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Abstract. This paper shows a new way of integrating task and data
parallelism by means of a coordination language. Coordination and com-
putational aspects are clearly separated. The former are established using
the coordination language and the latter are coded using HPF (together
with only a few extensions related to coordination). This way, we have a
coordinator process that is in charge of both creating the different HPF
tasks and establishing the communication and synchronization scheme
among them. In the coordination part, processor and data layouts are
also specified. The knowledge of data distribution belonging to the differ-
ent HPF tasks at the coordination level is the key for an efficient imple-
mentation of the communication among them. Besides that, our system
implementation requires no change to the runtime system support of the
HPF compiler used. We also present some experimental results that show
the efficiency of the model.

1 Introduction

High Performance Fortran (HPF) [1] has emerged as a standard data parallel,
high level programming language for parallel computing. However, a disadvan-
tage of using a parallel language like HPF is that the user is constrained by
the model of parallelism supported by the language. It is widely accepted that
many important parallel applications cannot be efficiently implemented follow-
ing a pure data-parallel paradigm: pipelines of data parallel tasks [2], a common
computation structure in image processing, signal processing or computer vision;
multi-block codes containing irregularly structured regular meshes [3]; multidis-
ciplinary optimization problems like aircraft design[4]. For these applications,
rather than having a single data-parallel program, it is more appropriate to sub-
divide the whole computation into several data-parallel pieces, where these run
concurrently and co-operate, thus exploiting task parallelism.

Integration of task and data parallelism is currently an active area of research
and several approaches have been proposed [5][6][7]. Integrating the two forms
of parallelism cleanly and within a coherent programming model is difficult [8].
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In general, compiler-based approaches are limited in terms of the forms of task
parallelism structures they can support, and runtime solutions require that the
programmer have to manage task parallelism at a lower level than data par-
allelism. The use of coordination models and languages to integrate task and
data parallelism [4][9][10] is proving to be a good alternative, providing a high
level mechanism and supporting different forms of task parallelism structures in
a clear and elegant way. Coordination languages [11] are a class of programming
languages that offer a solution to the problem of managing the interaction among
concurrent programs. The purpose of a coordination model and the associated
language is to provide a mean of integrating a number of possibly heterogeneous
components in such a way that the collective set forms a single application that
can execute on and take advantage of parallel and distributed systems.

BCL [12][13] is a Border-based Coordination Language focused on the solu-
tion of numerical problems, especially those with an irregular surface that can
be decomposed into regular, block structured domains. It has been successfully
used on the solution of domain decomposition-based problems and multi-block
codes. Moreover, other kinds of problems with a communication pattern based
on (sub)arrays interchange (2-D FFT, Convolution, solution of PDEs by means
of the red-black ordering algorithm, etc.) may be defined and solved in an easy
and clear way.

In this paper we describe the way BCL can be used to integrate task and
data parallelism in a clear, elegant and efficient way. Computational tasks are
coded in HPF. The fact that the syntax of BCL has a Fortran 90 / HPF style
makes that both the coordination and the computational parts can be written
using the same language, i.e., the application programmer does not need to learn
different languages to describe different parts of the problem, in contrast with
other approaches [7]. The coordinator process, besides of being in charge of creat-
ing the different tasks and establishing their coordination protocol, also specifies
processor and data layouts. The knowledge of data distribution belonging to the
different HPF tasks at the coordination level is the key for an efficient implemen-
tation of the communication and synchronization among them. In BCL, unlike
in other proposals [6][10], the inter-task communication schedule is established
at compilation time. Moreover, our approach requires no change to the runtime
support of the HPF compiler used. The evaluation of an initial prototype has
shown the efficiency of the model. We also present some experimental results.

The rest of the paper is structured as follows. In Sect. 2, by means of some
examples, the use of BCL to integrate task and data parallelism is shown. In
Sect. 3, some preliminary results are mentioned. Finally, in Sect. 4, some con-
clusions are sketched.

2 Integrating Task and Data Parallelism Using BCL

Using BCL, the computational and coordination aspects are clearly separated,
as the coordination paradigm proclaims. In our approach, an application consists
of a coordinator process and several worker processes. The following code shows



the scheme of both a coordinator process (at the left hand side) and a worker
process (at the right hand side).

program program_name Subroutine subroutine_name (. . .)
DOMAIN declarations DOMAIN declarations ! dummy
CONVERGENCE declarations CONVERGENCE declarations ! dummy
PROCESSORS declarations GRID declarations

.o GRID distribution

DISTRIBUTION information GRID initialization

DOMAINS definitions do while .not. converge

BORDERS definitions ..
e PUT_BORDERS
Processes CREATION Coe
end GET_BORDERS
Local computation
CONVERGENCE test
enddo

end subroutine subroutine_name
The coordinator process is coded using BCL and is in charge of:

— Defining the different blocks or domains that form the problem. Each one
will be solved by a worker process, i.e., by an HPF task.
— Specifying processor and data layouts.
— Establishing the coordination scheme among worker processes:
e Defining the borders among domains.
e Establishing the way these borders will be updated.
e Specifying the possible convergence criteria.
— Creating the different worker processes.

On the other hand, worker processes constitute the different HPF tasks that
will solve the problem. Local computations are achieved by means of HPF sen-
tences while the communication and synchronization among worker processes
are carried out through some incorporated BCL primitives.

The different primitives and the way BCL is used are shown in the next
sections by means of two examples. The explanation is self contained, i.e., no
previous knowledge of BCL is required.

2.1 Example 1. Laplace’s Equation

The following program shows the coordinator process for an irregular problem
that solves Laplace’s equation in two dimensions using Jacobi’s finite differences
method with 5 points.

Au =0 in 2 (1)
where u is a real function, {2 is the domain, a subset of R?, and Dirichlet bound-
ary conditions have been specified on 92, the boundary of (2:

u=g in o (2)



1) program examplel

2) DOMAIN2D u, v

3) CONVERGENCE c OF 2

4) PROCESSORS pl (4,4), p2(2,2)

5) DISTRIBUTE u (BLOCK,BLOCK) ONTO pil

6) DISTRIBUTE v (BLOCK,BLOCK) ONTO p2

7) u = (/1,1,Nxu,Nyu/)

8) v = (/1,1,Nxv,Nyv/)

9) u (Nxu,Ny1l,Nxu,Ny2) <- v (2,1,2,Nyv)
10) v (1,1,1,Nyv) <- u (Nxu-1,Nyl,Nxu-1,Ny2)
11) CREATE solve (u,c) ON pl
12) CREATE solve (v,c) ON p2
13) end

The domains in which the problem is divided are shown in Fig. 1 together with a
possible data distribution and the border between domains. Dot lines represent
the distribution into each HPF task. Line 2 in the coordinator process is used
to declare two variables of type DOMAIN2D, which represent the two-dimensional
domains. In general, the dimension ranges from 1 to 4. These variables take their
values in lines 7 and 8. These values represent Cartesian coordinates, i.e. the
domain assigned in line 7 is a rectangle that cover the region from point (1,1)
to (Nxu, Nyu). From the implementation point of view, a domain variable also
stores the information related to its borders and the information needed from
other(s) domain(s) (e.g. data distribution).

The border is defined by means of the operator <-. As it can be observed
in the program, the border definition in line 9 causes that data from column
2 of domain v refresh part of the column Nxu of domain u. Symmetrically, the
border definition in line 10, produces that data from column 1 of domain v are
refreshed by part of the column Nxu-1 of domain u.

A border definition can be optionally labeled with a number that indicates
the connection type in order to distinguish kinds of borders (or to group them
using the same number). The language provides useful primitives in order to ease
(or even automatically establish) the definition of domains and their (possibly

(Nxu, Nyu)
(Nxu, Ny2) : (Nxv, Nyv)
u v
JoNu, Ny 1)
1,1
1 (1, 1)

Fig. 1. Communication between two HPF tasks



overlapping) borders (e.g. intersection, shift, decompose, grow). The region
sizes at both sides of the operator <- must be equal (although not their shapes).
Optionally, a function can be used at the right hand side of the operator that
can take as arguments different domains [12].

Line 4 declares subsets of HPF processors where the worker processes are
executed. The data distribution into HPF processors is declared by means of
instructions 5 and 6. The actual data distribution is done inside the different
HPF tasks. The knowledge of the future data distribution at the coordination
level allows a direct communication schedule, i.e., each HPF processor knows
which part of its domain has to be sent to each processor of other tasks.

A CONVERGENCE type variable is declared in line 3, which is passed as an
argument to the worker processes spawned by the coordinator. The clause OF 2
indicates the number of HPF tasks that will take part in the convergence criteria.
The worker processes receive this variable as a dummy argument. However, when
the type of the dummy argument is declared, the clause OF is not specified,
as the worker processes do not need to know how many processes are solving
the problem. This way, the reusability of the workers is improved (coordination
aspects are specified in the coordinator process).

Lines 11 and 12 spawn the worker processes in an asynchronous way so that
both HPF tasks are executed in parallel. The code for worker processes is shown
in the following program:

1) subroutine solve (u,c)

2) DOMAIN2D u

3) CONVERGENCE c

4) double precision, GRID2D :: g, g_old

5) 'hpf$ distribute (BLOCK,BLOCK) :: g, g_old
6) g%DOMAIN = u

7) g_old/,DOMAIN = u

8) call initGrid (g)

9) do i=1, niters

10) g_old = g

11) PUT_BORDERS (g)

12) GET_BORDERS (g)

13) call computeLocal (g,g_old)

14) error = computeNorm (g,g_old)

15) CONVERGE (c,error,maxim)

16) Print *, "Max norm: "
17) enddo

18) end subroutine solve

, error

Lines 2 and 3 declare dummy arguments u and c, which are passed from
the coordinator. The GRID attribute appears in line 4. This attribute is used
to declare a record with two fields, the data array and an associated domain.
Therefore, the variable g contains a domain, g%DOMAIN, and an array of double
precision numbers, g),DATA, which will be dynamically created when a value is



assigned to the domain field in line 6. This is an extension of our language since
a dynamic array can not be a field of a standard Fortran 90 record.

Note that line 5 is a special kind of distribution since it produces the distri-
bution of the field DATA and the replication of the field DOMAIN.

Statement 10 produces the assignment of two variables with GRID attribute.
Since g_old has its domain already defined, this instruction will just produce
a copy of the values of field g/DATA to g_old%DATA. In general, a variable with
GRID attribute can be assigned to another variable of the same type if they have
the same domain size or if the assigned variable has no DOMAIN defined yet. In
this case, before copying the data stored in the DATA field, a dynamic allocation
of the field DATA of the receiving variable is carried out.

Lines 11 and 12 are the first where communication is achieved. The instruc-
tion PUT_BORDERS (g) in line 11 causes that the data from g/%DATA needed by the
other task (see instructions 9 and 10 in the coordinator process) are sent. This
is an asynchronous operation. In order to receive the data needed to update the
border associated to the domain belonging to g, the instruction GET_BORDERS (g)
is used in line 12. The worker process will suspend its execution until the data
needed to update its border are received.

In this example, there is only one border for each domain. In general, if several
borders are defined for a domain, PUT_BORDERS and GET_BORDERS will affect all
of them. However, both instructions may optionally have a second argument, an
integer number that represents the kind of border that is desired to be ”sent”
or "received”.

Local computation is accomplished by the subroutines called in lines 13 and
14 while the convergence method is tested in line 15. The instruction CONVERGE
causes a communication between the two tasks that share the variable c. In
general, this instruction is used when an application needs a reduction of a
scalar value.

In order to stress the way our approach achieves the code reusability, Fig. 2
shows another irregular problem that is solved by the following program:

Nru
v
Ndv
u
Nr w
w
Ncu

Fig. 2. Another irregular problem



1) program examplel_bis

2) DOMAIN2D u, v, w

3) CONVERGENCE c OF 3

4) PROCESSORS pl (4,4), p2(2,2), p3(2,2)
5) DISTRIBUTE u (BLOCK,BLOCK) ONTO pil
6) DISTRIBUTE v (BLOCK,BLOCK) ONTO p2

7) DISTRIBUTE w (BLOCK,BLOCK) ONTO p3

8) u= (/1,1,Ncu,Nru/)

9) v = (/1,1,Ncv,Nrv/)

10) w = (/1,1,Ncw,Nrw/)

11) u (Ncu,1,Ncu,Nrw) <- w (2,1,2,Nrw)

12) u (Ncu,Ndv,Ncu,Nru) <- v (2,1,2,Nrv)

13) v (1,1,1,Nrv) <- u (Ncu-1,Ndv,Ncu-1,Nru)
14) w (1,1,1,Nrw) <- u (Ncu-1,1,Ncu-1,Nrw)

15) CREATE solve (u,c) ON pil
16) CREATE solve (v,c) ON p2
17) CREATE solve (w,c) ON p3
18) end

The most relevant aspect of this example is that subroutine solve does not need
to be modified, it is the same one than in the example before. This is due to the
separation that has been done between the definition of the domains (and their
relations) and the computational part. Lines 15, 16 and 17 are instantiations of
the same process for different domains.

2.2 Example 2. 2-D Fast Fourier Transform

2-D FFT transform is probably the application most widely used to demonstrate
the usefulness of exploiting a mixture of both task and data parallelism [6][10].
Given an NxN array of complex values, a 2-D FFT entails performing N inde-
pendent 1-D FFTs on the columns of the input array, followed by N independent
1-D FFTs on its rows.

1) program example?2

2) DOMAIN2D a, b

3) PROCESSORS pl1 (Np), p2(Np)

4) DISTRIBUTE a (*,BLOCK) ONTO pi1
5) DISTRIBUTE b (BLOCK,*) ONTO p2
6) a = (/1,1,N,N/)

7) b= (1,1,N,N/)

8) a<-b

9) CREATE stagel (a) ON pi1

10) CREATE stage2 (b) ON p2

11) end

In order to increase the solution performance and scalability, a pipeline solution
scheme is preferred as proved in [6] and [10]. This mixed task and data parallelism



scheme can be easily codified using BCL. The code above shows the coordinator
process, which simply declares the domain sizes and distributions, defines the
border (in this case, the whole array) and creates both tasks. For this kind of
problems there is no convergence criteria.

The worker processes are coded as follows. The stage 1 reads an input ele-
ment, performs the 1-D transformations and calls PUT_BORDERS (a). The stage
2 calls GET_BORDERS (b) to receive the array, performs the 1-D transformations
and writes the result. The communication schedule is known by both tasks, so
that a point to point communication between the different HPF processors can
be carried out.

subroutine stagel (d) subroutine stage2 (d)
DOMAIN2D 4 DOMAIN2D d
complex, GRID2D :: a complex, GRID2D :: b
'hpf$ distribute a(*,block) 'hpf$ distribute b(block,*)
a%DOMAIN = d b),DOMAIN = d
do i= 1, n_images do i= 1, n_images
! a new input stream element GET_BORDERS (b)
call read_stream (a)DATA) 'hpf$ independent
'hpf$ independent do irow = 1, N
do icol =1, N call fftSlice(b%DATA(irow,:))
call fftSlice(a%DATA(:,icol)) enddo
enddo ! a new output stream element
PUT_BORDERS (a) call write_stream (b%DATA)
enddo enddo
end end

3 Preliminary Results

In order to evaluate the performance of BCL, a prototype has been developed.
Several examples have been used to test it and the obtained preliminary results
have successfully proved the efficiency of the model [13]. Here, we show the
results for the two problems explained above.

A cluster of 4 nodes DEC AlphaServer 4100 interconnected by means of
Memory Channel has been used. Each node has 4 processors Alpha 22164 (300
MHz) sharing a 256 MB RAM memory. The operating system is Digital Unix
V4.0D (Rev. 878). The implementation is based on source-to-source transfor-
mations together with the necessary libraries and it has been realized on top of
the MPI communication layer and the public domain HPF compilation system
ADAPTOR [14]. No change to the HPF compiler has been needed.

Table 1 compares the results obtained for Jacobi’s method in HPF and in
BCL considering 2, 4 and 8 domains with a 128 x 128 grid each one. The program
has been executed for 20000 iterations. BCL offers a better performance than
HPF due to the advantage of integrating task and data parallelism. When the
number of processors is equal to the number of domains (only task parallelism



Table 1. Computational time (in seconds) and HPF/BCL ratio for Jacobi’s method

Domains|Sequential HPF vs. BCL
(ratio)
4 Processors |8 Processors|16 Processors
2 97.05 42.40/41.27 | 35.05/27.66 | 33.73/22.67
(1.03) (1.27) (1.49)
4 188.88 93.90/90.06 | 70.75/45.06 | 69.61/29.28
(1.04) (1.57) (2.38)
8 412.48 |185.62/199.66|150.54/95.85| 163.67/56.43
(093) | (1.57) (2.90)

is achieved) BCL has also shown better results. Only when there are more do-
mains than available processors, BCL has shown less performance because of the
context change overhead among weight processes.

Table 2 shows the execution time per input array for HPF and BCL imple-
mentations of the 2-D FFT application. Results are given for different problem
sizes. Again, the performance of BCL is generally better. However, HPF per-
formance is near BCL as the problem size becomes larger and the number of
processors decreases, as it also happens in other approaches [6]. In this situation
HPF performance is quite good and so, the integration of task parallelism does
not contribute so much.

4 Conclusions

BCL, a Border-based Coordination Language, has been used for the integration
of task and data parallelism. By means of some examples, we have shown the
suitability and expressiveness of the language. The clear separation of compu-
tational and coordination aspects increases the code reusability. This way, the
coordinator code can be re-used to solve other problems with the same geom-

Table 2. Computational time (in milliseconds) and HPF/BCL ratio for the 2-D FFT
problem

Array Size|Sequential HPF vs. BCL
(ratio)
4 Processors|8 Processors|16 Processors
32 x 32 1.507 0.947/0.595 | 0.987/0.475 | 1.601/1.092
(1.59) (2.08) (1.47)
64 x 64 5.165 2.189/1.995 | 1.778/1.238 | 2.003/1.095
(1.09) (1.44) (1.83)
128 x 128 | 20.536 |7.238/7.010 | 5.056/4.665 | 4.565/3.647
(1.03) (1.08) (1.25)




etry, independently of the physics of the problem and the numerical methods
employed. On the other hand, the worker processes can also be re-used with
independence of the geometry. The evaluation of an initial prototype by means
of some examples has proved the efficiency of the model. Two of them have been
presented in this paper.
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