
Pattern-Based Development of
User-Friendly Web Applications

Ina Wentzlaff
University Duisburg-Essen

Faculty of Engineering
Department of Computer Science

Software Engineering
Oststraße 99

47057 Duisburg, Germany

ina.wentzlaff@uni-due.de

Markus Specker
University Duisburg-Essen

Faculty of Engineering
Department of Computer Science

Interactive Systems and Interaction Design
Lotharstraße 65

47057 Duisburg, Germany

specker@interactivesystems.info

ABSTRACT
Using patterns to preserve common problem-solving knowl-
edge is a very popular approach. Each computer science
community applies its own techniques to document engi-
neering principles for the handling of recurring software de-
velopment questions using patterns. Thus various pattern
collections were evolved for dealing with specific problems of
the respective community. As a result comparable patterns
or redundant pattern descriptions exist in different collec-
tions leading unintentionally to a “reinvention of the wheel”
time and again. Taking the development of a chat appli-
cation as an example, we present an approach for integrat-
ing patterns from different software engineering disciplines.
We transform problem patterns (problem frames) into solu-
tion patterns (design patterns) by using a case-based rea-
soning methodology to achieve a pattern-based software de-
velopment process which systematically leads from natural
language requirements to semi-formal near code level de-
scriptions. We particularly consider non-functional software
properties by combining design patterns of human-computer
interaction (HCI) with software engineering (SE) patterns in
order to support the systematic development of user-friendly
software applications.

Keywords
Software Engineering, Human-Computer Interaction,
Problem Frames, Design Patterns, Usability.

1. INTRODUCTION
Patterns are abstract descriptions of recurring principles
that reflect factual and experience knowledge. A pattern
can be applied in different situations to solve concrete engi-
neering problems. Hence, pattern-based development tech-

Copyright held by author/owner(s).
ICWE’06 Workshops, July 10-14, 2006, Palo Alto, CA
ACM 1-59593-435-9/06/07

niques can significantly contribute to the reuse of software
engineering knowledge in all phases of the software develop-
ment life cycle.

Applying patterns to software design was leveraged by
Gamma et al. [10] taking up the concept of Alexander et
al. [2] who developed design patterns for architectures of
buildings and town planning. Meanwhile pattern-based ap-
proaches are established in many computer science domains.
Patterns are used to e.g. describe software development
problems (problem frames [11]) and analysis tasks (analysis
patterns [9]) in software engineering. Architectural styles
and other patterns for software design (design patterns [5]),
human-computer interaction problems (HCI design patterns
[4, 14, 18]), and patterns for solving game design questions
(game design patterns [3]) already exist.

Often the same pattern can be found in several collections
with different names, representations, or classifications [17].
For instance, comparing the HCI design pattern “(Multi
Level) Undo” [18, 19] with software engineering design pat-
terns a corresponding SE pattern can be composed of “Me-
mento” and “Command” [10]. These common redundant or
comparable pattern descriptions indicate the possibility for
integrating different pattern collections. Another important
keynote is the way of describing patterns. Both, laymen and
experts ought to be in the position to understand, and suc-
cessfully apply patterns to build usable software artifacts.
Therefore we share the concept of Tidwell [18] who strives
to describe HCI design patterns so that it is comprehensible
to layman. But like Folmer et al. [8] and Sinnig et al. [16]
we see the need for extending informal pattern descriptions
with technical details.

Various development techniques and methods for construct-
ing software are known from SE, which are mainly based
on referring functional aspects. Many of these techniques
are also used in Usability Engineering (UE). However, es-
pecially in UE there is an urgent need for considering non-
functional software properties such as “usability” in a sys-
tematic way during the software development process (be-
sides style guides and standards for software ergonomics).
Actually, only few approaches [7] exist which explicitly take

non-functional properties (soft goals) into consideration.
Nevertheless it is commonly accepted that software quality
is mainly reflected by non-functional software characteris-
tics [13].

In this regard patterns are generally no exception. They
usually describe recurring software development principles
in a mere functional way. However, they can also be as-
signed with non-functional characteristics: for instance, ar-
chitectural styles have been classified according to software
qualities as adaptability, performance, etc. [15]. HCI de-
sign patterns imply non-functional software properties such
as usability. To ease the consideration of software quality
aspects as usability during the entire software development
process, we combine the problem description section of some
HCI design patterns with patterns applicable in software
analysis, namely problem frames.

Problem frames (PF) are patterns developed by Jackson [11]
which can be used for describing problems in the analysis
phase of the software engineering life cycle (requirements
engineering). They provide a means of representing func-
tional software requirements by documenting necessary in-
teractions between the “machine” (the software which is
to be build) and its environment. A set of basic prob-
lem frames is available, which can be composed to reflect
a given software development problem clearly and precisely.
A frame diagram characterizes the respective problem frame
and needs to be instantiated with the problem, which is de-
scribed by the software requirements, to bring the pattern
into action. We extend some frame diagrams by adding
HCI-related problem descriptions.

Software development problems modeled using problem
frames maintain the concept that patterns should be appli-
cable and comprehensible by layman, because they rely on
the terminology of natural language requirements. In ad-
dition, applying a problem frame indicates explicitly, how
to transform natural language requirements into descrip-
tions that are sufficient for developing the machine (specifi-
cations). Associated with the fact that a problem frame can
be specified with common software engineering techniques as
the notations of the Unified Modeling Language (UML), our
intention to describe informal patterns in a more technical
way is supported.

The main contribution of this article is to demonstrate how
problem descriptions from HCI design patterns become in-
tegrated into problem frames obtaining HCI problem frames
(HCIFrames). These new HCIFrames facilitate identifying
and representing HCI relevant problems already in require-
ments analysis. Hence, the application of commonly known
HCI design patterns is guided during software design. The
mapping of HCI-oriented problem patterns to patterns for
describing solutions (as architectural styles and design pat-
terns) is assisted by a case-based reasoning process. This is
supplied by a repository comprising cases of patterns used
in the software analysis phase and linked with appropriate
patterns used in software design.

By joining HCIFrames and patterns for software design we
achieve a pattern-based software development process, which
preserves software quality characteristics as usability through

the software development life cycle. Additionally, it provides
a methodological approach to make HCI design patterns im-
plementable.

This article is organized as follows. Sect. 2 describes how
a pattern-based software development process can be ob-
tained by adopting case-based reasoning (CBR). With CBR
a smooth transition of problem patterns for software analysis
into suitable solution patterns for software design is accom-
plishable.

To demonstrate the effectiveness of our approach, we ex-
emplify the development of a chat application in Sect. 3.
Starting from the natural language requirements in Sect. 3.1
we model the overall problem situation with a context dia-
gram in Sect. 3.2. In Sect. 3.3 we decompose the software
development problem into simple subproblems by means of
problem frames and introduce their fundamental notations.
In order to consider software quality aspects already in the
early phases of software development, we extend the prob-
lem frames, which are relevant to our application example,
by HCI-oriented problem descriptions in Sect. 3.4. This re-
sults in the derivation of HCIFrames.

Sect. 4 illustrates how the content of a problem pattern can
be used for instantiating a corresponding architectural style
or design pattern and for obtaining a concrete solution to
the given software development problem. Sect. 4.1 partic-
ularizes the transformation of problem frames into UML
class diagrams. Sect. 4.2 outlines where software quality
characteristics are preserved in detail, by stating explicitly
the respective elements in the HCIFrame instances and cor-
responding elements of an UML class diagram. Sect. 4.3
shows how the pattern-based software development process
is effected by case-based reasoning. Finally Sect. 5 gives a
conclusion and our perspectives.

2. METHODOLOGICAL ASSISTANCE BY
CASE-BASED REASONING

Case-based reasoning is a problem-solving paradigm. It orig-
inates from knowledge engineering [1]. In CBR, a case con-
sists of a known problem and a corresponding solution. A
case base is used as a repository collecting these cases. The
process of CBR often referred to as the R4-cycle consists of
the following steps.

Retrieve: Based on the description of a given problem (new
case) the case base is browsed in order to identify al-
ready existing cases which match with the new case.

Reuse: As cases are compositions of a problem with a cor-
responding solution, the solution of the retrieved cases
is reused to solve the given problem. Because a new
case can be matched with several existing cases, dif-
ferent solution alternatives can arise and be taken into
account for solving the given problem. The problem,
which is described in the new case and combined with
the solution of the retrieved case, represents a solved
case.

Revise: The suggested solutions are tested for applicability
and if necessary adapted to meet the problem demands
(tested/repaired case).

Retain: If a tested or repaired case could successfully be
used to sort out the given problem, it is stored for
future reuse in the case base (as a modification of some
existing cases or a new learned case).

*

case base

Retrieve &
 Reuse

Revise &
 Retain

identify

standard problem standard solution
abstract abstract

case

problem pattern

generalize

concrete
solutionproblem

concrete

adapt

solution pattern

choose

Figure 1: A pattern-based SE process with CBR

Fig. 1 illustrates a customized version of the CBR cycle to
implement a pattern-based software engineering process. A
case is composed of a problem frame (as an abstract stan-
dard problem) and an accordant architectural style or design
pattern (as an abstract standard solution). That is why the
case base primarily consists of connected patterns.

The concrete problem is generalized to a standard problem by
instantiating a problem frame. The case base is browsed to
retrieve cases whose problem pattern coincide with the prob-
lem frame that is used to represent the concrete problem.
So corresponding solution patterns (architectural styles or
design patterns) can be identified by means of the retrieved
cases and reused for solving the given problem.

The most suitable solution pattern for the given problem
situation is chosen and instantiated with the content of the
connected problem frame. Thus the instance of a solution
pattern represents a concrete solution of the given problem.
Sometimes it is required to adapt a solution pattern or if the
case base does not provide any solution patterns to develop
a new one. At last the revised case, with which the concrete
problem is successfully solved, is retained and the case base
is updated.

In this way we shift the pattern-based software development
process to the level of standard problems and related stan-
dard solutions.

3. DEVELOPING A CHAT APPLICATION
In order to show how user-friendly software can be developed
systematically with our suggested pattern-based methodol-
ogy, in Sect. 3.1ff we begin with the definition of informal,
natural language requirements for the chat application. In
Sect. 3.3ff we detail the usage of problem frames and their
relations to non-functional software properties in the context
of human-computer interaction design. The transformation
of problem patterns into solution patterns is introduced in
Sect. 4.

3.1 Understanding the problem situation
The system mission of the chat application can be outlined
as follows:

“A text message-based communication platform
shall be developed which allows multi-user com-
munication via private I/O-devices.”

To describe this software development goal more precisely
we derive further requirements R1-R6 as optative statements
in Tab. 1. The requirements describe desired properties
of the environment, after the machine is in operation [11].
Moreover domain knowledge, which is subdivided into facts
F1 and assumptions A1, is recorded. Facts represent fixed
characteristics of the application domain, whereas assump-
tions describe constraints for the application environment.
Both, facts and assumptions are indicative statements, which
are needed to realize the requirements during the implemen-
tation process.

R1 All users can phrase text messages.
R2 The phrased text messages are presented on a

graphical display.
R3 Users send their phrased text messages to the chat

in order to take part in the chat.
R4 Text messages taking part in the chat are registered

to the course of chat in their correct temporal order.
R5 The course of the chat is presented on the

graphical display.
R6 Sending text messages changes the graphical

display presentation of the course of the chat.

F1 Users can only understand the course of chat, if the
text messages are presented in the correct temporal
order (First In - First Out (FIFO)).

A1 Users will follow the course of chat on the display.

Table 1: Requirements and domain knowledge for
the chat application

For our application example we assume that the require-
ments and the domain knowledge are completely recorded
in Tab. 1.

3.2 Capturing the problem situation
Fig. 2 shows a context diagram [11], which represents the
overall problem situation by interactions between the ma-
chine (the software, which is to be developed) and its appli-
cation environment. Knowledge extracted from the require-
ments and domain knowledge (cf. Tab. 1) is represented
within the context diagram with domains (rectangles) and
sets of shared phenomena (labeled links between the do-
mains).

display

chat
application

course of
chat

a: {phraseTextmessage, sendTextmessage}
b: {showTextmessage, showCourseOfChat}
c: {registerTextmessage, CourseOfChat}
d: {editTextmessage, MessageText}
e: {followCourseOfChat}

ac

d

b
e

user

message
text

Figure 2: Context diagram for the chat application

The domains correspond to entities of the real world and can
be divided into the following categories: The machine do-
main (rectangle with two vertical lines) represents the soft-
ware product which ought to be developed, in our case the
chat application itself. Data structures, database scheme, or
other representations of information relevant to the problem
and thus need to be represented by the machine are build by
the software developer and centralized in designed domains
(rectangle with only one vertical line), e.g. here the text
message. Given domains (simple rectangle) are concepts of
the real world, which already exist and do not need to be
constructed artificially. They are relevant for the problem
description and its solution and need to be considered in the
context diagram, as well; in this case the display.

Shared phenomena are operations, actions, events, or states
that combine two domains with each other. For instance,
the machine domain chat application shares the phenome-
na of set c: {“register text message” (R4) and “content of
the course of the chat” (R3-R6)} with the designed domain
course of chat.

3.3 Decomposing the problem situation with
problem frames

Now we decompose the context diagram by means of know-
ledge-based projection into smaller, parallel subproblems.
Those simple and independent subproblems are represented
by instantiated problem frames. For each subproblem, all
other subproblems will be considered as already solved (sep-
aration of concerns). The subproblems are derived from the
context diagram using operators for decomposing problems
(e.g. by combining domains or omitting shared phenomena).

To simplify matters we show a pattern and its instance in
one common diagram. Elements belonging to the frame dia-
gram of the pattern are italicized; all other elements belong
to the pattern instance.

Fig. 3 shows the instance of the problem frame “commanded
workpiece display”. Its frame diagram is a variant of the
“commanded display” frame developed by Jackson [11] and
an enhancement of the “update” frame developed by Choppy
and Heisel [6]. In comparison to the context diagram in

Fig. 2, this pattern instance contains only domains and
shared phenomena, which are relevant to fulfill the require-
ments R1 and R2 (cf. Tab. 1).

The ellipsoid in Fig. 3 links the requirements (R1-R2) to the
problem context (dashed lines to the domains). Shared phe-
nomena at the interface of the machine domain relate the
problem context to the software which has to be developed.
Reading a frame diagram from right to left sets a visual
trace of how natural language requirements become techni-
cal descriptions, which suffice to develop the machine (spec-
ifications, cf. Fig. 12). Only shared phenomena, which are
directly related to the machine, can be controlled or ob-
served by the software, which is to be constructed. These
shared phenomena can be implemented for satisfying the
requirements.

The arrowhead at dashed lines represents a constraint on
the corresponding domain (concerning behavior or charac-
teristics of this domain stated in the requirements). For
instance, the requirement R1 “users phrase text messages”
describes a restriction on the domain text message, because
only the user decides on the content of the text message.

commanded
workpiece
display
machine

Y2: MessageText
Y4: "content of text message"
Y5: "display text message"

CA!E2

U!E3 E3

CA!E1
TM!Y2

Y5

Y4
display

operator

workpiece

application

E1: editTextmessage
E2: showTextmessage
E3: phraseTextmessage /
 "user phrases text message"

message

chat

user

display

X

C

B

text

R1, R2

Figure 3: Instance of the problem frame
“commanded workpiece display”

The characters Y and E characterize shared phenomena. A
Y indicates symbolic values, while events are annotated with
an E. The characters are numbered for indexing the shared
phenomena. The letters X, C, and B at the domains char-
acterize the domain type. Thus the designed domain text
message is a lexical domain X that works up symbolic phe-
nomena. The display is a given causal domain C, which does
not need to be developed, but can be controlled according to
our wishes. A biddable domain symbolized by the character
B represents the user. His behavior cannot be predicted or
controlled by the machine. Indeed the user can make inputs
to the software, but cannot be forced by requirements to act
in a predetermined way. However, assumptions as part of
the domain knowledge are used to record the assumed user
behavior.

The exclamation mark (!) at the shared phenomena de-
notes which domain controls a shared phenomenon. How-
ever, this does not imply control flow. The notation TM!Y2
in Fig. 3 in fact expresses that the domain text message (TM)

is responsible for administrating the symbolic phenomenon
“content of text message” at the interface Y2. The machine
domain controls requests for the “content of text message”
(MessageText).

The problem frame “commanded workpiece display” in Fig. 3
describes the following problem situation: If the operator
(user) sends a command to the machine (“phrase text mes-
sage” at the interface E3) the machine changes the workpiece
(text message) on behalf of the operator (E3 phenomena
imply E1 phenomena). The machine can follow the state
changes of the workpiece (text message) (Y2: “content of
text message”) and represents them on a display (display)
(through phenomena of the interface E2: “show text mes-
sage”).

Apart from this first subproblem represented by an instance
of the problem frame “commanded workpiece display” in
Fig. 3 there are further instantiated problem frames covering
the remaining requirements. For the sake of completeness
we only draft them in Fig. 4 and Fig. 5.

course of
chat R3, R4

text
message

U!E3 E3

X

chat

TM!Y1

CA!E1

Y2

Y5

model

model

operatorcommanded
transformation
machine

Xapplication

B
user

E3: sendTextmessage /
E1: registerTextmessage

Y1: MessageText
Y2: "content of text message"
Y5: "content of course of chat"

 "user sends text message to chat"

Figure 4: Instance of the problem frame
“commanded transformation”

course of
chat

 R5, R6

Y6: "content of course of chat"
Y7: CourseOfChat

Y4: "show course of chat"

U!E3 E3

chat
application C

CC!Y7 Y6

CA!E2 Y4

model

display

operatorcommanded
model
display
machine B

user

display

E2: showCourseOfChat

 "user sends text message"
E3: sendTextmessage /

X

Figure 5: Instance of the problem frame
“commanded model display”

3.4 Considering usability aspects with HCI-
oriented problem descriptions

To cover software quality aspects by means of problem frames
we now detail the patterns, which are used in the different
subproblems of Fig. 3 to Fig. 5, for reflecting usability de-
mands. For this purpose we adopt problem descriptions of
HCI design patterns from Tidwell [18], van Welie [19], and
Rossi et al. [14] to the problem frames approach of Jack-
son [11]. Fig. 6 extends the standard problem “commanded
workpiece display” of Fig. 3 by the HCI design patterns in-
put hints: “place a sentence to explain what is required”
(workpiece meta information) and input prompt: “prefills
telling the user what to do” (workpiece default) from Tid-
well [18].

commanded
workpiece
display
machine

workpiece
meta information

workpiece
default

CA!E2

U!E3 E3

CA!E1
TM!Y2

Y5

Y4

R1, R2

display

operator

workpiece

X
X

default
descript. of

OM!Y8DT!Y9

chat
C

B

X

application

text
message

user

display

E1: editTextmessage
E2: showTextmessage, showMetaInfo,
 showDefault
E3: phraseTextmessage /
 "user works on text message"

text mes.
text mes.

Y2: MessageText, Meta, Default
Y4: "content of text message"
Y5: "show text message"
Y8: TextMessageMetaInfo
Y9: MessageTextDefault

Figure 6: Instance of the HCIFrame “commanded
workpiece display”, cf. Fig. 3

The HCIFrame instantiated in Fig. 6 describes the following
situation: if the operator (user) has so far not commanded
the machine (chat application) by E3 phenomena, then the
workpiece default (default text message, e.g. <enter your

text message here>) is displayed via the shared phenom-
ena MessageTextDefault at the interface Y9 and Default at
the interface Y2 on the display. The default text message
acts as a placeholder for the MessageText of the workpiece
text message, which still needs to be phrased by the user.
In addition to the content of the workpiece (text message)
workpiece meta information (a description of the kind of ex-
pected inputs, e.g. the caption “Your text message:”) is
displayed (realized by phenomena of the interfaces Y8 and
Y2). Apart from the two new domains workpiece default and
workpiece meta information the behavior of this HCIFrame
does not differ from the problem description of the problem
frame “commanded workpiece display” in Fig. 3.

The HCI design pattern progress “tell user whether or not
an operation is still performed and how long it will take”
appears in different pattern collections and with different
names (“process feed-back” Rossi et al. [14], “progress” van
Welie [19], and “progress indicator” Tidwell [18]). Fig. 7
shows the HCI-oriented extension of the standard problem
“commanded transformation” of Fig. 4 using the HCI design
pattern problem description of progress.

The HCIFrame “commanded transformation” in Fig. 7 ex-
tends the description of the standard problem situation in
Fig. 4 as follows: initiated by an E3 command of the op-
erator (user), an internal machine working process (Y1 to
E1) is initialized. On a transformation display (display)
the operator can observe that the machine is still operating
(E2). The operator does not need to know how the working
processes are implemented, but he can initialize and observe
them.

course of
chat

text
message

 R3, R4

E3

X

X
chat
application

CA!E1

Y2

Y5

model

model

operatorcommanded
transformation
machine

C

TM!Y1

transformation display

CA!E2

B
userU!E3

display

E1: registerTextmessage

E3: sendTextmessage /

Y1: MessageText
Y2: "content of text message"

E2: showTransformationInProcess (Y2 to Y5)

 "user sends text message to chat"

Y5: "content of course of chat"

Figure 7: Instance of the HCIFrame “commanded
transformation”, cf. Fig. 5

By integrating problem descriptions of HCI design patterns
into problem frames, it is possible that software quality
attributes like usability can already be considered in the
early stages of the software development process. The basic
functionality of the chat application covered in the problem
frames of Fig. 3 up to Fig. 5 is improved by usability as-
pects represented in the HCIFrames in Fig. 6 and Fig. 7 (by
offering more feedback through input hints, input prompts
and indication of internal machine working processes to the
user). Identifying non-functional software attributes like us-
ability and its corresponding functions already in an early
software development phase provides a valuable base for sys-
tematically developing user-friendly quality software during
the next phases of the software development process.

The analysis of the software development problem is now
completed. In the next step the frames are transformed into
solution patterns preserving the identified usability aspects.
This should be supported by CBR in the future. However,
the descriptions of the new HCI-oriented problem patterns
are still kept informal, so that they are understandable for

laymen, as well. Software requirements described in a natu-
ral language style can be simply expressed by domains and
related shared phenomena. Fitted into an appropriate prob-
lem frame important entities and their relations are empha-
sized in order to detail the subproblem situation and derive
technical descriptions, which suffice to develop the desired
software.

4. DESIGN OF THE PROBLEM SOLUTION
Transforming problem patterns such as problem frames to
solution patterns like architectural styles or design patterns
facilitates a systematical derivation of near code descriptions
primarily based on natural language software requirements.

The content of the instantiated problem frames derived in
the analysis phase is now used to assign concrete values
to corresponding architectural styles or design patterns and
thus instantiating them. The structural extensions of HCI-
Frames are accordingly used to give additional quality re-
lated structure to corresponding solution patterns.

This results in a more detailed specification of an adequate
solution for the given software development problem main-
taining the specified quality characteristics.

 R1−R6

text m. &
coChat

U!E3 E3

chat
application

Y6

CA!E2 Y4
view

controllerMVC
machine

TC!Y7
CA!E1

user

display

E1: editTextmessage, registerTextmessage
E2: showTextmessage, showMetaInfo, showDefault,
 showCourseOfChat, showTransformationInProcess
E3: sendTextmessage, phraseTextmessage / "user input"

Y6: "content of text message and course of chat"

 CourseOfChat

X

C

B

workpiece model

Y4: "show text message and course of chat"

Y7: MessageText, TextMessageMeta, MessageTextDefault,

Figure 8: Instance of a problem frame for the archi-
tectural style “model-view-controller”

Rapanotti et al. [12] introduced architectural frames
(AFrames) in order to anticipate architectural design consid-
erations already in the software analysis phase. Comparable
to this approach in Fig. 8 we develop a problem frame that
reflects our interpretation of an AFrame, which expresses the
architectural style “model-view-controller” (MVC) of
Buschmann et al. [5].

Taking the domains and shared phenomena of the problem
frames in Fig. 5, Fig. 6 and Fig. 7 into account we instan-
tiate the MVC problem frame in Fig. 8, which summarizes
their property and behavior descriptions. The MVC prob-
lem frame in Fig. 8 can be mapped to the UML class dia-
gram of the corresponding “model-view-controller” architec-
tural style without any changes to the original classes Model,
View, and Controller. They remain unchanged, as shown in
Fig. 9.

myModel
myView
initialize(Model,View)
handleEvent
update

ControllercreategetData
attach

call update

coreData
setOfObservers
attach(Observer)
detach(Observer)
notify

getData
service

myModel
myController
initialize(Model)
makeController
activate
display
update

Model

View

manipulate
display

attach
call service

text message

TMMetaInfo
MTDefault
editTM

MessageText

Observer

update

TMDisplay
CoCDisplay
TiPDisplay

CourseOfChat
registerTM

course of chat display

control

user

phraseTM
sendTM

chat application

Figure 9: Architectural style “model-view-
controller” assigned with content of the problem
frame in Fig. 8

4.1 Transformation of problem frames into
UML class diagrams

All requirements R1-R6 of Tab. 1 are covered in the UML
class diagram in Fig. 9. This class diagram is an instantiated
solution pattern which contributes solving the given software
development problem.

It is possible that the domains of the problem frame in Fig. 8
are related to the class diagram by an inheritance relation,
which is based on their respective role (if they were instances
of model, view, or controller) in the problem frame. For
example the domains text message and course of chat are
a kind of Model in the UML class diagram (as well as in
the problem frame) providing different services and work on
different sets of core data (class attributes).

Shared phenomena controlled by the machine become op-
erations of the other, corresponding domains participating
in this interaction. For instance, the shared phenomenon
at the interface E1: editTextmessage, which occurs in the
subproblems described in Fig. 3 and Fig. 6, becomes a ser-
vice of the class Model in Fig. 9 and will be implemented
by the operation editTM of the inheriting class text mes-
sage. The shared phenomena at the interface E2: show-
Textmessage, showCourseOfChat, and showTransformationIn-
Process in Fig. 8 are not explicitly stated as operations of
the class display, since they are only different types of re-
alization of the display operation of the class View. We
assume that the overall display, which is visible for the user,
consists of several subdisplays (reflected by the role names
TMDisplay, CoCDisplay and TiPDisplay). These subdisplays
might handle different aspects, which should be displayed,
like showing the text message, showing the actual course
of chat, etc. However, this assumption does not contradict
with our systematic pattern transformation approach.

Shared phenomena of biddable domains cannot be controlled
by the machine, but they can request services or initialize
events. Thus shared phenomena controlled by a biddable
domain (here: the user) are assigned to services of the ma-

chine, here: the chat application itself. The user controls
phrasing or sending text messages through the chat appli-
cation, which treats these requests as a kind of Controller.

Shared phenomena that are controlled by lexical or causal
domains become simple attributes of the corresponding
classes. For instance, the shared phenomenon CourseOfChat
at the interface Y7 in Fig. 8, which is controlled by the do-
main course of chat becomes an attribute of the class course
of chat, which stores the content of the actual course of the
chat.

4.2 Informal HCI design patterns as part of
the semi-formal design solution

Fig. 9 reflects a coarse-grained design solution for the soft-
ware development problems specified in Fig. 5 to Fig. 8. By
combining the informal HCI design pattern problem descrip-
tions of Tidwell [18], van Welie [19], and Rossi et al. [14] with
problem frames, which are used in requirements engineering,
we are now able to systematically state where design pat-
terns can be applied in the design of the software solution
and how software quality aspects such as usability have to
be realized.

In contrast to Sinnig et al. [16], who transform HCI design
patterns into UML class diagrams, we do not need explicit
UML representations of single HCI design patterns. Our
approach has the following benefits: First, we can reuse the
natural language descriptions of the original problem de-
scriptions of HCI design patterns in the analysis phase of
the software development process and thus support both,
laymen and experts working with patterns. Second, we are
in the position to systematically state where and how HCI
design patterns should be applied in order to realize the soft-
ware product. HCIFrames can explicitly show, which part of
the software is affected by usability aspects. By transform-
ing HCI-oriented problem patterns into solution patterns
like architectural styles or design patterns, the designer is
guided to the place where design patterns can be applied in-
stead of introducing them artificially only based on personal
experience. Thus our approach supports identifying design
solutions by giving hints regarding how and where design
patterns should be applied.

In Fig. 9 the HCI design patterns “input prompt”, “in-
put hint”, and “progress” are part of the designed solution.
The class text message has two new attributes namely TM-
MetaInfo and MTDefault, which are derived from the cor-
responding HCIFrame in Fig. 6. If the operation display of
the class View is called, the TMDisplay shows the Message-
Text of the class text message as well as the content of the
attributes TMMetaInfo (possibly as a label of the text mes-
sage) and MTDefault (for example as an initial value of the
MessageText). The reader could envisage a labeled text field
widget, which allows the manipulation of a text message. It
represents the text message on the TMDisplay.

4.3 Applying CBR to identify appropriate prob-
lem solutions

One objective of applying case-based reasoning to our
pattern-based software development process is to identify
different possible solution patterns, which fit the given prob-

lem situation, and use the most appropriate one(s) to realize
the problem solution. Rating different design alternatives
by using metrics and CBR could be one approach to han-
dle several retrieved solution patterns. We have decided
to use several solution patterns and combine them into an
overall design. Until now only human-computer interaction
problems have been considered in the application example.
They belong to a problem class which often corresponds to a
“model-view-controller” structure. Further investigations of
the problem situation are necessary for a close understand-
ing of the communication problem that needs to be solved
by our chat application (cf. system mission in Sect. 3.1).

 R3, R4

U!E3 E3

chat CA!E1

C6

Y5

operatorforwarder
receiver
machine

Xapplication

B
user

coChat
text m. &

workpiece model

forwarder/receiver

CCA!C2

TC!Y1

BT!C4

 "user sends text message to chat"
E3: sendTextmessage /
E1: registerTextmessage

Y1: MessageText
Y2: "content of text message"

Bluetooth

Y5: "content of course of chat"
C2: sendMsgText
C4: receiveMsgText
C6: "text message published to all chat users"

Figure 10: Design pattern “forwarder-receiver” as-
signed with content of the problem frame “com-
manded transformation” in Fig. 4

Fig. 10 shows an instance of the problem frame “forwarder-
receiver”. The shared phenomenon sendTextmessage and its
related phenomenon registerTextmessage are responsible for
publishing the private phrased text messages to all users of
the chat. The “forwarder-receiver” problem frame is a prob-
lem pattern that reflects the need of distributing information
between different users or applications by introducing an in-
termediate forwarder-receiver component. This component
handles the communication. A new domain Bluetooth could
be identified by a further analysis of the chat application
domain. The new facts F2 and F3 about the application do-
main can be collected in the domain knowledge for the chat
software.

F2: The chat application shall run on mobile devices.

F3: Mobile devices communicate via Bluetooth.

This new domain knowledge indicates that collecting facts
and assumptions about the application domain is an impor-
tant issue. If the software development goal (system mis-
sion and requirements) is the development of a chat appli-
cation for a desktop PC with an Internet connection, the
new forwarder-receiver domain can be a W-LAN connection
or the use of TCP/IP, etc. In this case a client-server ar-
chitecture would possibly better suit the given properties of

the application domain. In our application example a chat
application for mobile devices shall be developed, so that
a Bluetooth domain is responsible for administrating the
forwarder-receiver tasks.

The “forwarder-receiver” problem frame in Fig. 10 describes
the following problem situation: Based on an operator (user)
command (E3: sendTextmessage) and the actual state of the
machine (chat application) indicated by phenomena Y1 con-
trolled by workpiece models (here: MessageText of text mes-
sage), the machine requests the forwarder/receiver domain
(Bluetooth) to call C2 operations: sendMsgText correspond-
ing to the E3 command. In its role as forwarder the domain
forwarder/receiver is a kind of required interface, which ini-
tializes operation calls, whereas in its role as receiver the
domain forwarder/receiver is a kind of provided interface,
which implements the behavior of the called operations. If
a forwarder/receiver receives a message (i.e. a service of the
receiver is used by a forwarder), it forwards the receiveMs-
gText command (C4) to the machine, which processes the
corresponding registerTextmessage operations (E1).

1:1

receiveMsg

IPC

IPC

sendTextMessage

receive
unmarshal
receiveMsg

Peer

service

marshal
deliver
sendMsg

Bluetooth SMS

n

sendMsg

chat application

Forwarder

Receiver

W−LAN

Figure 11: UML class diagram for the design pat-
tern “forwarder-receiver” assigned with content of
the problem frame in Fig. 10

Thus we achieve a peer-to-peer chat application, in which
the machine can be client as well as server depending on
the corresponding service that is processed. Again there is
no need to change the original design pattern “forwarder-
receiver” of Buschmann et al. [5]. The content of the prob-
lem frame in Fig. 10 can be combined with the design pat-
tern in Fig. 11 by a simple inheritance relation. After the
text message is sent to all other users of the chat, the prob-
lem frame in Fig. 5 is responsible for displaying the new,
incoming text message by updating the course of chat on
the private user displays.

Like the problem frames of the analysis phase the two in-
stantiated solution patterns of software design namely the
architectural style “model-view-controller” in Fig. 9 and the
design pattern “forwarder-receiver” in Fig. 11 are indepen-
dent (sub)solutions to the given problem situation. These
concurrent solution representations finally have to be com-
bined in order to describe a design that represents a near
code level description of the software, which is to be real-

ized. We use UML sequence diagrams for composing the
overall design out of the parallel (sub)solutions.

:user

sd chatApplication

alt

phraseTM

editTM

Textmessage

display(showTextmessage,showMetaInfo,showDefault)

sendTM

getData

Textmessage

par
sendMsgText(Textmessage)

display(showTransformationInProcess)

receiveMsgText(Textmessage)

opt
display(cancelTransInProcessInformation)

registerTM

getData

CourseOfChat

display(showCourseOfChat)

 Fig. 6

 Fig. 7

 Fig. 7

 Fig. 7

 Fig. 5

 Fig. 10

:chat application :text message :course of chat :bluetooth:display

Figure 12: UML sequence diagram for specifying
the chat application software

The UML sequence diagram in Fig. 12 is derived by using
the problem frames in Fig. 5, Fig. 6, Fig. 7, and Fig. 10.
Domains of the problem frames are now objects of the se-
quence diagrams. The messages in Fig. 12 are taken from
the UML class diagrams of Fig. 9 and Fig. 11. Remem-
ber that they were derived from the shared phenomena of
the corresponding problem frames. The requirements R1-R6
were used to define the time order of the messages in the
sequence diagram. Now we have a specification of the chat
application machine, which can be easily used for developing
the software.

5. CONCLUSIONS AND PERSPECTIVES
The integration of patterns from different computer science
disciplines enables a systematic transformation of natural
language problem descriptions into solution descriptions,
which are close to the software implementation level. For
this we employ repeating and comparable pattern descrip-
tions from HCI and SE in order to realize a pattern-based
software development process. Problem frames are used to
represent a software development problem to be solved. Ar-
chitectural styles and design patterns are used to reflect
possible solutions of these software development problems.
Based on an application example, we showed how problem
frames as problem patterns can be transformed into archi-
tectural styles and design patterns as representatives for so-
lution patterns, in order to finally implement given software
requirements.

In addition to the systematic transformation of software
artifacts of the analysis phase to software artifacts of the
design phase, we explicitly refer to non-functional software
properties and improve the application of HCI
design patterns within the overall software development pro-
cess. Therefore we integrate the problem descriptions of
some HCI design patterns into problem frames obtaining
HCIFrames. Thereby software quality attributes such as us-
ability become representable in early software development
phases in an explicit manner. Nevertheless our HCI-oriented
problem representations remain in natural language, un-
derstandable by experts and laymen. Apart from the core
functionality of the software that is to be developed, (HCI)-
Frames can be systematically transformed into architectural
styles and design patterns. For our chat application example
we demonstrated the qualitative improvement of the desired
functionality.

A problem pattern as shown in Fig. 8 in combination with
its corresponding solution pattern in Fig. 9 represents a
pattern case, which can be stored into a pattern case base
and reused by CBR techniques to solve different problem sit-
uations. CBR techniques could also make suggestions con-
cerning the most appropriate solution for a given application
example. Currently, we extend the chat application exam-
ple and analyze the relevance of the domain knowledge for
the choice of patterns and its role considering software qual-
ity characteristics. Tool support for the transformation of
problems into solution patterns is planned for the future.

The applied problem decomposition technique using know-
ledge-based projection eases the further development of the
application example in an evolutionary style. New require-
ments are assigned to already existing subproblems or a new
problem frame represents the problem situation the new re-
quirement is involved in. In contrast to use-cases, problem
frames explicitly show the transformation of natural lan-
guage requirements to interactions of the machine with the
corresponding entities of the environment. A problem frame
can be translated into objects and messages of a UML class
or sequence diagram. Starting with Jackson’s context dia-
gram and problem frames in the analysis phase, provides the
distinction of natural language problem descriptions from
(semi)-formal, technical (for instance, UML) representations
of a detailed solution to a given problem in the design phase.
A deterministical transformation of a problem frame into a
UML diagram is possible.

Furthermore, we are interested in investigating how HCI-
Frames can be combined with graphical user interface (GUI)
design elements (like a button, check box, text field, etc.) to
assist the development of user-friendly applications. Fig. 3
for instance could be usefully implemented through a labeled
text field widget with a default text shown on initialization
time of the text field. Extending our pattern-based software
development process in an aspect-orient way combined with
the idea of model-driven architecture would lead to a rapid
software development process where based on frames core
system functionality and a prototypical GUI can be devel-
oped in parallel and implemented by corresponding compo-
nents. This vision is part of our future work.

6. ACKNOWLEDGEMENTS
The authors appreciate the in-depth comments given by the
anonymous reviewers to improve this work as well as the en-
couragement provided by our colleagues Renée Foraschick,
Jörg Niesenhaus, Isabelle Côté, and Holger Schmidt.
We would like to thank our doctoral thesis supervisors
Prof. Dr. Maritta Heisel and Prof. Dr.-Ing. Jürgen Ziegler
for their support.

7. REFERENCES
[1] A. Aamondt and E. Plaza. Case-Based Reasoning:

Foundational Issues, Methodological Variations, and
System Approaches. AI Communications, 7(1):31–59,
1994.

[2] C. Alexander, S. Ishikawa, M. Silverstein,
M. Jacobson, I. Fiksdahl-King, and S. Angel. A
Pattern Language. Oxford University Press, New
York, USA, 1977.

[3] S. Bjork and J. Holopainen. Patterns in Game Design.
Charles River Media, Hingham, USA, 2005.

[4] J. Borchers. A Pattern Approach to Interaction
Design. John Wiley & Sons, Chichester, USA, 2001.

[5] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture – A System of Patterns. John Wiley &
Sons, Chichester, USA, 1996.

[6] C. Choppy and M. Heisel. Une approache á base de
patrons pour la spécification et le développement de
systèmes d’information. Approches Formelles dans
l’Assistance au Développement de Logiciels - AFADL,
2004.

[7] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos.
Non-Functional Requirements in Software Engineering.
Kluwer Academic Publishers, Boston, USA, 2000.

[8] E. Folmer, M. van Welie, and J. Bosch. Bridging
Patterns: An approach to bridge gaps between SE and
HCI. Information and Software Technology,
48(2):69–98, 2006.

[9] M. Fowler. Analysis Patterns: reusable object models.
Addison-Wesley, Boston, USA, 1996.

[10] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissidis.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional, Boston, USA, 1995.

[11] M. Jackson. Problem Frames. Analyzing and
structuring software development problems.
Addison-Wesley, Boston, USA, 2001.

[12] L. Rapanotti, J. G. Hall, M. Jackson, and
B. Nuseibeh. Architecture-driven Problem
Decomposition. Proceedings of the 2004 International
Conference on Requirements Engineering (RE04),
Kyoto, 2005.

[13] S. Robertson and J. Robertson. Mastering the
Requirements Process. Addison-Wesley, Boston, USA,
1999.

[14] G. Rossi, D. Schwabe, and F. Lyardet. User Interface
Patterns for Hypermedia Applications. In AVI ’00:
Proceedings of the Working Conference on Advanced
Visual Interfaces, pages 136–142, New York, NY,
USA, 2000. ACM Press.

[15] M. Shaw and S. Garlan. Software Architecture.
Perspectives on an Emerging Discipline. Prentice Hall,
Eaglewood Cliffs, New Jersey, USA, 1996.

[16] D. Sinnig, P. Forbrig, and A. Seffah. Patterns in
Model-Based Development. In H. Trætteberg,
J. Molina, and N. J. Nunes, editors, First
International Workshop of MBUI. CEUR Workshop
Proceedings, 2004.

[17] W. F. Tichy. A catalogue of general purpose design
patterns. In Proceedings of Technology of
Object-Oriented Languages and Systems (TOOLS23).
IEEE Computer Society, 1998.

[18] J. Tidwell. Designing Interfaces. O’Reilly Media,
Sebastopol, USA, 2005.

[19] M. van Welie. Patterns in interaction design,
2003-2006. http://www.welie.com/ Online catalogue
for interaction design patterns.

