
Bridging existing Web Modeling Languages to Model-
Driven Engineering: A Metamodel for WebML

Andrea Schauerhuber*
Women’s Postgraduate College of

Internet Technologies
Vienna University of Technology

Austria

schauerhuber@wit.tuwien.ac.at

Manuel Wimmer‡
Business Informatics Group

Vienna University of Technology,
Austria

wimmer@big.tuwien.ac.at

Elisabeth Kapsammer
Information Systems Group

University of Linz,
Austria

ek@ifs.uni-linz.ac.at

ABSTRACT
Metamodels are a prerequisite for model-driven engineering
(MDE) in general and consequently for model-driven web
engineering in particular. Various modeling languages, just as in
the web engineering field, however, are not based on metamodels
and standards but instead define proprietary languages rather
focused on notational aspects. Thus, MDE techniques and tools
can not be deployed for such languages. The WebML web
modeling language is one example that does not yet rely on an
explicit metamodel. Instead, it is implicitly defined within the
accompanying tool in terms of a document type definition (DTD),
i.e., a grammar-like textual definition for specifying the structure
of XML documents. Code generation then has to rely on XSLT-
based model-to-code transformations.
In this paper, we propose a metamodel for WebML which is
based on the Meta Object Facility (MOF). To establish such a
metamodel a semi-automatic approach is provided that allows to
generate MOF-based metamodels from DTDs. The metamodel for
WebML accomplishes the following aims: First, it represents an
initial step towards a transition to employing MDE techniques
(e.g., model transformations or language extensions through
profiles) within the WebML design methodology. Second, it
represents an important step towards a common metamodel for
Web modeling. Third, the provision of a MOF-based metamodel
ensures interoperability with other MDE tools.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design – methodologies,
representation.

General Terms
Design, Standardization, Languages

Keywords
Web Modeling Language, Metamodel, DTD, Model Driven Web
Engineering

1. INTRODUCTION*‡
In the web engineering research field various modeling
approaches have been proposed in the past 10 years, such as
WebML [7], UWE [15], W2000 [2], OOHDM [29], OO-H [10],
WSDM [9], and OOWS [27], aiming at counteracting a
technology-driven and ad hoc development of web applications.
At the same time, model-driven engineering (MDE) [5] has
received considerable attention and is well on its way to
becoming a promising paradigm in software engineering. In
MDE, models replace code as the primary artifacts in the software
development process. MDE forces developers to focus on
modeling the problem domain and not on programming one
possible (platform-specific) solution. Thus, the abstraction from
specific programming platforms by modeling at a platform-
independent level and the definition of model transformations
allow generating several platform-specific implementations.
While some of the above mentioned web modeling approaches
already provide tools and techniques for modeling web
applications in a platform-independent way, their code generation
facilities, if existent, mostly support one specific platform, only,
yielding transformations from a platform-independent model
directly to code. For these reasons, although first proposals for a
transition to the model-driven paradigm in web engineering have
already been made, e.g., [18], [17], [32], [30], [19], existing web
modeling approaches represent model-driven approaches in the
sense of MDE to a limited extent, only.
Thus, the demand arises to bridge existing Web modeling
methodologies with MDE. In this respect, metamodels represent
an important prerequisite. In contrast to the MDE paradigm,
however, most web modeling languages originally have been
designed without using meta-modeling techniques, rather focused
on notational aspects of the language. With no explicit
metamodels available, however, one can not profit from MDE’s
advantages such as model transformations and a common format
for model exchange (e.g., XMI [22]). The WebML [7] web
modeling language is one example that does not yet rely on an
explicit metamodel. Instead, it is implicitly defined within the

* This work has been partly funded by the Austrian Federal

Ministry for Education, Science, and Culture, and the European
Social Fund (ESF) under grant 31.963/46-VII/9/2002.

‡ This work has been partly funded by the Austrian Federal
Ministry of Transport, Innovation and Technology (BMVIT)
and FFG under grant FIT-IT-810806.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

accompanying tool WebRatio in terms of a DTD [35], i.e., a
grammar-like textual definition for specifying a structure for
XML documents. In contrast to MOF’s [21] expressivity,
however, DTDs represent a rather restricted mechanism for
describing languages. Moreover, the text-based representation of
DTDs hampers on the one hand their readability and
understandability for humans and on the other hand the
language’s extensibility. WebRatio first, internally represents
models in XML [35], and second, uses XSLT [37] for code
generation. Since XSLT, however, is not intended for heavy
structural transformations, writing XSLT programs for code
generation is difficult and error-prone. Concerning these
problems, a metamodel-based approach allows expressing
transformation rules in a more compact and readable way by
using existing model transformation languages such as QVT [28]
and ATL [14].
To make WebML MDE-capable, we propose a MOF-based
metamodel for WebML. To establish such a metamodel, a semi-
automatic approach [33] to generating MOF-based metamodels
from DTD-based language definitions has been developed. The
contributions of a metamodel for WebML are as follows: (1) Such
a metamodel represents an important prerequisite and thus, an
initial step towards a transition to employ model-driven
engineering techniques (e.g., model transformations or language
extensions through profiles) within the WebML design
methodology. (2) Additionally, it is also an important step
towards a common reference metamodel for Web modeling
languages [15]. (3) The provision of a MOF-based metamodel
ensures interoperability with other MDE tools. Moreover, our
transformation approach enables the visualization of any DTD-
based language in terms of MOF-based metamodels and thus,
enhances the understandability of those languages.
The remainder of this paper is organized as follows. Section 2
presents the architecture of our metamodel generation framework,
including on the one hand a set of transformation rules, heuristics,
and recommended manual refactorings, and on the other hand an
implementation within the MetaModelGenerator (MMG), which
is based on the Eclipse Modeling Framework (EMF). In Section
3, we discuss the semi-automatically generated WebML
metamodel. Section 4 gives an overview of related work. Finally,
we outline conclusions and future work in Section 5.

2. FROM DTDs TO METAMODELS
Formal languages require precise definitions in terms of a meta-
language in order to be understandable by computers. In the past,
various meta-languages have been employed for defining formal
languages. Amongst them are EBNF [34] for describing the
syntax of (programming) languages, DTD and XML Schema [36]
for defining the structure of XML documents in terms of elements
and attributes, and MOF, which represents the state-of-the-art for
defining modeling languages. In Figure 1, we illustrate these
relationships and our transformation framework [33] within the
realms of the Object Management Group’s (OMG) four-layer
architecture [24].
According to [5], the relation between a model and its metamodel
is also related to the relation between a program and the
programming language in which it is written, defined by its
grammar, or between an XML document and the defining XML
schema or DTD. Hence, in OMG’s four-layer architecture DTDs
can be assigned to the same layer (M2) as metamodels and XML

documents can be assigned to the same layer (M1) as models. In
particular, Figure 1 depicts the relationship between on the one
hand languages (M2), e.g., specific DTDs such as the WebML
DTD, general-purpose metamodels like UML, and domain-
specific metamodels and on the other hand representations of the
real world (M1), e.g., XML documents and (UML) models. The
upper part of Figure 1 indicates the fact that languages themselves
may be formally defined in terms of a meta-language (M3). A
DTD must conform to the DTD-grammar described in EBNF and
metamodels must conform to MOF. Correspondences (C)
between language elements of the DTD-grammar and MOF can
be used for transforming a particular DTD into a MOF-based
metamodel. These generic correspondences are implemented as
transformation rules and heuristics in the MetaModelGenerator
(MMG), which takes a DTD as input and produces a
corresponding MOF-based metamodel.

M2

M3

M1

C

«conformsTo»

Metamodel

«conformsTo»

«conformsTo»

«conformsTo»

«implements»

«parses» «generates»

Model

MOF

DTD

DTD-Grammar

XMLDocument

M0

«representedBy»«representedBy»Real WorldReal World
ModelsModels

MMG

M2

M3

M1

C

«conformsTo»

Metamodel

«conformsTo»

«conformsTo»

«conformsTo»

«implements»

«parses» «generates»

Model

MOF

DTD

DTD-Grammar

XMLDocument

M0

«representedBy»«representedBy»Real WorldReal World
ModelsModels

MMG

Figure 1: Language Layers and the MetaModelGenerator

2.1 MetaModelGenerator
Our transformation framework for generating metamodels from
DTDs is based on a two-phase process. While in the first phase a
preliminary metamodel can be automatically generated using a set
of transformation rules and heuristics, in the second phase explicit
user interaction is required in order to improve the semantics of
the metamodel by certain refactoring actions, since DTDs offer
less semantic expressiveness than MOF.

Heuristics

XMI-Serializer

<ecore class>
<ecore>

<ecore class>
<ecore att>

Omondo

DTD

XMI

MetaModelGenerator
(MMG)

User

DTD element type
object graph

Metamodel
element object
graph

DTD-Parser

<!ELEMENT A>
<!ATTLIST A>

<!ELEMENT B>
<!ATTLIST B>

<!ELEMENT C>
<!ATTLIST C>

Semantic
enrichment

Transformer «uses»

Figure 2: Architecture and Mode of Operation of the MMG

Figure 2 illustrates the DTD-to-MOF framework and
implementation details of the MMG, which is based on the
Eclipse Modeling Framework (EMF)2 and on an open source
DTD parser3. In a first step a specific DTD serves as input to the
DTD parser, which parses the DTD and builds a Java object graph
of DTD element types in memory. Then each element type in the
object graph is visited and transformed according to the
transformation rules and heuristics described in Section 2.3.1 and
Section 2.3.2, respectively. Each transformation rule is
implemented as a separate Java method which takes DTD element
type objects as input and generates the objects for the
corresponding metamodel elements. If a transformation rule uses
a heuristic, then the corresponding method calls a helper method
which implements the heuristic. As soon as the complete element
object graph of the metamodel has been generated, the default
XMI Serializer of EMF is activated in order to serialize the
metamodel as an XMI file. This XMI file can be loaded into
OMONDO4 - a graphical editor for Ecore-based metamodels,
available as an Eclipse plug-in. In a last step, the metamodel
should be refactored by a user according to the semantic
enrichment rules explained in Section 2.3.3.

2.2 Concepts of DTDs and Metamodels
In the following, we will provide a brief introduction to the main
concepts of DTD and MOF. Afterwards, we give an explanation
of their correspondences and propose resulting transformation
rules and heuristics. Since by the time of writing there is no
standardized implementation of MOF 2.0 available, we are using
Ecore, a slightly modified EMOF5 implementation in Java, which
is provided by the EMF. Ecore’s concepts essentially correspond
to EMOF, which is sufficient in the context of this paper. The
concepts of DTD and Ecore are given in terms of UML class
diagrams (cf. Figure 3 and Figure 4). With respect to Figure 1,
these two diagrams belong to M3 and represent the operands on
which to define correspondences.
The UML class diagram given in Figure 3 presents the most
important DTD concepts and has been designed based on
previous work [13] and the DTD-grammar described in EBNF.

DTD

XMLCompositeET

*1
XMLElemType

XMLAtomicET XMLEmptyET

XMLAttribute

*XMLCompositeET
MixedContent

XMLCompositeET
ElemContent

1..*

1

1..*

1

XMLDTD

*

XMLElemType

**

XMLContentParticle

XMLSequence XMLChoice

2..*

1

• ID
• IDREF
• IDREFS
• ENTITY
• ENTITIES
• NMTOKEN
• NMTOKENS

XMLEnumAtt

XMLTokenAtt

XMLStringAtt

XMLEnumLiteral

name:String

kind:TokenKind

1

1..*

name:String
declaration:AttDec

notation:Boolean

cardinality:ContCard [0..1]

«enumeration»
TokenKind

• default_value
• #REQUIRED
• #IMPLIED
• #FIXED

«enumeration»
AttDec

• zero-or-one
• zero-or-many
• one-or-many

«enumeration»
ContCard

Figure 3: Overview of DTD language concepts

2 http://www.eclipse.org/emf
3 http://www.wutka.com/dtdparser.html
4 http://www.omondo.de/
5 MOF consists of two parts, namely essential MOF (EMOF) and

complete MOF (CMOF).

Element type declarations are first-class citizens in DTDs.
Element types (XMLElemType) have a name and are specialized
into XMLAtomicET (contains no other element types but character
data), XMLEmptyET (no content is allowed), XMLAnyET (the
content is not constrained – this declaration is not adequate for
language definitions and is therefore missing in Figure 3),
XMLCompositeETMixedContent (a mix of character data and
child element types), and XMLCompositeETElemContent
(consists of an XMLContentParticle). An XMLContentParticle is
either an XMLSequence, an XMLChoice, or an XMLElemType).
An XMLChoice or an XMLSequence can be enclosed in
parentheses for grouping purposes and suffixed with a ‘?’ (zero or
one occurrences), ‘*’ (zero or more occurrences), or ‘+’ (one or
more occurrences). For a single element type the cardinality can
also be described by one of the three mentioned cardinality
symbols. The absence of a particular symbol, however, denotes a
cardinality of exactly one.
Attribute-list declarations declare one or multiple XMLAttributes
(i.e., name-value pairs) for a single element type. Each
XMLAttribute has a name, a data type, and a default declaration.
The most commonly used data types for attributes are: CDATA
(String), ID, IDREF (refers to one ID-typed element), IDREFS
(refers to multiple ID-typed elements), and Enumeration. There
are four possibilities for default declarations: #IMPLIED (zero or
one), #REQUIRED (exactly one), #FIXED (the attribute value is
constant and immutable), and Literal (the default value is a quoted
string).
Figure 4, summarizes the most important concepts of Ecore.

Ecore

EModelElement

EAnnotation ENamedElement

ETypedElement EClassifier EPackage

EClass EDataType

EStructuralFeature

EAttribute

EReference
changeable : boolean
defaultValue : String

EEnum

EEnumLiteral

name : String

ordered : boolean
lowerBound : int
upperBound : int

containment : boolean

id : boolean

abstract : boolean

0..*

0..*

0..*
0..*

0..*

0..*

source : String

eSuperTypes

eOpposite
0..1

1

eReferenceType 1

eSuperPackage

eSubPackages

1

1 1

1

1

0..1
eType

Figure 4: Overview of Ecore language concepts6

EClasses are the first-class citizens in Ecore-based metamodels.
An EClass may have multiple EReferences and EAttributes for
defining its properties as well as multiple super classes.
An EAttribute is part of a specific EClass. The data type of an
attribute is either a simple data type or an enumeration, i.e.,
EEnum. Additionally, an attribute can have a lower and an upper
bound multiplicity.
EReference is - analogous to EAttribute - part of a specific EClass
and can have a lower and an upper bound multiplicity. In
addition, an EReference refers to an EClass and optionally to an

6 Based on http://download.eclipse.org/tools/emf/2.2.0/javadoc/

org/eclipse/emf/ecore/package-summary.html#details

opposite EReference for expressing bi-directional relationships.
Besides, a reference can be declared as a containment reference.
EPackages group EClasses, EEnums, as well as nested
EPackages. Each element is directly owned by a package and
each package can contain multiple model elements.
EDataTypes serve for defining the types of attributes. String,
Boolean, Integer, and Float are part of Ecore’s default data types
set.
EEnum allows to model enumerations of literals and can be used
as an attribute’s data type. An EEnum owns an arbitrary amount
of values, i.e., EEnumLiterals.
EAnnotations are used for describing additional information
which cannot be presented directly in Ecore-based metamodels.
Each model element can have multiple annotations and each
annotation belongs to a specific model element.

2.3 DTD – Metamodel Correspondences
In the following we give a brief overview of our transformation
framework consisting of a set of transformation rules (cf. Section
2.3.1), heuristics (cf. Section 2.3.2), and manual refactorings (cf.
Section 2.3.3) and refer the interested reader to [33] for a more
elaborate discussion.

2.3.1 Transformation Rules
We designed transformation rules and sub rules, first, for
transforming element types of DTDs and second, for transforming
their attributes. Some of them are supported by heuristics (cf.
Section 2.3.2) which lead to improved readability and higher
quality of the metamodel but require some user validation (cf.
Section 2.3.3). Table 1 summarizes the proposed transformation
rules.
Rule 1 – DTD::XMLElemType_2_Ecore::EClass. For each
XMLElemType an EClass is created and the name of the EClass is
set to the element type name. Depending on the particular
subclass of XMLElemType additional metamodel elements have to
be created in the transformation process (cf. Table 1).
Rule 1.1 - DTD::XMLContentParticle.cardinality_2_Ecore::
EReference.multiplicity. Each XMLContentParticle may have a
certain cardinality, which is represented in metamodels through
multiplicity (lower/upper bound) of the reference end.
Rule 2 – DTD::XMLAttribute_2_ECore::EAttribute. For each
XMLAttribute an EAttribute is created, which is attached to the
EClass representing the XMLElemType, which in turn owns the
XMLAttribute. The name of the EAttribute is set to the name of
the XMLAttribute. The data type of XMLAttribute is one of the
following: {CDATA, ID, IDREF, IDREFS, Enumeration} with
each requiring an appropriate transformation (cf. Table 1).
Rule 2.1 – DTD::XMLAttribute.cardinality_2_Ecore::
EAttribute.multiplicity. Attributes in both, DTDs and metamodels
have a certain kind of cardinality. In DTDs, the cardinality of an
XMLAttribute is determined on the one hand by the differentiation
between single-valued (e.g., ID, CDATA, and IDREF) and multi-
valued (e.g., IDREFS) and on the other hand by the XMLAttribute
declaration (#REQUIRED, #IMPLIED, #FIXED, and default
value). Table 1 illustrates how XMLAttribute cardinalities are
transformed into EAttribute multiplicities.

Table 1: Transformation rules between DTD and Ecore
 Rule DTD Concept Ecore Concept

R 1 XMLElementType (ET) EClass

 XMLElementType. name EClass.name

(1) XMLEmptyET no additional elements

(2) XMLAtomicET EAttribute for PCDATA

(3) XMLCompositeET
ElemContent

Containment References

(4) XMLCompositeET
MixedContent

Containment References,
EAttribute for PCDATA

(5) XMLSequence, XMLChoice EClasses annotated with
«SEQ» and «ALT», resp.

R1.1 XMLContentParticle.cardinality EReference.multiplicity

(1) Zero-or-one (?) 0..1

(2) Zero-or-more (*) 0..*

(3) One-or-more (+) 1..*

XM
L

El
em

en
t T

yp
e

(4) Default, no symbol 1

R2 XMLAttribute EAttribute

 XMLAttribute.name EAttribute.name

(1) CDATA String

(2) ID String, Attr. id set true

(3) IDREF String or Heuristic 1

(4) IDREFS String or Heuristic 1

XMLEnum EEnum or Heuristic 2 (5)

 XMLEnumLiteral EEnumLiteral

R2.1 XMLAttribute.cardinality EAttribute.multiplicity

Single-valued 1 (defaultValue)
(1) Default value

Multi-valued 1..* (defaultValue)

Single-valued 1 (dV, unchangeable)
(2) #FIXED

Multi-valued 1..* (dV, unchangeable)

Single-valued 1
(3) #REQUIRED

Multi-valued 1..*

Single-valued 0..1

XM
L

At
tr

ib
ut

e

(4) #IMPLIED
Multi-valued 0..*

2.3.2 Heuristics
The effectiveness of the proposed heuristics is strongly correlated
with the quality of the DTDs’ design. For example, the heuristics
operate more effectively if naming conventions, e.g., for IDREFs,
are used or the content of the DTD is split up into several external
DTDs, which group related element types. The proposed
heuristics are deployed to exploit the following semantically rich
language constructs of Ecore, namely (1) typed references, (2)
data types, and (3) packages as a grouping mechanism. The
heuristics of our framework are described in the following and
summarized in Table 2.

Heuristic 1 - IDREF(S) Resolution. A DTD does not restrict
which element types can be referenced from an attribute of type
IDREF or IDREFS. Thus, it is possible to reference any element
having an ID attribute in an XML document from any IDREF or
IDREFS attribute. Due to this peculiarity of DTDs, it is neither
possible to determine if certain element types may be referenced,

only, nor which element type(s) may be referenced based on the
information given in the DTD. Sometimes, however, it is possible
to find the referenced element types relying on naming
conventions of element types and attributes. Note, that the user
still must validate the generated references in order to detect
random name-matches, which means that a referenced class does
not correspond to the intended referenced element.
Heuristic 2 - Boolean Identification. DTDs do not allow to
specify XML attributes of type Boolean explicitly. Instead, an
element’s attribute can be of type Enumeration with two literals,
e.g., true and false. In this case Rule 2 produces an EEnumeration
with two literals, namely true and false. For this special case,
however, an attribute of type Boolean is semantically richer and
more compact. Heuristic 2 recognizes such optimization
possibilities and generates an attribute of type Boolean.

Heuristic 3 - Grouping Mechanism. In DTDs, there is no
mechanism for grouping related element declarations. In
metamodels on the contrary, packages are the intended grouping
mechanism. This feature allows hierarchically structured
metamodels, which are more readable and better understandable
than flattened metamodels. In DTDs, the grouping mechanism can
be simulated by defining external DTDs and referencing these
from within a so called root DTD. A root DTD is equivalent to a
root package in a metamodel and external DTDs are equivalent to
subpackages of the root package.

Table 2: Heuristics

Heuristic DTD Concept Ecore Concept

H1

If (XMLTokenAtt.kind ==
IDREF) &&
(XMLElemType.name ==
XMLAttribute.name)

1) EReference from
EAttribute with type IDREF
to EClass 2) annotate with
«IDREF(S)»

H2
If XMLEnumAtt is one of
{true, false}, {1, 0}, {on,
off}, {yes, no}

EAttribute.type is Boolean

H3 If DTD imports external
DTDs

EPackages of the external
DTDs are nested within the
root DTD EPackage

2.3.3 Semantic enrichment of generated metamodels
The last step towards a MOF-based metamodel requires user
interaction for semantic enrichment as well as validation of the
automatically produced metamodel. Such user interactions are
strongly recommended because DTDs are poorer in semantics
than MOF-based metamodels, which is due to a limited set of
concepts. The most important semantic enrichment tasks require
domain knowledge and concern the following problems of DTDs:
(1) DTDs provide no explicit concepts to express inheritance.
Thus, the user has to manually refactor the generated metamodels
in order to achieve inheritance relationships, e.g., by introducing
new (abstract) classes and reduce redundant definitions of
attributes and references, leading to an improved structure and
higher readability.
(2) DTDs have a limited set of data types that can not be extended
(e.g., to support Integer or Boolean data types). Thus, the user has
to check all attributes of the generated metamodel, if any of them
should be of type Integer or another special type.
(3) Some IDREF(S) may be automatically resolved according to
Heuristic 1. Due to the possibility of random name matches,
however, the user has to validate if the resolution of the

IDREF(S) is correct or if another class should be referenced.
Furthermore, the framework currently marks all IDREF(S)
attributes that could not be resolved by naming conventions.
Thus, the user has to refactor all attributes which are marked with
the annotation «IDREF(S) must be resolved manually».
Knowledge of the problem domain is required to create the
corresponding references to the intended classes.
(4) It is not possible to describe bi-directional associations in
DTDs using the inherent mechanisms (i.e., IDREF(S)). In
contrast, metamodels use bi-directional associations as a central
modeling concept. In particular, in Ecore two uni-directional
references are connectable through the eOpposite attribute of
class EReference to represent bi-directional associations. DTDs
lack this information which requires the user to manually connect
two uni-directional references resulting from IDREF(S) attributes
and mark them as bi-directional associations.

3. A METAMODEL FOR WebML
In the following we present an Ecore-based metamodel for
WebML. We first give an overview on the package structure (cf.
Section 3.1) and then describe some of the packages in more
detail7 (cf. Section 3.2 - 3.5). Concluding this section, we point
out problematic parts of the WebML DTD, with respect to an
unambiguous language definition due to DTD’s weaker semantic
expressiveness, and discuss the solutions to those problems within
the WebML metamodel (cf. Section 3.6).

3.1 Overview
The WebML language definition consists of several DTDs with
WebML.dtd being the root DTD that imports the others. In the
following we focus on the main language concepts that have been
introduced in [7] and that are defined within Structure.dtd and
Navigation.dtd. Other tool-related DTDs that specify the mapping
to a relational database and the graphical illustration of WebML
elements within the editor are not regarded in this paper.
Figure 5 presents a high-level view of the semi-automatically
generated WebML metamodel, i.e., its packages and their
interrelationships.

WebML

Content

Hypertext Content
Management

Access
ControlHypertext

Organization
CreateUnit
ModifyUnit

ConnectUnit

ChangeGroupUnit
LoginUnit

DataUnit
IndexUnit

Link

Siteview
Area
Page

Entity
Relationship

Attribute

Figure 5: WebML Packages View

While Structure.dtd corresponds to the Content package in Figure
5, we have reorganized the concepts from Navigation.dtd into
four packages, namely Hypertext, ContentManagement,

7 The complete metamodel is available at http://big.tuwien.ac.at/

projects/webml/. For an in-depth description of each modeling
concept we refer the reader to [7].

HypertextOrganization, and AccessControl. Concepts from the
Content package are used for modeling the content level of a web
application. The other packages contain modeling concepts for the
hypertext level. Some concepts from the HypertextOrganization
package, e.g., Page, can also be found at the presentation level.
The integration of a Presentation package, however, is subject to
future work, since WebML provides design support for the
presentation level within the WebRatio tool, only, and these
mechanisms have not been defined in [7] as being part of the
language.

3.2 Content Package
The Content package (cf. Figure 6) contains modeling concepts
that allow to model the content layer of a web application, which
regards the specification of the data used by the application.

Content

Domain

superentity0..1

inverse
1

attribute
*

type
1

* domainValue

relationship*

1 to

DomainValue

WebML_Type

TypeAttributeEntity

Relationship

Figure 6: Content Package

Since WebML’s data model is based on the ER [8] model, it
supports ER modeling concepts: An Entity type represents a
description of common features, i.e., Attributes, of a set of
objects. Note, that unlike UML class diagrams, ER diagrams
model structural features, only. Attributes can have a Type, e.g.,
String, Integer, Float, Date, Time, and Boolean. An enumeration
type is represented by the Domain and DomainValue class,
respectively. Entity types that are associated with each other are
connected by Relationships.

3.3 Hypertext Package
The Hypertext Package (cf. Figure 8) summarizes ContentUnits,
used, for example, to display information from the content layer

in a certain way, which may be connected by Links. The hypertext
layer represents a view on the content layer of a Web application,
only, and thus, the Hypertext Package reuses concepts from the
Content Package, namely, Entity, Relationship, and Attribute. In
order to handle the large amount of different kinds of
ContentUnits and to reduce redundant feature definitions we
introduced a generalization hierarchy, which includes the
additional abstract classes ContentUnit, DisplayUnit, and
SortableUnit. The abstract class LinkableElement has been
introduced in order to cope with language concepts of other
packages, e.g., ContentManagement::ContentManagementUnit,
that can also be connected by links (cf. Section 3.6.4).

3.4 ContentManagement Package
The ContentManagement package contains modeling concepts
that allow the modification of data from the content layer. Similar
to the generalization hierarchy in the Hypertext package, we also
introduce additional abstract classes in the ContentMangagement
package (cf. Figure 7), i.e., OperationUnit, ContentManagement-
Unit, EntityManagementUnit, and RelationshipManagementUnit.

ContentManagement

1 relationship

1

entity

1 globalparameter

1..*

operationUnit

selector
0..1

0..1
0..1

0..1
targetselector

sourceselector
selector

0..1 entity

to

to

*

*

0..1

0..1

okLink

koLink

OperationUnit

SetUnit ContentManagementUnit

EntityManagementUnit RelationshipManagementUnit

ConnectUnit DisconnectUnit

Content::
Relationship

DeleteUnitModifyUnitCreateUnit

Content::
Entity

GlobalParameter

Transaction

Hypertext::
Selector

OKLink

KOLink

Hypertext::
LinkableElement

Figure 7: ContentManagement Package

1

sourceLinkParameter
0..1

linkParameter
*

to
0..1

link *

selectionField

field

validationrule validationrule

validationrule slot

slot

*

*

*

1..*

relationship0..1

relationship1

0..1attribute 1

1
attribute

attribute
0..1

*

selector
preselector

0..1
0..1

*

*

0..1entity
*

*

*

*
*

1..*

selector
0..1

*

*

LinkableElement

ContentUnit

LinkLinkParameter

GetUnit EntryUnitDisplayUnit

Content::Entity

SortableUnit DataUnit

ContentManagement::
GlobalParameter

DisplayAll

DisplayAttribute

Hierarchical
IndexUnit

MultiChoice
IndexUnit IndexUnit MultiDataUnit ScrollerUnit

Selector

Content::
Attribute

Content::
Relationship

SelectorCondition

Hierarchical
IndexLevel

ValidationRule

SelectionField

Field

Slot
DisplayAttribute

SortAttribute

Hypertext

• normal
• transport
• automatic

«enumeration»
LinkType

type:LinkType

Figure 8: Hypertext Package

Since the specific ContentManagementUnits are able to create,
modify, and delete Entities as well as establish or delete
Relationships between Entities from the content layer, the
ContentManagement package reuses concepts from the Content
Package, namely Entity and Relationship.

3.5 HypertextOrganization Package
The Page, Area, and SiteView modeling concepts are used to
organize and structure information, e.g., Hypertext::ContentUnits,
as well as operations on data from the content level, e.g.,
ContentManagement::OperationUnits. They are grouped within
the HypertextOrganization package (cf. Figure 9).

HypertextOrganization

defaultPage
0..1

*
page

0..1
defaultArea

homepage*page 0..1

*area

area *

transaction
*

operationunit
*

transaction*

operationunit*

unit
*
*

linkSequence
defaultPage

0..1

alternative*

2..*
page

*

Page

LinkSequence

Hypertext::
ContentUnit

Hypertext::
LinkableElement

Alternative
PageArea

SiteView ContentManagement::
GlobalParameter

ContentManagement::
Transaction

ContentManagement::
OperationUnit

{xor} {xor}

{xor}

Figure 9: HypertextOrganization Package8

The HypertextOrganization package builds on the Hypertext
package and the ContentManagement package. The abstract
classes introduced in the Hypertext and ContentManagement
packages allow to more precisely define what kind of units can be
part of a Page, an Area, and a SiteView (cf. Section 3.6.5).

3.6 WebML DTD vs. WebML Metamodel
As already mentioned, DTDs lack expressivity when compared to
metamodels. While metamodels provide a mechanism to constrain
the instance layer, e.g., with OCL [23], such constraints have to
be implemented within the respective modeling tool in case of a
DTD-based language. In the following, we provide concrete
examples of such limitations, which we identified in the
refactoring process of the WebML metamodel, and we propose
appropriate solutions.

3.6.1 Awkward Cardinalities
As already explained in Section 2.2, DTDs offer a restricted
mechanism to specify cardinalities, i.e., there are no language
concepts for defining cardinalities having a lower bound greater
than one and for defining cardinalities having an upper bound
other than ‘1’ or ‘*’. For example, the definition of the
AlternativePage modeling concept requires the AlternativePage
to have at least two sub-pages. This is expressed in the WebML
DTD as follows:
<!ELEMENT AlternativePage (Page, Page+)>

Yet, this definition might be misleading. One possible
interpretation is that the first XMLContentParticle represents a
special page, e.g., a default page. Another possible, i.e., the
correct, interpretation, however, is that the first and the second

8 Please note, that for readability purposes the OCL xor-

constraints are illustrated in UML syntax.

XMLContentParticle together represent one set of Pages, i.e., one
containment reference, but with special restrictions on their
cardinalities, i.e., 2..*. In metamodels, this constraint can be
expressed unambiguously, which is shown by the
AlternativePage.page reference in Figure 9.

3.6.2 Missing role concept
In DTDs, it is not possible to express that an element type can be
deployed in different contexts, i.e., a role concept such as in UML
is missing. As an example, the MultiChoiceIndexUnit may have
two Selectors, with one being used in the role of a preselector. In
the WebML DTD, this is expressed as follows:
<!ELEMENT MultiChoiceIndexUnit (Preselector?,
Selector?,…)>
<!ELEMENT Selector(SelectorCondition+)>
<!ELEMENT Preselector(SelectorCondition+)>

Since the Preselector element type declaration is identical to the
Selector element type declaration, one can conclude that the
Preselector element type represents the same concept as the
Selector but used in a special context. In contrast, in metamodels
this context information can be incorporated by reference names.
Therefore, the WebML metamodel only contains the Selector
class, which is referenced as a preselector by the
MultiChoiceIndexUnit (cf. Figure 8). A similar example can be
found in the ContentManagement package, where a Selector can
act as sourceselector or targetselector for
RelationshipManagementUnits (cf. Figure 7).

3.6.3 Missing XOR constraints
DTDs do not provide a mechanism to express xor-constraints for
attributes, which is frequently required for IDREF(S) attributes.
The only way to define such constraints in DTDs is setting the
cardinality of the attributes as #IMPLIED which means zero-or-
one. However, this declaration does not ensure the intended
constraint (i.e., the interrelationship between the attributes),
because all attributes or none of the attributes could still occur at
the same time at the instance layer. Consider the following
example from the WebML DTD: An Area can have either a
defaultArea or a defaultPage, but not both at the same time.
<!ELEMENT Area (…)>
<!ATTLIST Area
 …
 defaultPage IDREF #IMPLIED
 defaultArea IDREF #IMPLIED
 …>

The attribute list declaration is not able to ensure this constraint at
the instance layer. In metamodels, however, such a constraint can
be ensured by xor-constraints expressed in OCL between the
attributes as well as between the references resulting from
IDREF(S) resolutions. Within the corresponding metamodel (cf.
Figure 9) an xor-constraint between the references defaultPage
and defaultArea has to be introduced to ensure that only one of
the two references occurs at the instance layer.

3.6.4 Unknown Referenced Element Types
As already mentioned, it is not possible to identify which element
type(s) may be referenced from an IDREF-typed attribute based
on the information given in the DTD. This peculiarity of DTDs is
particularly problematic, if several element types can be
referenced. These types potentially have a common supertype,
which, however, cannot be specified in the DTD. For example,
the IDREF-typed attribute to of the Link element type declaration

does not restrict the referenced elements to those that the designer
originally intended to reference.
<!ELEMENT Link (…)>
<!ATTLIST Link
 …
 to IDREF #REQUIRED
 type (normal|automatic|transport) ‘normal’
 …>

In WebML, three disjoint Link types are available, i.e., normal
Link, automatic Link, and transport Link. Besides the Link
concept, there are also the OKLink and KOLink modeling
concepts from the ContentManagement package, which are
specifically used to define links from ContentManagementUnits.
Furthermore, besides ContentUnits and OperationUnits, there are
other linkable elements in the HypertextOrganization package,
namely Page and Area. Consequently, there are multiple
sourceElement–link–targetElement tuples of which some are
allowed in WebML, only (cf. Table 3).

Table 3: Linking Possibilities in WebML

From\To Content
Unit

Operation
Unit Page Area

Content
Unit

normal
automatic
transport

normal
transport

Operation
Unit

transport
OK
KO

transport
OK
KO

transport
OK
KO

transport
OK
KO

Page normal
transport

normal
transport

Normal

These sourceElement–link–targetElement tuples, however, are not
restricted to the allowed ones in the WebML DTD. Instead these
constraints are ensured implicitly within the tool support. Aiming
at a precise definition of sourceElement–link–targetElement
tuples in the WebML metamodel, we introduce the
LinkableElement concept (cf. Figure 8), which acts as a super
class for all possible sources and targets. In addition, we have to
define appropriate OCL constraints to restrict the sourceElement–
link–targetElement tuples to those that are allowed in WebML
(cf. Table 3) and that are not yet captured by the metamodel.

3.6.5 Missing inheritance mechanism
DTDs provide no concepts for specifying inheritance
relationships. In the WebML DTD, Pages contain different kinds
of ContentUnits.
<!ELEMENT Page (ContentUnits,…)>
<!ELEMENT ContentUnits ANY>

The problem of the missing inheritance mechanism in DTDs often
results in the definition of Any element types for allowing the
containment of certain element types. Still, the Any element type
does not restrict which element types are allowed, i.e., only
ContentUnits, and which are not allowed at the instance layer.
Again, these constraints must be ensured by the tool.
In the metamodel, we therefore introduce an abstract class
ContentUnit (cf. Figure 8), which ensures that Pages from the
HypertextOrganization package contain subclasses of
ContentUnit, only. A similar example can be found in the
ContentManagement package (cf Figure 7), where the
OperationUnit is introduced as an abstract class, which ensures

that Areas and Siteviews from the HypertextOrganization package
contain subclasses of OperationUnit, only.

4. RELATED WORK
With respect to our approach of defining a MOF-based
metamodel for WebML we distinguish between two kinds of
related work: first, related work concerning our primary goal to
design a metamodel for WebML, i.e., metamodels of other web
modeling languages, and second, related work concerning our
methodology in designing a metamodel for WebML, i.e.,
transformation of DTDs to MOF-based metamodels.
Metamodels in Web Engineering Methodologies. To the best of
our knowledge, three web modeling approaches [2], [15], [19] are
currently defined on top of a metamodel.
W2000 [2], a successor of HDM [11], originally has been defined
as an extension to UML. In [3], the metamodel approach (i.e., the
provision of a metamodel based on MOF 1.4 [20]) has been
motivated and adopted as a necessity for providing tool support
for an evolving language definition.
The metamodel of UWE [15] has been designed as a conservative
extension to the UML 1.4 metamodel [26], and thus is implicitly
based on MOF 1.4. It is intended as a step towards a future
common metamodel for the Web application domain, which will
support the concepts of all Web design methodologies. Similar to
[2], a language definition already existed as UML Profile.
Muller et al. [19] present a model-driven design and development
approach with the Netsilon tool. The tool is based on a metamodel
specified with MOF 1.4 and the Xion action language. The
decision for a metamodel-based approach has been motivated by
the fact that in the web application domain the semantic distance
between existing modeling elements (e.g., of UML) and newly
defined modeling elements is becoming too large.
Our work is complementary to [2], [15], in that we propose a
metamodel for another prominent web design methodology, i.e.,
WebML, and thus make a further step towards a common
metamodel for the web application domain [15]. But even more
important to us is that, by proposing a metamodel for WebML we
enable the transition to model-driven engineering techniques
within the WebML design methodology. Our approach to design
the metamodel is different from others, in that we generated the
WebML metamodel semi-automatically, instead of manually
deriving it from an existing language definition. Besides, the
resulting WebML metamodel is based on Ecore and thus,
basically corresponds to MOF 2.0, while the metamodels of [2],
[15], [19] are based on MOF 1.4.
Transforming DTDs to metamodels. There already exist several
approaches for transformation from the model technical space to
the XML technical space and vice versa. In [33], we present an
elaborate overview of existing approaches. Basically, approaches
related to our work provide mappings between the XML technical
space, relying on DTDs or XML Schema, and the model technical
space, relying on UML (Profiles), but also on ORM and ER. Only
some of them provide tool-based transformation support. To the
best of our knowledge, there is no approach mapping between
concepts of DTD and concepts of MOF. In doing so, our work
differs from the existing approaches in that we support intra-layer
correspondences (M3) and transformations (M2) (cf. Figure 1),
while existing approaches usually define cross-layer

correspondences (from M3 to M2) and transformations (from M2
to M1). With intra-layer mappings, one is able to derive intra-
layer mappings at lower layers of the architecture. Deriving
mappings at M2 from mappings at M3 allows performing
transformations at M1, i.e., transformations of XML documents to
UML models (cf. future work in Section 5). Cross-layer
transformation approaches, however, are limited to transforming
XML documents into object models, which have to conform to a
UML model. Therefore, while in our approach we are still able to
rely on linguistic instantiations between layers, cross-layer
transformation approaches have to rely on ontological
instantiations at M1 [1].

5. CONCLUSION AND FUTURE WORK
In this work we have proposed a MOF-based metamodel for
WebML which has been generated semi-automatically from an
existing DTD-based language definition. Our approach for the
generation of MOF-based metamodels from DTDs relies on a set
of generic transformation rules, heuristics, and user interactions to
manually improve the automatically generated metamodels. Since
there is no implementation of MOF 2.0, we have built our
transformation framework, the MetaModelGenerator, on the
EMF. Thus, the WebML metamodel now is available as an Ecore-
based metamodel. With the provision of such a metamodel, the
WebML design methodology is now ready to move on to a
model-driven web development approach. At the same time,
another step towards a common web modeling metamodel [15]
has been made.
Concerning future work, we particularly strive for first, the
refinement of the proposed metamodel and second, its extension
with concepts from the aspect-oriented software development
(AOSD) paradigm for providing modeling the customization
aspect of ubiquitous web applications.
A common metamodel for Web modeling. In a first step, we plan
to incorporate recent concepts of WebML (i.e., concepts which
are partly supported in WebRatio, but not defined in the WebML
DTD) for modeling context-aware [6] and service-enabled web
applications [16]. According to [15], we plan to investigate other
existing web modeling approaches in order to integrate their
concepts within a common Web modeling metamodel. Instead of
integrating the concepts of different methodologies in a common
metamodel, another interesting approach would be to integrate
them at an even higher level, i.e., in a domain ontology, while
making use of our ongoing research approach ModelCVS [12].
aspectUWA - Modeling Customization in Ubiquitous Web
Applications. Modeling of customization in ubiquitous web
applications (UWA) is a complex task, affecting all levels of a
UWA, i.e., the content, the hypertext, and the presentation.
Hence, customization represents a crosscutting concern. The
aspect of customization, however, can not be properly captured
by current Web modeling approaches. In fact, it is often
intermingled with the core Web application. We propose to use
aspect-orientation as driving paradigm for capturing
customization of UWAs at the modeling level [31]. In particular,
we plan the extension of an existing Web modeling language
(e.g., a refined version of the WebML metamodel) with concepts
from the aspect-orientation paradigm. In [4], adaptivity has
already been identified as a crosscutting concern in Web

applications, i.e., UWE has been extended with aspect-oriented
techniques allowing customization at the hypertext level, only.
Besides these two main directions, further work concerns three
disjoint extensions to our transformation framework. First, the
transformation framework needs further testing within other case
studies and refinements of transformation rules and heuristics.
Second, a comparison of our currently Java-based
MetaModelGenerator with a model-driven transformation
approach represents another interesting future research direction.
In particular, the proposed DTD metamodel can be reused for
describing the DTD-to-MOF transformation rules and heuristics
as ATL transformations. In this respect, one does not only
generate metamodels from DTDs in order to enable MDE, but just
in doing so, applies MDE techniques. And third, one could
perform transformations at M1 level, i.e., transformations of XML
documents, which conform to a DTD, into models, which again
conform to a corresponding metamodel, by deriving
transformation rules from the existing mappings at higher layers.
Therefore, the MetaModelGenerator should be capable of
producing a ModelGenerator (MG) for a given DTD. With this
approach, we would be able to transform existing WebML
models, represented as XML documents, into models that
conform to our MOF-based WebML metamodel. Thus, existing
WebML projects can be migrated to the model technical space.

6. ACKNOWLEDGMENTS
We thank Maristella Matera for supporting us with her very
valuable insight into the WebML language and www.webratio.org
for allowing us to publish parts of WebML’s DTD language
definition.

7. REFERENCES
[1] C. Atkinson, T. Kühne: Model-Driven Development: A

Metamodeling Foundation. IEEE Software, 20(5), September
2003.

[2] L. Baresi, S. Colazzo, L. Mainetti, and S. Morasca. W2000:
A Modeling Notation for Complex Web Applications. In E.
Mendes and N. Mosley (eds.) Web Engineering: Theory and
Practice of Metrics and Measurement for Web Development.
Springer, ISBN: 3-540-28196-7, 2006.

[3] L. Baresi, F. Garzotto, and M. Maritati. W2000 as a MOF
Metamodel. In Proc. of the 6th World Multiconference on
Systemics, Cybernetics and Informatics - Web Engineering
track. Orlando, USA, July 2002.

[4] H. Baumeister, A. Knapp, N. Koch, G. Zhang. Modelling
Adaptivity with Aspects. In Proc. of the 5th Int. Conf. on Web
Engineering (ICWE05), LNCS 3579, Sidney, Australia, July
2005.

[5] J. Bézivin. On the Unification Power of Models. Journal on
Software and Systems Modeling, 4(2), May 2005.

[6] S. Ceri, F. Daniel, M. Matera, F. Facca. Model-driven
Development of Context-Aware Web Applications. To
appear in ACM Transactions on Internet Technology (ACM
TOIT), 7(2), May 2007.

[7] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai,
M. Matera. Designing Data-Intensive Web Applications.
Morgan-Kaufmann, 2003.

[8] P. P. Chen. The Entity-Relationship Model – Toward a
Unified View of Data. ACM TODS, 1(1), March 1976.

[9] O. De Troyer, S. Casteleyn, P. Plessers: Using ORM to
Model Web Systems, In On the Move to Meaningful Internet
Systems 2005: OTM 2005 Workshops, International
Workshop on Object-Role Modeling (ORM'05), Agia Napa,
Cyprus, October-November 2005.

[10] I. Garrigós, S. Casteleyn, J. Gómez. A Structured Approach
to Personalize Websites using the OO-H Personalization
Framework in Web Technologies Research and
Development. In Proc. of the 7th Asia-Pacific Web
Conference (APWeb 2005), Shangai, China, March-April
2005.

[11] F. Garzotto, P. Paolini, D. Schwabe, HDM - A Model-Based
Approach to Hypertext Application Design, TOIS 11(1),
January 1993.

[12] G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter,
W. Retschitzegger, W. Schwinger, M. Wimmer. On Models
and Ontologies - A Layered Approach for Model-based Tool
Integration. Modellierung 2006, Innsbruck, Austria, March
2006.

[13] G. Kappel, E. Kapsammer, W. Retschitzegger. Integrating
XML and Relational Database Systems. World Wide Web
Journal (WWWJ), 7(4), December 2004.

[14] F. Jouault, I. Kurtev Transforming Models with ATL:
Proceedings of the Model Transformations. In Proc.of the
Model Transformations in Practice Workshop at MoDELS,
Montego Bay, Jamaica, October 2005.

[15] N. Koch, A. Kraus. Towards a Common Metamodel for the
Development of Web Applications. In Proc. of the 3rd
International Conference on Web Engineering (ICWE 2003),
July 2003.

[16] I. Manolescu, M. Brambilla, S. Ceri, S. Comai, P. Fraternali.
Model-Driven Design and Deployment of Service-Enabled
Web Applications. ACM Transactions on Internet
Technology (ACM TOIT), 5(3), August 2005.

[17] S. Meliá, J. Gomez. Applying Transformations to Model
Driven Development of Web applications. 1st International
Workshop on Best Practices of UML (ER, 2005) Klagenfurt,
Austria, October 2005.

[18] S. Meliá, A. Kraus, N. Koch. MDA Transformations Applied
to Web Application Development. In Proc. of the 5th
International Conference on Web Engineering (ICWE 2005),
Sydney, Australia, July 2005.

[19] P.-A. Muller, P. Studer, F. Fondement, J. Bézivin. Platform
independent Web application modeling and development
with Netsilon. Software & System Modeling, 4(4), Nov. 2005

[20] Object Management Group (OMG). Meta Object Facility
(MOF) Specification Version 1.4.
http://www.omg.org/docs/formal/02-04-03.pdf, April 2002.

[21] Object Management Group (OMG). Meta Object Facility
(MOF) 2.0 Core Specification Version 2.0.
http://www.omg.org/docs/ptc/04-10-15.pdf, October 2004.

[22] Object Management Group (OMG), MOF 2.0/XMI Mapping
Specification, v2.1, http://www.omg.org/docs/formal/05-09-
01.pdf, September 2005.

[23] Object Management Group (OMG), OCL Specification
Version 2.0, http://www.omg.org/docs/ptc/05-06-06.pdf,
June 2005.

[24] Object Management Group (OMG). UML Specification:
Infrastructure Version 2.0. http://www.omg.org/docs/ptc/04-
10-14.pdf, October 2004.

[25] Object Management Group (OMG). UML Specification:
Superstructure Version 2.0.
http://www.omg.org/docs/formal/05-07-04.pdf, August 2005.

[26] Object Management Group (OMG). UML Specification
Version 1.4. http://www.omg.org/docs/formal/01-09-67.pdf,
September 2001.

[27] O. Pastor, J.Fons, V. Pelechano, S. Abrahao. Conceptual
Modelling of Web Applications: The OOWS Approach. In
E. Mendes and N. Mosley (eds.) Web Engineering: Theory
and Practice of Metrics and Measurement for Web
Development. Springer, ISBN: 3-540-28196-7, 2006.

[28] QVT-Merge Group. Revised submission for MOF 2.1
Query/View/Transformation.
http://www.omg.org/docs/ad/05-07-01.pdf, 2005.

[29] G. Rossi , D. Schwabe. Model-Based Web Application
Development. In E. Mendes and N. Mosley (eds.) Web
Engineering: Theory and Practice of Metrics and
Measurement for Web Development. Springer, ISBN: 3-540-
28196-7, 2006.

[30] H. A. Schmid, Oliver Donnerhak. The PIM to Servlet-Based
PSM Transformation with OOHDMDA. In Proc. of the
Workshop on Model-driven Web Engineering (MDWE2005),
Sydney, Australia, July 2005.

[31] A. Schauerhuber, aspectUWA: Applying Aspect-Orientation
to the Model-Driven Development of Ubiquitous Web
Applications, Student Extravaganza: Spring School,
AOSD'06, Bonn, Germany, Available at:
http://wit.tuwien.ac.at/people/schauerhuber/, 2006.

[32] P. Valderas, J. Fons, V. Pechelano. Transforming Web
Requirements into Navigational Models: An MDA Based
Approach. In Proc. of the 24th International Conference on
Conceptual Modeling, Klagenfurt, Austria, October, 2005.

[33] M. Wimmer, A. Schauerhuber, E. Kapsammer. From
Document Type Definitions to Metamodels – The WebML
Case Study. Technical Report, Vienna University of
Technology, Available at http://big.tuwien.ac.at/
projects/webml/, March 2006.

[34] N. Wirth. What can we do about the unnecessary diversity of
notation for syntactic definitions? CACM, 20 (11),
November 1977, pp. 822-823.

[35] World Wide Web Consortium (W3C). Extensible Markup
Language (XML) 1.1 Specification.
http://www.w3.org/TR/xml11/, April 2004.

[36] World Wide Web Consortium (W3C). XML Schema Part 0:
Primer Second Edition. http://www.w3.org/TR/XML
Schema-0/, October 2004.

[37] World Wide Web Consortium (W3C). XSL Transformations
(XSLT) Version 1.0. http://www.w3.org/TR/xslt, November
1999.

