
Programming Wireless Sensor Networks Applications

using SMEPP: A case study

Javier Barbarán, José A. Dianes, Manuel Díaz, Daniel Garrido,

Luis Llopis, Ana Reyna, Bartolomé Rubio

Department of Languages and Computing Science

University of Málaga, Spain
{barbaran,jdianes,mdr,dgarrido,luisll,reyna,tolo}@lcc.uma.es

Abstract. The SMEPP middleware is a secure and generic middleware, based

on a new network centric abstract model for embedded peer-to-peer (EP2P)

systems based on services with security as a main design issue. It has an adapt-

able architecture which can be used in different devices ranging from standard

PCs to motes. This paper presents a case study that uses SMEPP for program-

ming standard and small constrained devices such as motes. The middleware is

implemented over a runtime infrastructure using a specific designed component

model that controls the interactions between the different elements of the mid-

dleware. The development of SMEPP applications is carried out through a neu-

tral-language API which can be used in different languages such as Java or

nesC. The paper presents a real use of the middleware in an environmental

monitoring application for nuclear power plants with wireless sensor networks

showing the suitability of the middleware to develop this kind of applications.

Keywords. Middleware, Security, Services, P2P, Embedded

1 Introduction

Traditional middleware architectures have focused on achieving interoperability

across heterogeneous platforms and software languages. Although the platforms have

evolved from their creation incorporating new specific services and profiles (real

time, embedded systems, telecommunications), but their architectures have remained

to a great extent and stable.

The Secure Middleware for Embedded Peer-to-Peer systems (SMEPP) project [7]

is a European project financed by the European Commission in the Sixth Framework

Program. One of the main works carried out in this project has been the definition of a

suitable architecture for secure EP2P systems. In the case of EP2P it is necessary to

take into account other clearly different aspects such as the surveillance of application

behaviour, the processing infrastructure and the underlying communication networks,

in order to dynamically separate both the middleware and the applications, and to

achieve the appropriate quality of service.

SMEPP supports a high-level, service-oriented model to program the interaction

among peers, thus hiding low-level details that concern the supporting infrastructure.

Three key features of the model are the notion of group of peers, the notion of service

offered by peers (or by groups), and the concern of security.

A key factor for the success of the middleware is reusability and adaptability [2].

The SMEPP architecture has been adapted to be used in motes. The result of this

adaptation is SMEPP Light [3], the version of the middleware for constrained devices.

SMEPP Light can run in these devices and it can fully interoperate with the rest of

devices of the middleware such as PDAs or standard PCs.

The need for adaptation to different devices and domains makes it necessary to es-

tablish a component based software architecture as well as tailored software that

achieves these requirements. SMCOM is a component model specially designed to be

used in the implementation of the components of SMEPP that gives a modular archi-

tecture. This component model is supported by a runtime framework adapted to the

different platforms of SMEPP.

Because of the special characteristics of SMEPP, there is a huge range of applica-

tions that can be easily solved using this middleware. But a particular field that can

take benefit from the use of SMEPP and wireless sensor networks (WSNs), is the

related to WSNs for energy power plants, and particularly for nuclear power plants

due to the special security needs. Both SMEPP and SMEPP Light configurations are

being tested in a real application where sensors are deployed outside and inside the

plant and can measure different environmental conditions.

The structure of the paper is as follows: Section 2 introduces the architecture of

SMEPP Light and the special needs in order to achieve the interoperability with

SMEPP. Following it is shown SMEPP design focusing on the component model

used and some details of the runtime framework. In Section 4, the main part of this

paper is presented with the case study of developing a real application using

SMEPP/SMEPP Light for environmental monitoring application for nuclear power

plant. The paper finishes with some conclusions.

2 SMEPP Light Architecture

A main goal of SMEPP is to provide an efficient and flexible architecture that, at the

same time, must be scalable and adaptable to the resource constrained devices that

will be used in the SMEPP application domains. As result, the architecture of SMEPP

for WSNs is SMEPP Light. Customizing a middleware is an error-prone task and

requires deep knowledge of platform and middleware design. To solve this, SMEPP

has a configuration tool which allows selecting an adequate and possibly reduced set

of components of SMEPP for a concrete platform such as SMEPP Light.

The SMEPP Light architecture must support the sensors requirements that are:

small memory, small computing power and battery powered. The conceptual architec-

ture for this version of SMEPP is quite similar to the full one, but since SMEPP Light

offers a subset of functionalities of SMEPP, also its architecture exploits a subset of

the SMEPP components. Figure 1 shows the architecture of SMEPP Light taking into

account the special characteristics of motes and TinyOS [9].

The architecture is divided into non-hierarchical layers. The higher layer is com-

posed just by Service Model Support that is the SMEPP Light API. The implementa-

tion of the API primitives will be developed following the SMEPP Runtime Compo-

nent Framework philosophy but using also the Runtime Component Framework pro-

vided by TinyOS, which will be visible by all layers.

Fig. 1. SMEPP Light Architecture Overview

The SMEPP Common Services are composed by Event Management, Group Man-

agement and Overlay Network. The Group Management component manages the

peers of each group and the topology of the group, and uses the group management

and peer initialization primitives.

The Event Management component maps the event management primitives and it

is in charge of subscription and event management. It provides commands to sub-

scribe or unsubscribe to a certain event, generate events and set the reception mode

for a certain event.

The Overlay/Network Management component implements the communication be-

tween peers. It relies on the Runtime Framework, which is based on TinyOS net-

work/MAC component (CC24240ActiveMessage) that simply allows to address a

single node, or to broadcast the message to the entire network.

The Energy Management component manages the duty cycles of the peer. In par-

ticular it manages the on/off periods of the radio interface.

The Low Level Communication offers the basic secure-communication primitives

to higher layers, by using the CryptoLib library developed for motes using an efficient

AES-128 algorithm suitable for wireless sensors [13, 14, 15]. In addition, it manages

the keys for all the security issues related to the network and the group layers, and

provides commands to encrypt/decrypt messages.

Due to the special communications system in sensors, such as radio protocol used

typically, that is 802.15.4/Zigbee, the middleware has to provide some mechanism in

order to overcome this problem. In order to provide communication between SMEPP

and SMEPP Light (PCs or laptops and computers) it is necessary to use an adaptor

application that is the called SMEPP Light Adaptor.

Security is a cross cutting aspect on all layers and is shown on the side so that its

relation to other functionalities can be clearly shown in the architecture. The Crypto-

graphic Services component provides the foundations for the higher-level security

components by offering implementations of cryptographic primitives; in SMEPP

Light by means of CryptoLib library, developed specially for sensors in nesC. Some

devices might feature explicit support for security processing. Such device-specific

support is captured in the Infrastructure Security component. Secure Topology Man-

agement includes the authentication and authorization of new peers joining the

SMEPP or SMEPP Light network as well as to the protection of routing data. Finally,

group security provides similar services for groups: secure joining of groups and

protected communication within groups.

In [17] is shown a complete study of WSN challenges and a classification of the

different solutions that exists. It is interesting to compare in some way the present

architecture of SMEPP Light with other ones that are similar, and study its suitability

for the case study that we are proposing. As said before, SMEPP (and SMEPP Light)

belongs to Component-based methodology that proposes software construction by

plugging software components [18]. The most remarkable case as a competitor in

WSN for SMEPP Light is RUNES. The main differences between them are that

RUNNES runs Contiki as Runtime Component Framework, and SMEPP Light runs

TinyOS, and the other important difference is that SMEPP provides a secure middle-

ware even for embedded devices, which is a characteristic less important in

RUNNES.

3 SMEPP Component Model and Runtime Framework

The SMEPP applications cover several device types ranging from standard PCs to

lower capabilities devices such as mobile phones or motes. This way, the election of

the component model used in SMEPP is a crucial decision. Component models such

as .NET [5] or JavaBeans [8] could be a good election because they are intensively

used in standard workstations. However, they are not suitable for embedded systems,

since they do not explicitly address memory, real-time or cost constraints. The project

RUNES [1] presents an architecture for networked embedded systems based on com-

ponents. However, the different underlying SMEPP paradigms (P2P and Service

Orientation) and the status of the implementation make difficult the reusing of the

implementation components and tools.

Middleware configurability and customization constitute an active research area.

These topics are addressed from two approaches [6]:

• a dynamic approach, in which the middleware is capable of adapting to the dy-

namics of the system by reconfiguring itself during runtime, and

• a static approach, that focus on highly customizable middleware architectures

capable of fulfilling the requirements of different distributed applications.

SMEPP follows the second approach, providing configuration, adaptation and

analysis tools. One of the main contributions of our approach is that of providing

analysis tools. The presentation of the tools is out of the scope of this paper.

3.1 The SMCOM Component Model

The component model used for the implementation of SMEPP components is called

SMCOM (SMEPP Component Model). This component model derives from a previ-

ous work, UM-RTCOM [4] a component model specifically suitable for real-time and

embedded systems. Some of its main features have prompted SMEPP to use it for the

development of SMEPP components.

One of the main features of SMCOM is the using of the synchronization primi-

tives to carry out the communication between components. This communication is

performed through method interfaces and events:

• The wait primitive is used to wait for new invocations on services or the

raising of consumed events.

• The call primitive is used to invoke services of SMEPP components (in-

terconnected with the caller).

• The raise primitive is used to create events in an asynchronous way.

In the case of motes, SMEPP Light is implemented on top of TinyOS and nesC

[10] which provide a runtime component framework. In this case, we use this compo-

nent framework to implement SMCOM in such a way that it is possible to communi-

cate components of SMEPP and SMEPP Light.

3.2 Runtime Framework

The Runtime Component Framework (RCF) is the basis for the execution of the dif-

ferent SMEPP and SMEPP Light components. It has to provide an Application Pro-

gramming Interface (API) based on SMCOM that will be used by the different com-

ponents of the SMEPP architecture. Basically, the RCF has to provide mechanisms

for: connection to the RCF, component interconnection, methods invocation, events

publishing, subscribing and creation.

These mechanisms are the only way that components of SMEPP can interact be-

tween them. In this sense, the runtime component framework works as a type of vir-

tual machine or scheduler between all the layers of the SMEPP architecture where

invocations of components are received, scheduled and executed.

4 Case Study: An Environmental Monitoring Application

In this section we describe a real application used to test the middleware in the field

of sensor networks for nuclear power plants monitoring environmental conditions and

sending it over the network to PDAs or PCs.

4.1 Application Scenario

The application is focused on the environmental monitoring and remote control of

workers in industrial plants. Monitoring the effects of industrial plants on the envi-

ronment is a key issue in different application domains and very especially in the field

of the nuclear energy, where the security aspects of SMEPP could be validated.

Moreover, in nuclear industry, exposition to ionizing radiation is a risk present in

daily operation and maintenance activities for workers present in the plant. The de-

partments of radiological protection of the nuclear facilities (e.g. power plants, indus-

try, and healthcare) have the responsibility of controlling exposition of workers to

radiation. Previous works has been carried out in the field of nuclear power plants, as

it is RadMote framework [16] that has attracted the attention of the security depart-

ments of power plants. This work implements the study case that was presented in

[16] but without using any middleware so, it is easy to see that it is very complex to

do it as a commercial product.

The system is composed of one or more wireless sensor networks that will be de-

ployed on some industrial environment. Particularly, the proposed system is focused

on nuclear power plants. Sensors will be deployed outside and inside the plant and

could measure different environmental conditions.

In the application, radiation sensors will be connected with a small device with

compute capabilities (mobile devices, such as motes, PDAs or similar) that workers

will wear. On the other hand, static radiation sensors (also known as sensor network’s

monitoring areas) and environmental monitors (measuring temperature, air quality,

etc.) will be also used. It is important to provide a detailed control of some zones

sensed by sensors; this will be controlled using wireless high precision cameras.

These static sensors and all the personal devices will form a large ad-hoc network.

Fig. 2. Environmental Monitoring Application

In Figure 2, a deployment scheme of the proposed system is sketched, where a set

of sensors are situated in fixed position into the plant, forming groups. Each sensor is

running SMEPP Light, and a special peer will run SMEPP and a special adaptor, in

order to enable communication between the two different SMEPP configurations, for

sensors and for the rest of devices. Different critical zones are controlled by high

performance cameras, that in case of alarm for high radiation values will broadcast

images of the risk area to the specific peers. The SMEPP peers will form groups in

order to share the environmental information and the alarms of the system.

In the following table we show the tasks for each device:

Table 1. Roles of Participants.

Devices Description

m1, …,m6 Monitor radiologic measurements raising an event when the measure exceeds

a predefined threshold.

P6 Adapter Enables communication between SMEPPLight and SMEPP. Providing moni-

tor service for the WSN.

P1 Responsible of supervising through video the sensor network when an event is

raised.

P2, …,P5 Monitors events on the sensor network.

P7,P8 Provides video streaming service to monitor a critical situation

This application requires working with SMEPP and SMEPP Light, so the adapter

takes a key role in this communication. The main efforts for programmers will be the

implementation of the services, because the peer implementations using SMEPP API

simplifies the code by abstracting the programmer of problems such as communica-

tion or security issues. Figure 4 shows the flow diagram of the camera peer and su-

pervisor peers required for this application where each of the boxes of the diagrams

represents an invocation of a primitive provided by SMEPP.

Fig. 3. Camera and Supervisor Peers

In the rest of the section we are going to briefly describe some of the main points

to develop a SMEPP-based application in the described scenario.

4.2 Creating Peers and the SMEPP API

The first steps related to the creation of a SMEPP application are usually the “crea-

tion” of the peer and the joining or creation of groups. Later, the peer will publish

some service or will invoke services of other peers. In order to do these tasks, the

SMEPP developer can use several primitives provided by an API. Of course, this API

will be different depending on the target language used (e.g. Java or nesC). The fol-

lowing table shows some of the primitives provided by the SMEPP API [7].

Table 2. SMEPP API primitives.

NewPeer Programs call the newPeer primitive to become peers

CreateGroup SMEPP groups are logical associations of peers in which services can
be published, and messages can be sent (either as service invoca-

tions/responses, or as raised events). Peers call the createGroup primi-
tive to start new peer groups.

JoinGroup Peers use the joinGroup primitive to enter a group (viz., to become

members of a group)

GetServices Returns the list of services which (optionally) matches a given pattern.

Invoke The invoke primitive serves to call an (one-way or request-response)
operation (identified by operationName) of a running service identi-

fied by id, which can be either groupServiceId, or peerServiceId, or

sessionId.

Publish Peers offer a service inside a groupId group through publish primitive.

Event Event raises (viz., notifies to the middleware) an eventName event.

Subscribe Entities (viz., peers or running services) use the subscribe primitive to

register themselves as

event listeners

First of all, the peer must be created, this is done though the newPeer primitive as

the following code exposes (the developer provides security credentials):

PeerManager peer = PeerManager.newPeer(myCredentials);

Once the peer is created, it is part of SMEPP (if the execution success) and it is

able to invoke any other provided primitive. After this step it can be provider or con-

sumer of services. In this scenario we have a video-streaming service and consumers

of that service pushing video data obtained. To do this, the peer has to be included in

a SMEPP group by creating a group or joining an existing group. The following code

shows the process of creating a SMEPP group:

//group creation
GroupDescription groupDescr = new GroupDescription(
 "WSNMonitoring",...);

GroupId gid = peer.createGroup(groupDescr);

When the peer is joined to one group, it can publish services as the following sec-

tion explains.

4.3 SMEPP Services and Video-streaming Service

SMEPP Services [11] can be: state-less or state-full services. The state less services

do not keep track of their interactions with clients. Clients can invoke the operations

of such services one or more times and in any order.

On the other hand, the state-full services keep track of their interactions with cli-

ents. We divide state-full services into session-less and session-full services. State-full

session-less services are services that have only one virtual communication channel,

which is shared by all clients, and which is active when the service is published.

In our application, we need session-full services to provide video-streaming ser-

vices. In order to transmit video from the wireless cameras (p7 and p8) to the supervi-

sor peer, SMEPP developer can carry out the following tasks:

• Supervisor peer offers a session-full service which repeatedly receives one-

way messages (exposing an operation) carrying video data.

• Cameras start a session of the above service and flushes data by repeatedly

invoking that operation. A timeout on each call allows the application to

send data without necessarily waiting for an acknowledgement.

The percentage of calls which terminate without raising a timeout exception

automatically identifies the amount of data which has surely been delivered. The

throughput can be varied independently from the timeout, by concurrently sending

data through different threads (each of them calling Invoke primitive on different bits

of data).

In order to provide a service (e.g. video streaming service), the peer must provide

an xml document describing the service, called “Contract” [12]. This contract will be

used for matching (which will be in turn used within discovery) and also for verifica-

tion and analysis. A contract must contain all the information that any client of the

service may need to discover, to instantiate, and to interact with the service. The

following code shows the publishing of a SMEPP service using a contract for the

video-streaming service:

serviceId = peer.publish(gid,

ContractLoader.loadXMLFromFile(
"VideoContract.xml"),

new SMEPPServiceGrounding(VideoService.class),

myPeer, new HashMap());

The service must also provide its behavior. Services are programmed in Java or

nesC (depending on the platform) and they must listen to the operations described in

their contracts.

 public void run() {
 ReceivedMessage message;
 Serializable[] data;
 while (true) {
 message = svc.receiveMessage("VideoServiceOperation",
 new Class[]{Byte[].class});
 // Store video information ...
 }

In the above code we can see the reception of SMEPP messages. These messages

have been sent by another peer joined to the same group of the service publisher.

4.4 SMEPP Light sample application and adaptor

We have developed an application for WSN using SMEPP Light. This application

has been done using nesC as the programming language and SMEPP Light as a nesC-

component that makes easy the programmer’s life. The use of SMEPP Light is really

similar to SMEPP code that is shown previously, but the main difference is that ser-

vices are very restricted here because of WSN restrictions, and services in SMEPP

Light are very basic ones are implemented using nesC commands and avoiding XML

in motes.

In the application, the motes create two groups, and depending on their positions

each sensor will join to a particular group.

event void Boot.booted() {
 pID = call SensorSmepp.smepp_newPeer(netKey, netMAC, per);
 //Other actions needed when booting the mote
 call SensorSmepp.smepp_getgroups(group);
);

event void SensorSmepp.getGroups_result(uint16_t gID[]) {
 uint8_t i;

for (i = 0; i < MAX_GROUPS_RECEIVED; i++) {
 if (gID[i] == group.ID) {
 founded = TRUE;

 }
}
if (found) {
 call TimerJoin.startOneShot(10);
}
else {
 call TimerCreateGroup.startOneShot(10);
}

}

In the code above is shown the code that is executed when the mote turns on, and

first of all it creates itself as a peer inside SMEPP Light, and invokes the command

asking for the getGroups primitive. This command will raise the getGroups_result as

soon as getGroups primitives finishes. Following it will check if the group that the

peer wants to join exists, if so it joins and otherwise it creates it.

The footprint is about 3008 bytes in RAM in the mote including the application

and the middleware and it is not so big taking into account the set of functionalities

that SMEPP Light offers.

SMEPP peers have to subscribe to WSN events in order to receive environmental

information so they can make the correct actions depending on the value sensed. To

do this, we need to use the so called SMEPP Light adaptor that is a Java-based appli-

cation that faces with WSN connection; it is component-based as well, so depending

on the type of base station (stargate device, MIB520 base station) the adaptor will

provide the appropriate component in order to manage the connection with sensors.

The adaptor basically manages the subscriptions between SMEPP and SMEPP Light,

converting 802.11 b/g packets into 802.15.4/Zigbee packets for the motes, and receiv-

ing the events from WSN and sending it to SMEPP peers.

5 Conclusions

SMEPP is a middleware specifically designed for the development of EP2P systems.

In this paper we have presented a case study for monitoring environmental conditions

in power plants and remote control of workers inside the plant. In order to help the

reader to understand how to develop this sample application we explained briefly the

component model and the Runtime Component Framework that allows its execution.

The focus of the SMEPP proposal was on the integration of security services and

network quality. From the security point of view, security was taken into an approach

from the very beginning of the project and it is now integrated into the current version

of the middleware. Quality of service has also being taken into account in the design.

The specification can be achieved in terms of service contracts and the component

model has been designed to be able to analyze and monitor the real-time behaviour of

all the components, including those related to basic communication support.

Acknowledgments. This work is fully supported by EU funded project FP6 IST-5-

033563

References

1. Costa, P. et al: The RUNES Middleware: A Reconfigurable Component-based Approach to

Networked Embedded Systems. 16th Annual IEEE Internacional Symposium on Personal

Indoor and Mobile Radio Communications IMRC'05), Berlin, Germany. September 2005.

2. Tarvainen, P.:.An Approach to Evaluate the Adaptability of Software Architectures. Pro-

ceedings of the 5th Workshop on System Testing and Validation, (ICSSEA 2007), Paris,

France, December 2007.

3. Vairo C.; Albano M.; Chessa S.: A Secure Middleware for Wireless Sensor Networks.

Middleware for Mobile Embedded Peer-to-Peer Systems 1st International Workshop. July

2008.

4. Díaz, M.; Garrido, D.; Llopis, L.; Rus, F.; Troya, J.M.: UM-RTCOM: An Analyzable

Component Model for Real Time Distributed Systems. J. Syst. Software (2007),

doi:10.1016/j.jss.2007.07.010

5. Microsoft .Net Web site. http://msdn.microsoft.com/netframework/

6. RTZen. UCI-DOC Group. http://doc.ece.uci.edu/rtzen/

7. SMEPP Web site. http://www.smepp.org

8. Sun Microsystems. Enterprise JavaBeans Specification 2.1. 2005.

9. TinyOS Web site. http://www.tinyos.net

10. Gay D.; Levis, P.; Von Behren R.; Welsh, M.; Brewer, E.; Culler, D.: A Holistic Approach

to Networked Embedded Systems. Proceedings of Programming Language Design and Im-

plementation, 2003.

11. Brogi, A.; Popescu, R.; Gutiérrez, F.; López P., Pimentel, E.: A Service-Oriented Model for

Embedded Peer-to-Peer Systems. In proceedings of the 6th International Workshop on the

Foundations of Coordination Languages and Software Architectures, Lisbon, Portugal, Sep-

tember 8, 2007.

12. Brogi, A.; Popescu, R.: Workflow Semantics of Peer and Service Behaviour. Proceedings

2nd IEEE International Symposium on Theoretical Aspects of Software Engineering, June

2008, Nanjing, China.

13. Roman R.; Fernandez-Gago, M.C.; Lopez, J.:. Featuring Trust and Reputation Manage-

ment Systems for Constrained Hardware Devices. Proceedings of the 1st International Con-

ference on Autonomic Computing and Communication Systems (Autonomics 2007), Rome

(Italy), October 2007.

14. Baek, J.; Foo, E.; Tan, H.; Zhou, J.: Securing Wireless Sensor Networks - Threats and

Countermeasures. Chapter 3 of "Security and Privacy in Wireless and Mobile Computing",

ISBN 978-1905886-906, Troubador Publishing, 2008.

15. López, J. Zhou, J.: Wireless Sensor Network Security. Cryptology & Information Security

Series, IOS Press, April 2008.

16. Barbarán, J.; Díaz, M.; Esteve, I.; Rubio, B.; RadMote: A mobile framework for radiation

monitoring in nuclear power plants. In Proceedings of the XXI International CESSE. May

2007.

17. Rubio. B; Díaz, M.; Troya. J.M.; Programming approaches and challenges for wireless

sensor network. In Second International Conference on Systems and Networks Communi-

cations. August 2007.

18. G. HeineMan and W. Council. Component-Based Software Engineering: Putting the pieces

together. Addison-Wesley: Reading, MA, 2001.

