute() {
 short var_aux;
 wait I1.method1(a1,a2,a3)
 {var_aux=a1+a2+a3; }

 I1.method2(arg1);
{ var_aux=arg1+1; }

 }
}

Active MyActive1 {
 void execute() {
 short a1,a2,a3;
 a1=1; a2=2; a3=3;
 call o1.method1(a1,a2,a3);
 call o1.method2(a3);
 }
}

interface I1 {
void method1(in short a1,
 in short a2,in short a3);
void method2(in short a1);

}

MyActive1 I1 MyActive2

O1

Generic1

Generic2

Fig. 1. Synchronization Primitives.

3

B. Component Interactions

Communication between components is performed through
interfaces and events. UM-RTCOM provides synchronization
primitives (wait, call, raise) which allow services and events
to be invoked, raised or waited.

• Wait Primitive: This primitive is used to waiting for
new invocations on services or the creation of consumed
events. It is used in Active components.

• Call Primitive: Primitive call is used to invoke services of
generic components. It can be used in Active or Passive
components.

• Raise Primitive: This primitive is used to raise events in
an asynchronous way. When a component raises an event,
this event is caught by all the components that consume
that event.

Fig. 1 shows an example where two generic components
(Generic1 and Generic2) are interconnected. The example
shows how the Active component Generic1::MyActive1 calls
the method I1::method1 provided by Generic2 where the
request is attended to by Generic2::MyActive2 through the
wait primitive.

C. Real-time Constraints Specification

The user can indicate real-time constraints in the compo-
nents. This is a very important element which is not included
in other component models. This way, the user specifies the
requirements regarding how a component is used.

The only elements visible of a component are the interfaces
and events. The user can specify temporal constraints for
methods or events indicating the minimum period between
two invocations or a deadline for completing the request.

Fig. 2. Service Composition Example.

III. THE COSP2P MODEL

The proposed work is a service-based model, oriented to
peer-to-peer systems without infrastructure, where developers
can define services to be offered by network nodes. It also
specifies how these services can be composed in order to
create distributed applications and declare the necessary ports

so that each node has access to the services offered by other
nodes. Additionally, real-time constraints can be specified to
the links between services in order to form systems with timing
requirement in P2P environments.

Fig. 2 shows a graphical example of a service-composition
scheme. The inward sense of port means that the port is
provided. Optional ports are drawn in dark color. Moreover,
components and ports are connected by means of dash-dotted
lines. Although it is not shown in this figure, a peer can provide
more than one service. In the example, the service offered by
Peer A requires three different ports in order to be provided:
the ports offered by B and C are required and the port offered
by D is optional.

CoSP2P is an intermediate layer (Fig. 3) that allows appli-
cations to be developed composing services using components
defined with the UM-RTCOM model.

Fig. 3. The Abstract Layers.

The syntax to develop applications meeting the service
paradigm is shown in Fig. 4, where ports, services and
implementation declarations have been separated in different
blocks. In the following subsections a deeper explanation of
the proposed syntax is presented.

A. Port Declaration

Ports are the access points to peer services. Additionaly,
each port is linked to the components that finally implement
the commands and the events that are offered by it. Ports are
also the mechanism that are used to compose the services that
nodes offer to the system. Inside a port definition, developers
can define commands and events. Commands are synchronous
communication mechanisms, and events are asynchronous
communication mechanisms. For example, in our fire detection
system (described in IV), temperature sensors will communi-
cate with the rest of the services in an asynchronous way by
means of firing an event when a fixed temperature is reached.

Ports are global definitions to all services, therefore
no implementation details are associated with them. This
way, different services offering a determined port can be
implemented in different ways: different execution platforms,
programming languages, algorithms, etc. Below, a simple
port is defined:

Port MyPort {
command GetValue(out int value);
event High;

}

4

Port <Port_name> ‘{‘
 {command} [{command_real_time_constraints}]‘;’
 {event} [{event_real_time_constraints}]‘;’
 ‘}’

command ::= command <command_name> ‘(‘ {args} ‘)’ ‘;’

event::= event <event _name> ‘;’

command_real_time_constraints::= command_real_time_constraints::= constraints [Deadline T’,’] [Priority T]

event_real_time_constraints::= constraints [Period T’,’] [Priority T]

Service <Service_name> ‘{‘
 Description <Service_description> ‘;’
 {provided_ ports }
 {required_ ports}
 {optional_ ports }
 {group_information} {group_information}
‘}’

provided_ports ::= Provides { Port_name } ‘;’

required_ports ::= Requires { Port_name } ‘;’

optional_ ports ::= Optional { Port_name } ‘;’

group_ information ::= Groups { Group_name } ‘;’

Service implementation <Service_name> ‘{‘
 {components_definition} {components_definition}
 {port_binding}
 {component_composition}
‘}’

components_definition ::= Components { component_name } ‘;‘

port_binding ::= Port_bind ‘{‘
 {bind}
‘}‘}’

bind ::=
 <port.ref_command> ‘=’ <instance.ref_interface.ref_operation> ‘;’ |
 <port.ref_event> ‘=’ <instance.ref_interface.ref_event> ‘;’

Fig. 4. Model Syntax.

MyPort defines a command named GetValue, with one
output parameter, and an event called High. The real-time re-
strictions can be established to commands and events declared
in a port declaration. These restrictions are specified by the
keywords Priority, Deadline and Period.

• Priority: This primitive allows us to define the priority
of commands and events.

• Deadline: This restriction defines the maximum execu-
tion time for a command.

• Period: This primitive allows us to establish the
execution period for an event.

command MyCommand() constraints Deadline 5000,Priority 5;
event MyEvent constraints Period 1000, Priority 10;

The previous example shows the definition of a command
and an event; MyCommand has a five-second deadline con-
straint and a priority of 5 is assigned; MyEvent has an
execution period of one-second and a priority of 10 is assigned.

B. Service Definition

A service definition is composed of: firstly, a service de-
scription that is followed by the ports that are going to take

part in the service. The port enumeration is divided in three
types: provided ports, required ports and optional ports:

• Provided ports: Ports that the service offers to other
services. The rest of nodes can query to this service
through the provided ports.

• Required ports: Ports that a service needs in order to
be executed. Other nodes in the network must offer these
services.

• Optional ports: These ports are associated with non
crucial services, e.g. ports used to monitor the system.

Finally, it is possible to define communication groups so that
a service can communicate with services of the same group.
A service can belong to one or several groups.

The code below represents a service definition; first, we
write a brief description, then, we define that the service
provides one port (MyPort) and only one port is required
(OtherServicePort). In this example, the service has no
optional ports. Finally, we specify that MyService belongs to
the ExampleGroup group.

Service MyService {
Description = "Example service";
Provides MyPort;
Requires OtherServicePort;
Groups ExampleGroup;

}

C. Service Implementation

When a service has been specified, its implementation must
be declared:

1) Firstly, the components that implement the service are
defined. The final implementation is carried out by the
UM-RTCOM components.

2) The connection between ports and UM-RTCOM compo-
nents must be specified. This is done in the port binding
declaration. In this block, port commands and events are
linked to the component commands and events.

3) Since a service can be implemented by various
components, it is necessary to declare how each
component is composed with the rest. This is specified
by following the UM-RTCOM model syntax.

Service implementation MyService {
Components AComponent compoment;
Port bind
{
MyPort.GetValue = component.GetValue;
MyPort.High = component.High;
OtherPeerPort.GetTemp = component.GetTemp;
OtherPeerPort.TempHigh = component.TempHigh;

}
... Component composition ...

}

IV. EXAMPLE

In this section, we present a practical application that has
been considered to test the component-based service model.
First, we show a brief description of the system, then we detail
the different parts of our solution describing the design of
the ports and services used and, finally, some implementation
details are sketched.

5

Fig. 5. Example System.

A. System Description

The example constitutes a sensor and actor network in order
to monitor and control a fire in a building (Fig. 5). We require
four types of peers: the fire detector peer is an actor that is
able to detect a possible fire and then acts accordingly. The
temperature-sensor and smoke-sensor peers provide tempera-
ture and smoke level measurement, respectively. The monitor
peer receives data related to the actions carried out by the
fire detector, as well as updates the temperature and smoke
threshold values used to trigger the corresponding events.

The system is composed of only one fire detector, but there
could be one or more temperature/smoke sensors per room and
any number of monitors. In order to provide the fire detection
service, at least one temperature sensor and one smoke sensor
must be available. Therefore, temperature and smoke ports are
required but monitor ports are optional.

The group creation can be made in many ways, for example
one possible solution could be to form a group for each room
and another for all monitors or simply one group for all
communications. Finally, in our example we have proposed
three kinds of groups (Fig. 6):

• Temperature group: where temperature sensors and the
fire detector communicate each other.

• Smoke group: composed of smoke sensors and the fire
detector.

• Monitor group: the fire detector sends all monitor peers
the information about building fire control.

B. Designing the Fire Detector System with CoSP2P

In order to create a system based on service composition, we
must define the ports that will be provided by services, and it is
also necessary to describe services and their implementations.

In the proposed system four ports exist, one for each service,
although a service can usually provide more than one. For
example a calculator service may provide two types of ports,
one for standard calculus and another for scientific one.

In the example below, the temperature port offers a
command to obtain the temperature and raises an event when
the temperature is higher than a threshold. The smoke port
is defined in the same way as the temperature port and the
monitor port has only one command to get data to display it

Temperature
 Group

Monitor
 Group

 Smoke
 Group

Fig. 6. Groups.

on screen.

Port PTemperature {
command GetTemp(out float data, out Unique id)

constraints Deadline 5000;
event TempHigh constraints Priority 5;

}
Port PSmoke {

command GetSmoke(out float data, out Unique id)
constraints Deadline 5000;

event SmokeHigh constraints Priority 10;
}
Port PMonitor {

command DisplayData(in String data)

}

As stated before, it is possible to define deadline constraints
in commands. In this case, the commands GetTemp and
GetSmoke have five seconds as maximum execution time.
The developer must decide what to do when the execution
time is exceeded. Furthermore, the priority constraint allows
us to define the priority of port commands and events. In
the example, priorities of 5 and 10 are assigned to events
TempHigh and SmokeHigh respectively.

The definition of the temperature service is really short.
It includes a brief description, provides the temperature port
and specifies that it belongs to the temperature group.

Service STemperature {
Description "...";
Provides PTemperature;
Groups TempGroup;

}

As defined in section IV-A, the fire detector service requires
that at least one port of each sensor type is available. The
monitor port is optional. Moreover, this service belongs to
the three groups.

Service SFireDetection {
Description "...";
Provides PFire;
Requires PTemperature, PSmoke;
Optional PMonitor;
Groups TempGroup, SmokeGroup, MonitorGroup;

}

Finally, the implementations of the temperature and fire
detection services are the following:

6

Service implementation STemperature {
Components Temperature temp, ...;
Port bind {

PTemperature.GetTemp = temp.TempData;
PTemperature.TempHigh = temp.TempHigh;

}
... Component composition ...

}

Service implementation SFireDetection {
Components Control control, Alarm alarm, Sprinkler

sprinkler;
Port bind {

PFireDetection.CheckFire = control.CheckFire;
PFireDetection.Fire = control.Fire;
PTemperature.GetTemp = control.TempData;
PTemperature.TempHigh = control.TempHigh;
PSmoke.GetSmoke = control.SmokeData;
PSmoke.SmokeHigh = control.SmokeHigh;
PMonitor.DisplayData = control.DisplayData;

}
... Component composition ...

}

It is only necessary to include on the one hand, the list of
components that are going to be bound with the service ports
and, on the other hand, the component composition using the
UM-RTCOM model as we described previously.

It is important to indicate that it is possible to define
different components to provide the same service.

C. Implementation

In order to test the proposed service model, a first prototype
has been implemented. The model allows developers to define
systems independently of the platform and the programming
language. We decided to implement our application example
using “Windows Peer-to-Peer Networking”, but it can also be
realized on the JXTA peer-to-peer framework with the same
design.

The application can provide the four services that have been
described. Fig. 7 shows the fire detector screen with three
temperature peers and three smoke peers connected. On the
other hand, Fig. 8 depicts screenshots of the other three peers;
the temperature sensor and the smoke sensor only show their
sensor values, and the monitor peer contains a list with fire
detector information (connection and disconnection of sensors,
high values of temperature or smoke, fire detector actions,
etc.).

The implementation has been tested on top of an ad-hoc
network using a laptop for each peer.

E.T.S.I. Informática Málaga

Fig. 7. Fire Detector Screen.

Fig. 8. Temperature Sensor, Smoke Sensor and Monitor Screens.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented CoSP2P, a novel
component-based service model for peer-to-peer systems. We
propose a syntax to describe this kind of systems indepen-
dently of the programming language or operative system used.
The model provides the possibility of including real-time
constraints in order to form systems with timing requirement
in P2P environments. Furthermore, with the description of a
fire detector system, we have deployed an application using
“Windows Peer-to-Peer Networking” in order to assess the
model expressiveness.

As future work, we are currently extending the model
syntax, as well as port and service definitions, including
declarations of the peers and groups that can take part in a
system. On the other hand, we intend to include an exception
handler, to provide a semantics to group formation and to
develop, using proxyless JXTA, the described system with the
proposed model.

REFERENCES

[1] Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja,
Jim Pruyne, Bruno Richard, Sami Rollins, Zhichen XU. Peer-to-Peer
Computing. Technical report, Hewlett-Packard, 2002.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci. Wireless
Sensor Networks: A Survey. Computer Networks Journal, 38(4): pp.
393–422, 2002.

[3] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad
hoc network research. Wireless Communications & Mobile Computing
(WCMC): Special issue on Mobile Ad Hoc Networking: Research,
Trends and Applications, 2(5): pp. 483-502, 2002.

[4] Introduction to Windows Peer-to-Peer Networking. URL:
www.microsoft.com/technet/prodtechnol/winxppro/deploy/p2pintro.mspx

[5] Project JXTA. URL: http://www.jxta.org.
[6] Diaz M., Garrido D.,Llopis L., Rus F., Troya J.M. Integrating Real-Time

Analysis in a Component Model for Embedded Systems. Proceedings
of the 30th IEEE Euromicro Conference, pp. 14–21, 2004.

[7] Guido Dehlen, Linh Pham. Mobile Web Services for Peer-to-Peer
Applications. Consumer Communications and Networking Conference,
pp. 427–433, 2005.

[8] Mariano Bisignano, Giuseppe Di Modica, Orazio Tomarchio. JMo-
biPeer: a middleware for mobile peer-to-peer computing in MANETs.
Proceedings of the 25th IEEE International Conference on Distributed
Computing Systems Workshops (ICDCSW’05), pp. 785–791, 2005.

[9] Sascha Alda, Armin B. Cremers. Towards Composition Management
for Component-based Peer-to-Peer Architectures. Electronic Notes in
Theoretical Computer Science 2005, 114: pp. 47–64, 2005.

[10] Flávia C. Delicato, Paulo Pires, Jos Ferreira de Rezende, Luiz Rust da
Costa Carmo, Luci Pirmez. Service-oriented Middleware for Wireless
Sensor Networks. Proceedings of the 2005 ACM symposium on Applied
computing, pp. 1155–1159, 2005.

[11] L.Q. Zhuang, J.B. Zhang, Y.Z. Zhao, M. Luo, D.H. Zhang, Z.H.
Yang. Power-aware Service-oriented Architecture for Wireless Sensor
Networks. Industrial Electronics Society, 2005. IECON 2005. 32nd
Annual Conference of IEEE, pp. 2296–2301, 2005.

